Research article Special Issues

Median augmented ranked set sampling for estimation of the population mean with applications to body health data

  • Published: 10 December 2025
  • MSC : 60E05, 62D05, 62F10

  • Ranked set sampling (RSS) is a sampling design that combines random sampling with the judgment of researchers through preliminary ranking. The current study introduced a new generalization of RSS, called median-augmented ranked set sampling (MARSS), designed to further reduce the measurement cost and lessen the influence of outliers in estimating the population mean. The proposed MARSS estimator was compared with both simple random sampling (SRS) and RSS estimators. Its exact relative precision and bias were evaluated for a range of symmetric and skewed distributions under perfect ranking. A simulation study was also conducted to assess its performance under imperfect ranking, when using concomitant variables, in the presence of outliers, and when considering ranking cost efficiency. The variance and robustness were also interpreted in topological space. The theoretical results showed that the MARSS estimator was unbiased for symmetric distributions and achieved less variance than both RSS and SRS in unimodal symmetric distributions. Overall, MARSS is more precise than SRS and surpassed RSS in most scenarios, though some bias was observed for skewed distributions. Importantly, MARSS demonstrated a greater robustness to outliers than either SRS or RSS. Finally, the new sampling design was illustrated through an application to body health data analysis.

    Citation: Zuhier Aldrabseh Mahmoud, Khudhayr A. Rashedi, Ali A. Atoom, Tariq S. Alshammari, Nesreen M. AL-Olaimat. Median augmented ranked set sampling for estimation of the population mean with applications to body health data[J]. AIMS Mathematics, 2025, 10(12): 28954-28980. doi: 10.3934/math.20251274

    Related Papers:

  • Ranked set sampling (RSS) is a sampling design that combines random sampling with the judgment of researchers through preliminary ranking. The current study introduced a new generalization of RSS, called median-augmented ranked set sampling (MARSS), designed to further reduce the measurement cost and lessen the influence of outliers in estimating the population mean. The proposed MARSS estimator was compared with both simple random sampling (SRS) and RSS estimators. Its exact relative precision and bias were evaluated for a range of symmetric and skewed distributions under perfect ranking. A simulation study was also conducted to assess its performance under imperfect ranking, when using concomitant variables, in the presence of outliers, and when considering ranking cost efficiency. The variance and robustness were also interpreted in topological space. The theoretical results showed that the MARSS estimator was unbiased for symmetric distributions and achieved less variance than both RSS and SRS in unimodal symmetric distributions. Overall, MARSS is more precise than SRS and surpassed RSS in most scenarios, though some bias was observed for skewed distributions. Importantly, MARSS demonstrated a greater robustness to outliers than either SRS or RSS. Finally, the new sampling design was illustrated through an application to body health data analysis.



    加载中


    [1] A. Haq, J. Brown, E. Moltchanova, A. I. Al-Omari, Partial ranked set sampling design, Environmetrics, 24 (2013), 201–207. https://doi.org/10.1002/env.2203 doi: 10.1002/env.2203
    [2] G. A. McIntyre, A method for unbiased selective sampling using ranked sets, Aust. J. Agr. Res., 3 (1952), 385–390. https://doi.org/10.1071/AR9520385 doi: 10.1071/AR9520385
    [3] H. A. Muttlak, Median ranked set sampling, J. Appl. Stat. Sci., 6 (1997), 245–255.
    [4] M. T. Al-Odat, M. F. Al-Saleh, A variation of ranked set sampling, J. Appl. Stat. Sci., 10 (2001), 137–146.
    [5] A. D. Al-Nasser, L ranked set sampling: a generalization procedure for robust visual sampling, Commun. Stat. Simul. Comput., 36 (2007), 33–43. https://doi.org/10.1080/03610910601096510 doi: 10.1080/03610910601096510
    [6] L. Khan, J. Shabbir, U. Khalil, A new systematic ranked set-sampling scheme for symmetric distributions, Life Cycle Reliab. Saf. Eng., 8 (2019), 205–210. https://doi.org/10.1007/s41872-019-00080-5 doi: 10.1007/s41872-019-00080-5
    [7] M. Z. Aldrabseh, M. T. Ismail, New modification of ranked set sampling for estimating population mean, J. Stat. Comput. Simul., 93 (2023), 2843–2855. https://doi.org/10.1080/00949655.2023.2212312 doi: 10.1080/00949655.2023.2212312
    [8] M. F. Al-Saleh, M. A. Al-Kadiri, Double-ranked set sampling, Stat. Probab. Lett., 48 (2000), 205–212. https://doi.org/10.1016/S0167-7152(99)00206-0 doi: 10.1016/S0167-7152(99)00206-0
    [9] M. F. Al-Saleh, A. I. Al-Omari, Multistage ranked set sampling, J. Stat. Plan. Infer., 102 (2002), 273–286. https://doi.org/10.1016/S0378-3758(01)00086-6 doi: 10.1016/S0378-3758(01)00086-6
    [10] A. I. Al-Omari, A. Haq, A new sampling method for estimating the population mean, J. Stat. Comput. Simul., 89 (2019), 1973–1985. https://doi.org/10.1080/00949655.2019.1604710 doi: 10.1080/00949655.2019.1604710
    [11] M. Z. Aldrabseh, M. T. Ismail, A. I. Al-Omari, Double except extreme ranked set sampling for estimating population mean, Adv. Math. Model. Appl., 9 (2024), 415–430. https://doi.org/10.62476/amma93415 doi: 10.62476/amma93415
    [12] M. Noor-ul-Amin, F. Arif, M. Hanif, Modified extreme ranked sets sampling with auxiliary variable, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 91 (2021), 537–542. https://doi.org/10.1007/s40010-020-00698-6 doi: 10.1007/s40010-020-00698-6
    [13] M. A. Shehzada, A. Nisara, A. Khana, W. Emamb, Y. Tashkandyb, H. Khurram, et al., Modified median quartile double ranked set sampling for estimation of population mean, Heliyon, 10 (2024), e34627. https://doi.org/10.1016/j.heliyon.2024.e34627 doi: 10.1016/j.heliyon.2024.e34627
    [14] A. Haq, J. Brown, E. Moltchanova, A. I. Al-Omari, Paired double-ranked set sampling, Commun. Stat. Theory Methods, 45 (2016), 2873–2889. https://doi.org/10.1080/03610926.2014.892135 doi: 10.1080/03610926.2014.892135
    [15] A. I. Al-Omari, M. S. Abdallah, Estimation of the distribution function using moving extreme and MiniMax ranked set sampling, Commun. Stat. Simul. Comput., 52 (2023), 1909–1925. https://doi.org/10.1080/03610918.2021.1891433 doi: 10.1080/03610918.2021.1891433
    [16] A. I. Al-Omari, M. Z. Raqab, Estimation of the population mean and median using truncation-based ranked set samples, J. Stat. Comput. Simul., 83 (2013), 1453–1471. https://doi.org/10.1080/00949655.2012.662684 doi: 10.1080/00949655.2012.662684
    [17] S. Asghari, B. S. Gildeh, J. Ahmadi, G. M. Borzadaran, Sign control chart based on ranked set sampling, Qual. Technol. Quant. Manag., 15 (2018), 568–588. https://doi.org/10.1080/16843703.2017.1314094 doi: 10.1080/16843703.2017.1314094
    [18] A. Mohammadkhani, A. Amiri, M. B. C. Khoo, A review of ranked set sampling and modified methods in designing control charts, Qual. Reliab. Eng. Int., 39 (2023), 1465–1493. https://doi.org/10.1002/qre.3282 doi: 10.1002/qre.3282
    [19] M. Z. Aldrabseh, M. T. Ismail, A. I. Al-Omari, Except-extremes ranked set sampling for estimating the population variance with two applications of real data sets, Aust. J. Stat., 53 (2024), 99–113. https://doi.org/10.17713/ajs.v53i4.1872 doi: 10.17713/ajs.v53i4.1872
    [20] P. L. H. Yu, K. Lam, Regression estimator in ranked set sampling, Biometrics, 53 (1997), 1070–1080. https://doi.org/10.2307/2533564 doi: 10.2307/2533564
    [21] X. Dong, L. Zhang, Estimation of system reliability for exponential distributions based on L ranked set sampling, Commun. Stat. Theory Methods, 49 (2020), 3650–3662. https://doi.org/10.1080/03610926.2019.1691735 doi: 10.1080/03610926.2019.1691735
    [22] S. A. Benchiha, A. I. Al-Omari, G. Alomani, Enhanced estimation of the unit Lindley distribution parameter via ranked set sampling with real-data application, Mathematics, 13 (2025), 1645. https://doi.org/10.3390/math13101645 doi: 10.3390/math13101645
    [23] M. Z. Aldrabseh, M. T. Ismail, A. I. Al-Omari, Enhanced estimation of strength–stress reliability using except extreme ranked set sampling under exponential distribution, Life Cycle Reliab. Saf. Eng., 2025. https://doi.org/10.1007/s41872-025-00326-5 doi: 10.1007/s41872-025-00326-5
    [24] M. Chen, W. X. Chen, R. Yang, Y. W. Zhou, Exponential–Poisson parameters estimation in moving extremes ranked set sampling design, Acta Math. Appl. Sin. Engl. Ser., 41 (2025), 973–984. https://doi.org/10.1007/s10255-023-1076-1 doi: 10.1007/s10255-023-1076-1
    [25] A. Kumar, S. Bhushan, R. Pokhrel, Small area estimation under ranked set sampling: simulation and real-life application with crop production data, Qual. Quant., 2025, 1–21. https://doi.org/10.1007/s11135-025-02422-1 doi: 10.1007/s11135-025-02422-1
    [26] A. Kumar, S. Bhushan, R. Pokhrel, Direct and synthetic logarithmic estimators in small area estimation via ranked set sampling, Statistics, 2025, 1–22. https://doi.org/10.1080/02331888.2025.2542350 doi: 10.1080/02331888.2025.2542350
    [27] A. S. Hassan, D. S. Metwally, H. E. Semary, S. A. Benchiha, A. M. Gemeay, M. Elgarhy, Improved estimation based on ranked set sampling for the Chris–Jerry distribution with application to engineering data, Comput. J. Math. Stat. Sci., 4 (2025), 424–456. https://doi.org/10.21608/cjmss.2025.375962.1156 doi: 10.21608/cjmss.2025.375962.1156
    [28] G. Alomani, S. A. Benchiha, A. I. Al-Omari, Estimation of the inverse power Lindley distribution parameters using ranked set sampling with an application to failure time data, Axioms, 14 (2025), 801. https://doi.org/10.3390/axioms14110801 doi: 10.3390/axioms14110801
    [29] H. Kittani, M. Alaesa, G. Gharib, Comparison among some methods for estimating the parameters of truncated normal distribution, J. Adv. Math., 20 (2021), 79–95. https://doi.org/10.24297/jam.v20i.8934 doi: 10.24297/jam.v20i.8934
    [30] K. Takahasi, K. Wakimoto, On unbiased estimates of the population mean based on the sample stratified by means of ordering, Ann. Inst. Stat. Math., 20 (1968), 1–31. https://doi.org/10.1007/BF02911622 doi: 10.1007/BF02911622
    [31] T. R. Dell, J. L. Clutter, Ranked set sampling theory with order statistics background, Biometrics, 28 (1972), 545–555. https://doi.org/10.2307/2556166 doi: 10.2307/2556166
    [32] H. A. David, H. N. Nagaraja, Order statistics, 3 Eds., Wiley Series in Probability and Statistics, John Wiley & Sons, Hoboken, NJ, 2003. https://doi.org/10.1002/0471722162
    [33] S. L. Stokes, Ranked set sampling with concomitant variables, Commun. Stat. Theory Methods, 6 (1977), 1207–1211. https://doi.org/10.1080/03610927708827563 doi: 10.1080/03610927708827563
    [34] Kaggle, Casper6290. BodyFat Prediction[Data set]. Kaggle. Available from: https://www.kaggle.com/code/casper6290/bodyfat-prediction.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(456) PDF downloads(21) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog