Research article

Metrizability of 1-form projective deformation of sprays

  • Published: 09 December 2025
  • MSC : 53B40, 53C60

  • In this paper, we consider a special case of the inverse problem of calculus of variations. For a given spray $ S $ on a manifold $ M $, we investigate the projective deformation of $ S $ by a 1-form $ \beta \in \Lambda^1(M) $ on $ M $, precisely, $ S_{\! {_\beta}} = S-2\beta \mathcal{C} $. We show that, in general, the spray $ S_{\! {_\beta}} $ is not Finsler metrizable. Moreover, the metrizability of $ S_{\! {_\beta}} $, when the background spray is flat, is characterized. In this case, we establish an explicit formula for the Finsler function whose geodesic spray is $ S_{\! {_\beta}} $. We conclude that this metric is a projectively flat metric of nonzero constant flag curvature; that is, the obtained metric is a solution for Hilbert's fourth problem.

    Citation: Salah G. Elgendi, Zoltán Muzsnay. Metrizability of 1-form projective deformation of sprays[J]. AIMS Mathematics, 2025, 10(12): 28815-28828. doi: 10.3934/math.20251268

    Related Papers:

  • In this paper, we consider a special case of the inverse problem of calculus of variations. For a given spray $ S $ on a manifold $ M $, we investigate the projective deformation of $ S $ by a 1-form $ \beta \in \Lambda^1(M) $ on $ M $, precisely, $ S_{\! {_\beta}} = S-2\beta \mathcal{C} $. We show that, in general, the spray $ S_{\! {_\beta}} $ is not Finsler metrizable. Moreover, the metrizability of $ S_{\! {_\beta}} $, when the background spray is flat, is characterized. In this case, we establish an explicit formula for the Finsler function whose geodesic spray is $ S_{\! {_\beta}} $. We conclude that this metric is a projectively flat metric of nonzero constant flag curvature; that is, the obtained metric is a solution for Hilbert's fourth problem.



    加载中


    [1] W. Ambrose, R. S. Palais, I. M. Singer, Sprays, An. Acad. Bras. Cienc., 32 (1960), 163–178.
    [2] D. Bao, C. Robles, Ricci and flag curvatures in Finsler geometry, In: A sampler of Riemann-Finsler geometry, Cambridge University Press, 2004,197–260. https://doi.org/10.1017/9781009701280.006
    [3] I. Bucataru, G. Cretu, A general version of Beltrami's theorem in Finslerian setting, Publ. Math. Debrecen, 2020, 1–9. https://doi.org/10.5486/pmd.2020.8814 doi: 10.5486/pmd.2020.8814
    [4] I. Bucataru, Z. Muzsnay, Projective and Finsler metrizability: Parameterization-rigidity of the geodesics, Int. J. Math., 23 (2012), 1250099. https://doi.org/10.1142/s0129167x12500991 doi: 10.1142/s0129167x12500991
    [5] I. Bucataru, Z. Muzsnay, Projective metrizability and formal integrability, Symmetry Integr. Geom., 7 (2011), 114. https://doi.org/10.3842/sigma.2011.114 doi: 10.3842/sigma.2011.114
    [6] I. Bucataru, Z. Muzsnay, Sprays metrizable by Finsler functions of constant flag curvature, Diffeer. Geom. Appl., 31 (2013), 405–415. https://doi.org/10.1016/j.difgeo.2013.02.001 doi: 10.1016/j.difgeo.2013.02.001
    [7] I. Bucataru, Z. Muzsnay, Finsler metrizable isotropic sprays and Hilbert's fourth problem, J. Aust. Math. Soc., 97 (2014), 27–47. https://doi.org/10.1017/S1446788714000111 doi: 10.1017/S1446788714000111
    [8] S. S. Chern, Z. Shen, Riemann-Finsler Geometry, In: Nankai Tracts in Mathematics, World Scientific, 2004.
    [9] M. Crampin, On the inverse problem for sprays, Publ. Math. Debrecen, 70 (2007), 319–335. https://doi.org/10.5486/pmd.2007.3483 doi: 10.5486/pmd.2007.3483
    [10] S. G. Elgendi, Z. Muzsnay, Metrizability of holonomy invariant projective deformation of sprays, Can. Math. Bull., 66 (2023), 701–714. https://doi.org/10.4153/s0008439520000016 doi: 10.4153/s0008439520000016
    [11] S. G. Elgendi, Z. Muzsnay, The geometry of geodesic invariant functions and applications to Landsberg surfaces, AIMS Mathematics, 9 (2024), 23617–23631. https://doi.org/10.3934/math.20241148 doi: 10.3934/math.20241148
    [12] B. S. Kruglikov, V. S. Matveev, Almost every path structure is not variational, Gen. Relativ. Gravit., 54 (2022), 121. https://doi.org/10.1007/s10714-022-03006-2 doi: 10.1007/s10714-022-03006-2
    [13] D. Krupka, A. E. Sattarov, The inverse problem of the calculus of variations for Finsler structures, Math. Slovaca, 35 (1985), 217–222.
    [14] O. Krupková, Variational metric structures Publ. Math. Debrecen, 62 (2003), 461–495. https://doi.org/10.5486/pmd.2003.2911 doi: 10.5486/pmd.2003.2911
    [15] B. Li, Z. Shen, Sprays of isotropic curvature, In: Int. J. Math., 29 (2018), 1850003. https://doi.org/10.1142/s0129167x18500039
    [16] Z. Shen, Differential geometry of spray and Finsler spaces, Dordrecht: Springer, 2001. https://doi.org/10.1007/978-94-015-9727-2
    [17] J. Szilasi, S. Vattamany, On the Finsler-metrizabilities of spray manifolds, Period. Math. Hung., 44 (2002), 81–100. https://doi.org/10.1023/a:1014928103275 doi: 10.1023/a:1014928103275
    [18] G. Yang, Some classes of sprays in projective spray geometry, Differ. Geom. Appl., 29 (2011), 606–614. https://doi.org/10.1016/j.difgeo.2011.04.041 doi: 10.1016/j.difgeo.2011.04.041
    [19] G. Yang, On sprays of scalar curvature and metrizability, J. Geom. Anal., 33 (2023), 120. https://doi.org/10.1007/s12220-022-01165-x doi: 10.1007/s12220-022-01165-x
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(292) PDF downloads(13) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog