In this paper, we consider a special case of the inverse problem of calculus of variations. For a given spray $ S $ on a manifold $ M $, we investigate the projective deformation of $ S $ by a 1-form $ \beta \in \Lambda^1(M) $ on $ M $, precisely, $ S_{\! {_\beta}} = S-2\beta \mathcal{C} $. We show that, in general, the spray $ S_{\! {_\beta}} $ is not Finsler metrizable. Moreover, the metrizability of $ S_{\! {_\beta}} $, when the background spray is flat, is characterized. In this case, we establish an explicit formula for the Finsler function whose geodesic spray is $ S_{\! {_\beta}} $. We conclude that this metric is a projectively flat metric of nonzero constant flag curvature; that is, the obtained metric is a solution for Hilbert's fourth problem.
Citation: Salah G. Elgendi, Zoltán Muzsnay. Metrizability of 1-form projective deformation of sprays[J]. AIMS Mathematics, 2025, 10(12): 28815-28828. doi: 10.3934/math.20251268
In this paper, we consider a special case of the inverse problem of calculus of variations. For a given spray $ S $ on a manifold $ M $, we investigate the projective deformation of $ S $ by a 1-form $ \beta \in \Lambda^1(M) $ on $ M $, precisely, $ S_{\! {_\beta}} = S-2\beta \mathcal{C} $. We show that, in general, the spray $ S_{\! {_\beta}} $ is not Finsler metrizable. Moreover, the metrizability of $ S_{\! {_\beta}} $, when the background spray is flat, is characterized. In this case, we establish an explicit formula for the Finsler function whose geodesic spray is $ S_{\! {_\beta}} $. We conclude that this metric is a projectively flat metric of nonzero constant flag curvature; that is, the obtained metric is a solution for Hilbert's fourth problem.
| [1] | W. Ambrose, R. S. Palais, I. M. Singer, Sprays, An. Acad. Bras. Cienc., 32 (1960), 163–178. |
| [2] | D. Bao, C. Robles, Ricci and flag curvatures in Finsler geometry, In: A sampler of Riemann-Finsler geometry, Cambridge University Press, 2004,197–260. https://doi.org/10.1017/9781009701280.006 |
| [3] |
I. Bucataru, G. Cretu, A general version of Beltrami's theorem in Finslerian setting, Publ. Math. Debrecen, 2020, 1–9. https://doi.org/10.5486/pmd.2020.8814 doi: 10.5486/pmd.2020.8814
|
| [4] |
I. Bucataru, Z. Muzsnay, Projective and Finsler metrizability: Parameterization-rigidity of the geodesics, Int. J. Math., 23 (2012), 1250099. https://doi.org/10.1142/s0129167x12500991 doi: 10.1142/s0129167x12500991
|
| [5] |
I. Bucataru, Z. Muzsnay, Projective metrizability and formal integrability, Symmetry Integr. Geom., 7 (2011), 114. https://doi.org/10.3842/sigma.2011.114 doi: 10.3842/sigma.2011.114
|
| [6] |
I. Bucataru, Z. Muzsnay, Sprays metrizable by Finsler functions of constant flag curvature, Diffeer. Geom. Appl., 31 (2013), 405–415. https://doi.org/10.1016/j.difgeo.2013.02.001 doi: 10.1016/j.difgeo.2013.02.001
|
| [7] |
I. Bucataru, Z. Muzsnay, Finsler metrizable isotropic sprays and Hilbert's fourth problem, J. Aust. Math. Soc., 97 (2014), 27–47. https://doi.org/10.1017/S1446788714000111 doi: 10.1017/S1446788714000111
|
| [8] | S. S. Chern, Z. Shen, Riemann-Finsler Geometry, In: Nankai Tracts in Mathematics, World Scientific, 2004. |
| [9] |
M. Crampin, On the inverse problem for sprays, Publ. Math. Debrecen, 70 (2007), 319–335. https://doi.org/10.5486/pmd.2007.3483 doi: 10.5486/pmd.2007.3483
|
| [10] |
S. G. Elgendi, Z. Muzsnay, Metrizability of holonomy invariant projective deformation of sprays, Can. Math. Bull., 66 (2023), 701–714. https://doi.org/10.4153/s0008439520000016 doi: 10.4153/s0008439520000016
|
| [11] |
S. G. Elgendi, Z. Muzsnay, The geometry of geodesic invariant functions and applications to Landsberg surfaces, AIMS Mathematics, 9 (2024), 23617–23631. https://doi.org/10.3934/math.20241148 doi: 10.3934/math.20241148
|
| [12] |
B. S. Kruglikov, V. S. Matveev, Almost every path structure is not variational, Gen. Relativ. Gravit., 54 (2022), 121. https://doi.org/10.1007/s10714-022-03006-2 doi: 10.1007/s10714-022-03006-2
|
| [13] | D. Krupka, A. E. Sattarov, The inverse problem of the calculus of variations for Finsler structures, Math. Slovaca, 35 (1985), 217–222. |
| [14] |
O. Krupková, Variational metric structures Publ. Math. Debrecen, 62 (2003), 461–495. https://doi.org/10.5486/pmd.2003.2911 doi: 10.5486/pmd.2003.2911
|
| [15] | B. Li, Z. Shen, Sprays of isotropic curvature, In: Int. J. Math., 29 (2018), 1850003. https://doi.org/10.1142/s0129167x18500039 |
| [16] | Z. Shen, Differential geometry of spray and Finsler spaces, Dordrecht: Springer, 2001. https://doi.org/10.1007/978-94-015-9727-2 |
| [17] |
J. Szilasi, S. Vattamany, On the Finsler-metrizabilities of spray manifolds, Period. Math. Hung., 44 (2002), 81–100. https://doi.org/10.1023/a:1014928103275 doi: 10.1023/a:1014928103275
|
| [18] |
G. Yang, Some classes of sprays in projective spray geometry, Differ. Geom. Appl., 29 (2011), 606–614. https://doi.org/10.1016/j.difgeo.2011.04.041 doi: 10.1016/j.difgeo.2011.04.041
|
| [19] |
G. Yang, On sprays of scalar curvature and metrizability, J. Geom. Anal., 33 (2023), 120. https://doi.org/10.1007/s12220-022-01165-x doi: 10.1007/s12220-022-01165-x
|