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Abstract: Ranked set sampling (RSS) is a sampling design that combines random sampling with the 

judgment of researchers through preliminary ranking. The current study introduced a new 

generalization of RSS, called median-augmented ranked set sampling (MARSS), designed to further 

reduce the measurement cost and lessen the influence of outliers in estimating the population mean. 

The proposed MARSS estimator was compared with both simple random sampling (SRS) and RSS 

estimators. Its exact relative precision and bias were evaluated for a range of symmetric and skewed 

distributions under perfect ranking. A simulation study was also conducted to assess its performance 

under imperfect ranking, when using concomitant variables, in the presence of outliers, and when 

considering ranking cost efficiency. The variance and robustness were also interpreted in topological 

space. The theoretical results showed that the MARSS estimator was unbiased for symmetric 

distributions and achieved less variance than both RSS and SRS in unimodal symmetric distributions. 

Overall, MARSS is more precise than SRS and surpassed RSS in most scenarios, though some bias 

was observed for skewed distributions. Importantly, MARSS demonstrated a greater robustness to 

outliers than either SRS or RSS. Finally, the new sampling design was illustrated through an 

application to body health data analysis. 
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1. Introduction 

In many practical applications, such as environmental, agricultural, biological, and ecological 

studies, the process of taking actual measurements is often more expensive and time-consuming than 

performing a preliminary ranking based on judgment, concomitant variables, or visual inspection [1]. 

For instance, in estimating the average height of trees in a forest, it is generally easier to rank the trees 

visually than to measure their exact heights. To address the challenge of measurement cost, ranked set 

sampling (RSS) was introduced by McIntyre [2] in an agricultural setting to estimate the mean of 

pasture yield more efficiently. Since then, numerous modifications of RSS have been proposed to 

reduce measurement costs and improve estimation precision. 

Researchers have introduced many innovative RSS methods aimed at improving sampling 

efficiency and flexibility. Among these are the median ranked set sampling (MRSS), which uses the 

median ranks [3]; the moving extreme RSS, which emphasizes the extreme ranks while varying the 

set sizes [4]; and L-ranked set sampling (LRSS) as a generalization of RSS through excluding certain 

extremes and replacing them with their nearest ranks [5]. Other designs have also been proposed, such 

as the systematic design of RSS [6]; and the recent except extreme RSS, which excludes the extreme 

ranks from all sets [7]. In addition to these single-stage procedures, researchers have also proposed 

multistage modifications, including double RSS [8], multistage ranked set sampling [9], double 

LRSS [10], and double except extreme RSS [11]. Further contributions in this area can be found in the 

works of [12–14], among others. These developments demonstrate the ongoing efforts to adapt RSS 

to different practical and theoretical requirements. 

The RSS method and its modifications have been applied in a wide range of statistical inference 

problems and practical applications. For example, RSS designs have been used in the estimation of the 

cumulative distribution function [15], median [16], in quality control estimation [17,18], and in the 

estimation of variance [19] and ratio [12]. Further applications include regression estimation [20], 

estimation of reliability models [21–23], estimation of shape and scale parameters [24], in small area 

estimation [25,26], and more recent work on parameter estimation under RSS variations [27,28]. These 

various applications highlight the precision of RSS as a sampling design and its importance in both 

theoretical and applied statistics. 

The aim of this study is to propose and evaluate a new variation of RSS that can improve mean 

estimation by reducing the effect of outliers. The proposed design, called median-augmented RSS 

(MARSS), will be compared with other traditional sampling methods. MARSS is expected to improve 

the efficiency and accuracy of mean estimation, offer more robust sampling against outliers, and thus 

reduce the time and cost of data collection. The importance of this study lies in its introduction of a 

new sampling method. To the best of our knowledge, this is the first study to explore the connection 

between topological spaces and ordered sampling methods, providing a novel framework for 

understanding and improving sampling efficiency. It can also be applied in estimating the other 

parameters of probability distributions under different truncation combinations, as in [29], reliability 

models, quality control, and other population characteristics, in addition to the practical application in 

data collection. 

The remainder of the paper is structured as follows: Section 2 presents the foundation of the 

existing sampling method; Section 3 suggests and explains the proposed sampling design; Section 4 

gives a comparative study of the new estimator under imperfect ranking with some estimators and a 

discussion of other cases, such as ranking using the concomitant variable, the impact of outliers, and 

ranking cost; Section 5 interprets the variance and robustness aspects in topological space; Section 6 

presents applications and a numerical example; and finally, Section 7 gives the conclusions and future 
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directions. 

2. Existing sampling designs 

This section presents a brief overview of existing sampling methods, highlighting the estimators 

of the population mean and measures of precision. 

2.1. Simple random sampling 

Simple random sampling (SRS) is a widely used probability sampling. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a 

random sample from a population with a probability density function (PDF) 𝑓(𝑥) and cumulative 

density function (CDF) 𝐹(𝑥). The SRS estimator of the population mean 𝜇 is given by: 

𝜇̂𝑆𝑅𝑆 = 𝑋̅ =
1

𝑛
∑ 𝑋𝑖
𝑛
𝑖=1 .        (1) 

The variance of that estimator is: 

𝑉(𝑋̅) =
𝜎2

𝑛
,           (2) 

where 𝜎2 is the population variance. 

2.2. Ranked set sampling 

RSS was introduced by McIntyre [2] to estimate the average pasture yield using preliminary 

judgment ranking. Independently, Takahasi and Wakimoto [30] established the mathematical 

foundation of RSS. The procedure can be summarized as follows: 

(1) Randomly select 𝑚2 units from the population and divide them into m sets. 

(2) Rank the unit within each set using judgment, visual inspection, or an auxiliary variable related to 

the study variable. 

(3) From the 𝑖𝑡ℎ set, measure the 𝑖𝑡ℎ ranked unit, for 𝑖 = 1, 2, . . . , 𝑚. 

(4) Repeat Steps 1–3 over c cycles to obtain a final sample of size n = mc. 

Let 𝑋(𝑖)
𝑗

 denote the 𝑖𝑡ℎ ranked unit in the 𝑗𝑡ℎ cycle. Then the RSS estimator of 𝜇 under perfect 

ranking is given by: 

𝜇̂𝑅𝑆𝑆 =
1

𝑚𝑐
∑ ∑ 𝑋(𝑖)

𝑗𝑚
𝑖

𝑐
𝑗=1 .         (3) 

Here, 𝜇̂𝑅𝑆𝑆 is an unbiased estimator [31]. The variance of the RSS estimator 𝜇̂𝑅𝑆𝑆 is 

𝑉(𝜇̂𝑅𝑆𝑆) =
1

𝑚2𝑐
∑ 𝜎(𝑖)

2𝑚
𝑖=1 ,        (4) 

where 𝜎(𝑖)
2  is the variance of the 𝑖𝑡ℎ ordered statistic. It can be evaluated from its PDF as: 

𝑓(𝑖)(𝑥) =
𝑚!

(𝑖−1)!(𝑚−𝑖)!
𝑓(𝑥)[𝐹(𝑥)]𝑖−1[1 − 𝐹(𝑥)]𝑚−𝑖.     (5) 

For more details on ordered statistic and their moments, see [32]. The relative precision (RP) of 

the RSS estimator compared to SRS is: 
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𝑅𝑃 =
1

1−
1

𝑚𝜎2
∑ 𝜏(𝑖)

2𝑚
𝑖=1

,          (6) 

where 𝜏(𝑖) = 𝜇(𝑖) − 𝜇 and 𝜇(𝑖) represents the expected value of the 𝑖𝑡ℎ ordered statistic. 

3. Proposed sampling design (MARSS) 

In this study, we propose a new modification of ranked set sampling (RSS) designed to provide 

greater robustness in the presence of outliers. The new design is termed the median-augmented ranked 

set sampling (MARSS). The procedure for implementing MARSS can be outlined as follows: 

(1) Randomly select 𝑚 samples of each size 𝑚. 

(2) Rank the elements within each set using any costless procedure. 

(3) Define a coefficient ℎ = [𝛿𝑚], where 0 ≤ 𝛿 < 0.5, and [𝑣] is the largest integer less than or 

equal to 𝑣. 

(4) If m is odd, measure the ((𝑚 + 1) 2⁄ )𝑡ℎ ranked elements in the first h sets and last h sets, which 

means for 𝑖 = 1,⋯ , ℎ  and 𝑖 = 𝑚 − ℎ + 1,⋯𝑚 . In the remaining sets, measure the (𝑖)𝑡ℎ 

elements in the 𝑖𝑡ℎ set, for 𝑖 = ℎ + 1,⋯ ,𝑚 − ℎ. 

(5) If m is even, measure the ((𝑚) 2⁄ )𝑡ℎ  ranked elements in the first h sets at 𝑖 = 1,⋯ , ℎ , and 

((𝑚 + 2) 2⁄ )𝑡ℎ in the last h sets at 𝑖 = 𝑚 − ℎ + 1,⋯𝑚. In the remaining sets, measure the (𝑖)𝑡ℎ 

elements in the 𝑖𝑡ℎ set, for 𝑖 = ℎ + 1,⋯ ,𝑚 − ℎ. 

(6) Steps 1–5 can be repeated 𝑐 cycles to obtain a larger sample 𝑛 = 𝑐𝑚. 

For more clarification and without loss of generality, suppose that the number of cycles is one 

(𝑐 =  1). The following example includes some cases. 

Example 3.1. To demonstrate the MARSS procedure, we consider two cases with different set sizes 

and coefficients. 

Case 1. At the coefficient h = 1 and the odd set size m = 5. 

{
 
 

 
 
𝑋11 𝑋12 𝑋13 𝑋14 𝑋15
𝑋21 𝑋22 𝑋23 𝑋24 𝑋25
𝑋31 𝑋32 𝑋33 𝑋34 𝑋35
𝑋41 𝑋42 𝑋43 𝑋44 𝑋45
𝑋51 𝑋52 𝑋53 𝑋54 𝑋55}

 
 

 
 

⏟                    

⟹

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑚 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

{
 
 

 
 
𝑋1(1:5) 𝑋1(2:5) 𝑿𝟏(𝟑:𝟓) 𝑋1(4:5) 𝑋1(5:5)
𝑋2(1:5) 𝑿𝟐(𝟐:𝟓) 𝑋2(3:5) 𝑋2(4:5) 𝑋2(5:5)
𝑋3(1:5) 𝑋3(2:5) 𝑿𝟑(𝟑:𝟓) 𝑋3(4:5) 𝑋3(5:5)
𝑋4(1:5) 𝑋4(2:5) 𝑋4(3:5) 𝑿𝟒(𝟒:𝟓) 𝑋4(5:5)
𝑋5(1:5) 𝑋5(2:5) 𝑿𝟓(𝟑:𝟓) 𝑋5(4:5) 𝑋5(5:5)}

 
 

 
 

⏟                              
𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑎𝑛𝑑 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑓𝑜𝑟 𝑎𝑐𝑡𝑢𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡

⟹

{
 
 

 
 
𝑋1(3:5)
𝑋2(2:5)
𝑋3(3:5)
𝑋4(4:5)
𝑋5(3:5)}

 
 

 
 

⏟      
𝑇ℎ𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

. 

Case 2. At the coefficient h = 2 and the even set size m = 6. 
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{
 
 

 
 
𝑋11 𝑋12 𝑋13 𝑋14 𝑋15 𝑋16
𝑋21 𝑋22 𝑋23 𝑋24 𝑋25 𝑋26
𝑋31 𝑋32 𝑋33 𝑋34 𝑋35 𝑋36
𝑋41 𝑋42 𝑋43 𝑋44 𝑋45 𝑋46
𝑋51 𝑋52 𝑋53 𝑋54 𝑋55 𝑋56
𝑋61 𝑋62 𝑋63 𝑋64 𝑋65 𝑋66}

 
 

 
 

⏟                        

⟹

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑚 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
{
  
 

  
 
𝑋1(1:6) 𝑋1(2:6) 𝑿𝟏(𝟑:𝟔) 𝑋1(4:6) 𝑋1(5:6) 𝑋1(6:6)
𝑋2(1:6) 𝑋2(2:6) 𝑿𝟐(𝟑:𝟔) 𝑋2(4:6) 𝑋2(5:6) 𝑋2(6:6)
𝑋3(1:6) 𝑋3(2:6) 𝑿𝟑(𝟑:𝟔) 𝑋3(4:6) 𝑋3(5:6) 𝑋3(6:6)
𝑋4(1:6) 𝑋4(2:6) 𝑋4(3:6) 𝑿𝟒(𝟒:𝟔) 𝑋4(5:6) 𝑋4(6:6)
𝑋5(1:6) 𝑋5(2:6) 𝑋5(3:6) 𝑿𝟓(𝟒:𝟔) 𝑋5(5:6) 𝑋5(6:6)
𝑋6(1:6) 𝑋6(2:6) 𝑋6(3:6) 𝑿𝟔(𝟒:𝟔) 𝑋6(5:6) 𝑋6(6:6)}

  
 

  
 

⏟                                  
𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑎𝑛𝑑 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑓𝑜𝑟 𝑎𝑐𝑡𝑢𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡

 

⟹

{
  
 

  
 
𝑋1(3:6)
𝑋2(3:6)
𝑋3(3:6)
𝑋4(4:6)
𝑋5(4:6)
𝑋6(4:6)}

  
 

  
 

⏟      
𝑇ℎ𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

. 

Further cases of the MARSS design are illustrated in Figure 1. Some well-known schemes that 

arise as special cases of the MARSS. For example, when ℎ = 0, the MARSS design reduces to the 

RSS design. Moreover, if m is odd and (𝑚 − 1) 2⁄ = ℎ, or if 𝑚 is even and (𝑚 − 2) 2⁄ = ℎ, the 

MARSS design coincides with MRSS. In certain cases, the MARSS design also aligns with LRSS. 

The estimator of the population mean at m set sizes, odd and even respectively, can be defined as: 

𝜇̂𝑀𝐴𝑅𝑆𝑆,𝑂𝑑𝑑 =
1

𝑚𝑐
∑ [∑ 𝑋

𝑖(
𝑚+1

2
)

𝑗ℎ
𝑖=1 + ∑ 𝑋𝑖(𝑖)

𝑗𝑚−ℎ
𝑖=ℎ+1 + ∑ 𝑋

𝑖(
𝑚+1

2
)

𝑗𝑚
𝑖=𝑚−ℎ+1 ]𝑐

𝑗=1 ,  (7) 

and 

𝜇̂𝑀𝐴𝑅𝑆𝑆,𝐸𝑣𝑒𝑛 =
1

𝑚𝑐
∑ [∑ 𝑋

𝑖(
𝑚

2
)

𝑗ℎ
𝑖=1 + ∑ 𝑋𝑖(𝑖)

𝑗𝑚−ℎ
𝑖=ℎ+1 + ∑ 𝑋

𝑖(
𝑚

2
+1)

𝑗𝑚
𝑖=𝑚−ℎ+1 ]𝑐

𝑗=1 .   (8) 

The expectations of the corresponding estimator are: 

𝐸(𝜇̂𝑀𝐴𝑅𝑆𝑆,𝑂𝑑𝑑) =
1

𝑚
[2ℎ𝜇

(
𝑚+1

2
)
+ ∑ 𝜇(𝑖)

𝑚−ℎ
𝑖=ℎ+1 ],      (9) 

and 

𝐸(𝜇̂𝑀𝐴𝑅𝑆𝑆,𝐸𝑣𝑒𝑛) =
1

𝑚
[ℎ𝜇

(
𝑚

2
)
+ ℎ𝜇

(
𝑚

2
+1)

+ ∑ 𝜇(𝑖)
𝑚−ℎ
𝑖=ℎ+1 ].     (10) 

The corresponding variances are given by: 

𝑉(𝜇̂𝑀𝐴𝑅𝑆𝑆,𝑂𝑑𝑑) = 𝑉 (
1

𝑚𝑐
∑ [∑ 𝑋

𝑖(
𝑚+1
2
)

𝑗
ℎ

𝑖=1
+∑ 𝑋𝑖(𝑖)

𝑗
𝑚−ℎ

𝑖=ℎ+1
+∑ 𝑋

𝑖(
𝑚+1
2
)

𝑗
𝑚

𝑖=𝑚−ℎ+1
]

𝑐

𝑗=1
) 

=
1

𝑚2𝑐
[2ℎ𝜎

(
𝑚+1

2
)

2 + ∑ 𝜎(𝑖)
2𝑚−ℎ

𝑖=ℎ+1 ],          (11) 

and 
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𝑉(𝜇̂𝑀𝐴𝑅𝑆𝑆,𝐸𝑣𝑒𝑛) = 𝑉 (
1

𝑚𝑐
∑ [∑ 𝑋

𝑖(
𝑚
2
)

𝑗
ℎ

𝑖=1
+∑ 𝑋𝑖(𝑖)

𝑗
𝑚−ℎ

𝑖=ℎ+1
+∑ 𝑋

𝑖(
𝑚
2
+1)

𝑗
𝑚

𝑖=𝑚−ℎ+1
]

𝑐

𝑗=1
) 

=
1

𝑚2𝑐
[ℎ𝜎

(
𝑚

2
)

2 + ℎ𝜎
(
𝑚

2
+1)

2 + ∑ 𝜎(𝑖)
2𝑚−ℎ

𝑖=ℎ+1 ].        (12) 

a) At h = 1 and m = 3 b) At h = 1 and m = 6 

𝑋1(1:3) 𝑿𝟏(𝟐:𝟑) 𝑋1(3:3)
𝑋2(1:3) 𝑿𝟐(𝟐:𝟑) 𝑋2(3:3)
𝑋3(1:3) 𝑿𝟑(𝟐:𝟑) 𝑋3(3:3)

 

𝑋1(1:6) 𝑋1(2:6) 𝑿𝟏(𝟑:𝟔) 𝑋1(4:6) 𝑋1(5:6) 𝑋1(6:6)
𝑋2(1:6) 𝑿𝟐(𝟐:𝟔) 𝑋2(3:6) 𝑋2(4:6) 𝑋2(5:6) 𝑋2(6:6)
𝑋3(1:6) 𝑋3(2:6) 𝑿𝟑(𝟑:𝟔) 𝑋3(4:6) 𝑋3(5:6) 𝑋3(6:6)
𝑋4(1:6) 𝑋4(2:6) 𝑋4(3:6) 𝑿𝟒(𝟒:𝟔) 𝑋4(5:6) 𝑋4(6:6)
𝑋5(1:6) 𝑋5(2:6) 𝑋5(3:6) 𝑋5(4:6) 𝑿𝟓(𝟓:𝟔) 𝑋5(6:6)
𝑋6(1:6) 𝑋6(2:6) 𝑋6(3:6) 𝑿𝟔(𝟒:𝟔) 𝑋6(5:6) 𝑋6(6:6)

 

c) At h = 1 and m = 4 d) At h = 2 and m = 5 

𝑋1(1:4) 𝑿𝟏(𝟐:𝟒) 𝑋1(3:4) 𝑋1(4:4)
𝑋2(1:4) 𝑿𝟐(𝟐:𝟒) 𝑋2(3:4) 𝑋2(4:4)
𝑋3(1:4) 𝑋3(2:4) 𝑿𝟑(𝟑:𝟒) 𝑋3(4:4)
𝑋4(1:4) 𝑋4(2:4) 𝑿𝟒(𝟑:𝟒) 𝑋4(4:4)

 

𝑋1(1:5) 𝑋1(2:5) 𝑿𝟏(𝟑:𝟓) 𝑋1(4:5) 𝑋1(5:5)
𝑋2(1:5) 𝑋2(2:5) 𝑿𝟐(𝟑:𝟓) 𝑋2(4:5) 𝑋2(5:5)
𝑋3(1:5) 𝑋3(2:5) 𝑿𝟑(𝟑:𝟓) 𝑋3(4:5) 𝑋3(5:5)
𝑋4(1:5) 𝑋4(2:5) 𝑿𝟒(𝟑:𝟓) 𝑋4(4:5) 𝑋4(5:5)
𝑋5(1:5) 𝑋5(2:5) 𝑿𝟓(𝟑:𝟓) 𝑋5(4:5) 𝑋5(5:5)

 

Figure 1. Selected MARSS scenarios. 

Theorem 3.1. Assume the parent distribution 𝑓(𝑥) is symmetric, and then the estimator 𝜇̂𝑀𝐴𝑅𝑆𝑆 is 

an unbiased estimator of 𝜇. 

Proof. It is known that ∑ 𝜇(𝑖)
𝑚
𝑖=1 = 𝑚𝜇. Moreover, by the symmetry property [32], we have 

𝜇 − 𝜇(𝑖) = 𝜇(𝑚−𝑖+1) − 𝜇. 

For odd 𝑚: 

𝐸(𝜇̂𝑀𝐴𝑅𝑆𝑆,𝑂𝑑𝑑) =
1

𝑚
[2ℎ𝜇

(
𝑚+1
2
)
+∑ 𝜇(𝑖)

𝑚−ℎ

𝑖=ℎ+1
] =

1

𝑚
[2ℎ𝜇 + (𝑚 − 2ℎ)𝜇] = 𝜇. 

For even m: 

𝐸(𝜇̂𝑀𝐴𝑅𝑆𝑆,𝐸𝑣𝑒𝑛) =
1

𝑚
[ℎ𝜇

(
𝑚
2
)
+ ℎ𝜇

(
𝑚
2
+1)

+∑ 𝜇(𝑖)
𝑚−ℎ

𝑖=ℎ+1
] =

1

𝑚
[2ℎ𝜇 + (𝑚 − 2ℎ)𝜇] = 𝜇. 

The proof is complete. 

Theorem 3.2. Assume the parent distribution 𝑓(𝑥) is symmetric and unimodal. Then 

a) 𝑉(𝜇̂𝑀𝐴𝑅𝑆𝑆) ≤ 𝑉(𝜇̂𝑅𝑆𝑆). 
b) 𝑉(𝜇̂𝑀𝐴𝑅𝑆𝑆) ≤ 𝑉(𝜇̂𝑆𝑅𝑆). 

Proof. 

a) For a symmetric unimodal distribution, the variances of the order statistics decrease as the ranks 

move toward the median 
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𝑉(𝜇̂𝑀𝐴𝑅𝑆𝑆,𝑂𝑑𝑑) =
1

𝑚2𝑐
[ℎ𝜎

(
𝑚+1
2
)

2 +∑ 𝜎(𝑖)
2

𝑚−ℎ

𝑖=ℎ+1
+ ℎ𝜎

(
𝑚+1
2
)

2 ], 

while 

𝑉(𝜇̂𝑅𝑆𝑆) =
1

𝑚2𝑐
∑ 𝜎(𝑖)

2
𝑚

𝑖=1
=

1

𝑚2𝑐
[∑ 𝜎(𝑖)

2
ℎ

𝑖=1
+∑ 𝜎(𝑖)

2
𝑚−ℎ

𝑖=ℎ+1
+∑ 𝜎(𝑖)

2
𝑚

𝑖=𝑚−ℎ+1
]. 

As mentioned earlier, because the density is higher as we move toward the median ranks, the median 

order statistic has the smallest variance [5,32], hence 

ℎ𝜎
(
𝑚+1
2
)

2 ≤∑ 𝜎(𝑖)
2

ℎ

𝑖=1
, ℎ𝜎

(
𝑚+1
2
)

2 ≤∑ 𝜎(𝑖)
2

𝑚

𝑖=𝑚−ℎ+1
. 

Thus, 𝑉(𝜇̂𝑀𝐴𝑅𝑆𝑆,𝑂𝑑𝑑) ≤ 𝑉(𝜇̂𝑅𝑆𝑆). The argument extends directly to the even 𝑚 case with variance: 

𝑉(𝜇̂𝑀𝐴𝑅𝑆𝑆,𝐸𝑣𝑒𝑛) =
1

𝑚2𝑐
{𝑘𝜎

(
𝑚
2
)

2 +∑ 𝜎(𝑖)
2

𝑚−ℎ

𝑖=ℎ+1
+ 𝑘𝜎

(
𝑚
2
+1)

2 }. 

Finally, the inequality with respect to SRS follows from the decomposition 

∑ 𝜎(𝑖)
2

𝑚

𝑖=1
= 𝑚𝜎2 −∑ (𝜇(𝑖) − 𝜇)

2𝑚

𝑖=1
 

and the established results show that 𝑉(𝜇̂𝑅𝑆𝑆) ≤ 𝑉(𝜇̂𝑆𝑅𝑆) [33]. Since 

𝑉(𝜇̂𝑀𝐴𝑅𝑆𝑆) ≤ 𝑉(𝜇̂𝑅𝑆𝑆), 

we also have 

𝑉(𝜇̂𝑀𝐴𝑅𝑆𝑆) ≤ 𝑉(𝜇̂𝑆𝑅𝑆). 

The proof is now complete. 

In the case of a skewed distribution, 𝜇̂𝑀𝐴𝑅𝑆𝑆 is no longer unbiased. The bias (𝐵) is given by: 

𝐵(𝜇̂𝑀𝐴𝑅𝑆𝑆) = 𝐸( 𝜇̂𝑀𝐴𝑅𝑆𝑆) − 𝜇.        (13) 

Here, 𝐸(𝜇̂𝑀𝐴𝑅𝑆𝑆) is given in Eq (9) to Eq (10). Therefore, by using Eq (11) to Eq (12), the mean 

squared error (MSE) of 𝜇̂𝑀𝐴𝑅𝑆𝑆 is then: 

𝑀𝑆𝐸(𝜇̂𝑀𝐴𝑅𝑆𝑆) = 𝑉(𝜇̂𝑀𝐴𝑅𝑆𝑆) + [𝐵(𝜇̂𝑀𝐴𝑅𝑆𝑆)]
2.      (14) 

Accordingly, the RP of 𝜇̂𝑀𝐴𝑅𝑆𝑆 compared to the SRS estimator can be expressed for odd and even m 

as: 

𝑅𝑃𝑂𝑑𝑑 =
𝑉(𝜇̂𝑆𝑅𝑆)

𝑀𝑆𝐸(𝜇̂𝑀𝐴𝑅𝑆𝑆.𝑂𝑑𝑑)
=

𝑚𝜎2

{2ℎ𝜎
(
𝑚+1
2

)

2 +∑ 𝜎(𝑖)
2𝑚−ℎ

𝑖=ℎ+1 }+𝑐{2ℎ𝜇
(
𝑚+1
2

)
+∑ 𝜇(𝑖)

𝑚−ℎ
𝑖=ℎ+1 −𝑚𝜇}

2,  (15) 

𝑅𝑃𝐸𝑣𝑒𝑛 =
𝑉(𝜇̂𝑆𝑅𝑆)

𝑀𝑆𝐸(𝜇̂𝑀𝐴𝑅𝑆𝑆,𝐸𝑣𝑒𝑛)
 

=
𝑚𝜎2

{ℎ𝜎
(
𝑚
2
)

2 +∑ 𝜎(𝑖)
2𝑚−ℎ

𝑖=ℎ+1 +ℎ𝜎
(
𝑚
2
+1)

2 }+𝑐{ℎ𝜇
(
𝑚
2
)
+∑ 𝜇(𝑖)

𝑚−ℎ
𝑖=ℎ+1 +ℎ𝜇

(
𝑚
2
+1)

−𝑚𝜇}

2.    (16) 
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Once the moments of the order statistics used in the MARSS design are derived from the PDF in 

Eq (5), the corresponding performance measures (RP and B) can be calculated directly. 

4. Results and discussion 

In this section, we present a comparative analysis of the MARSS estimator against several 

existing sampling methods (SRS and RSS). The evaluation covers a range of scenarios, including 

perfect for some distributions and imperfect ranking, the use of concomitant variables, the impact of 

outliers, and cost efficiency. 

4.1. Perfect ranking 

To test the performance of the MARSS estimator, using Walframe Mathematica 13, we evaluate 

the analytical values of RP and bias of the estimators under RSS and MARSS with respect to the 

corresponding SRS estimator, for the scenarios of h = 0,1, and 2, and the scenarios of m = 3 to 8. The 

RP evaluated exactly, using Mathematica 13.0, for a group of symmetrical distributions: Uniform(0,1), 

N(0,1), Logistic(2,1), StudentT(5), and Beta(5,5). In addition to RP and B of the estimators for the 

skewed distributions: Beta(3,5), Gamma(4,1), Weibull(1,4), Exp(1), Chi(3), LogNormal(0,1), and 

HalfNormal(5). 
Table 1 reports the RPs of the RSS and MARSS estimators compared to the SRS for symmetric 

distributions. In all cases, RP is greater than one, meaning that both RSS and MARSS are more efficient 

than SRS. As m increases, RP also increases. Additionally, RPs vary depending on the distribution. For 

all distributions except the uniform case, MARSS with h = 2 is the most efficient, while MARSS with 

h = 1 is more efficient than RSS (Figure 2), which supports the findings in Theorem 2. 

Table 2 illustrates the RP for some skewed distributions. In all considered cases, RP is greater 

than one, indicating that both RSS and MARSS estimators are more efficient than the SRS estimator. 

As m increases, the RP increases for RSS and for MARSS in some cases of m. Also, the RPs vary from 

one distribution to another. In most cases, especially at a small set size m (m = 3 or 4) and some of the 

larger m, the MARSS estimator with h = 1 is the most efficient (Figure 2). The superiority of RSS in 

some cases is due to the bias of MARSS in certain skewed distributions. 

It is known that the RSS and SRS estimators are unbiased estimators. For this reason, Table 3 

presents only the bias of the MARSS estimator with h = 1 and h = 2. The results show that the bias of 

the MARSS estimators varies significantly from one distribution to another; it is negligible in some 

cases, such as Beta and Weibull, and large in the remaining cases. In general, the bias of MARSS with 

h = 1 is smaller than MARSS with h = 2. 
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Table 1. RP of the mean estimators for selected symmetrical distributions under RSS and MARSS. 

Distribution 𝑚 RSS (ℎ = 0) MARSS (ℎ = 1) MARSS (ℎ = 2) 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 3 2.00 1.67 ** 

 4 2.50 2.08 ** 

 5 3.00 2.44 2.33 

 6 3.50 2.88 2.72 

 7 4.00 3.29 3.17 

 8 4.50 3.75 3.46 

𝑁(0,1) 3 1.91 2.23 ** 

 4 2.35 2.77 ** 

 5 2.77 3.37 3.49 

 6 3.19 3.89 4.06 

 7 3.59 4.42 4.69 

 8 4.00 4.91 5.25 

𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(2,1) 3 1.84 2.55 ** 

 4 2.22 3.16 ** 

 5 2.58 3.89 4.17 

 6 2.93 4.44 4.85 

 7 3.27 5.02 5.66 

 8 3.60 5.52 6.29 

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑇(5) 3 1.76 2.86 ** 

 4 2.08 3.54 ** 

 5 2.38 4.38 4.76 

 6 2.66 4.96 5.54 

 7 2.93 5.59 6.48 

 8 3.19 6.12 7.20 

𝐵𝑒𝑡𝑎(5,5) 3 1.95 2.07 ** 

 4 2.41 2.57 ** 

 5 2.87 3.11 3.15 

 6 3.32 3.60 3.68 

 7 3.77 4.10 4.22 

 8 4.21 4.59 4.73 
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Table 2. RP of the mean estimators for selected skewed distributions under RSS and MARSS. 

Distribution 𝑚 RSS ℎ = 1 ℎ = 2 

𝐵𝑒𝑡𝑎(3,5) 3 1.94 2.03 ** 

 4 2.40 2.52 ** 

 5 2.86 3.00 3.01 

 6 3.31 3.46 3.46 

 7 3.75 3.91 3.89 

 8 4.20 4.34 4.30 

𝐺𝑎𝑚𝑚𝑎(4,1) 3 1.83 2.22 ** 

 4 2.21 2.66 ** 

 5 2.58 3.02 3.01 

 6 2.94 3.33 3.46 

 7 3.29 3.58 3.89 

 8 3.64 3.82 4.30 

𝑊𝑒𝑖𝑏𝑢𝑙𝑙(1,4) 3 1.93 2.15 ** 

 4 2.38 2.67 ** 

 5 2.82 3.23 3.31 

 6 3.25 3.73 3.85 

 7 3.68 4.25 4.43 

 8 4.11 4.73 4.95 

𝐸𝑥𝑝(1) 3 1.64 2.25 ** 

 4 1.92 2.44 ** 

 5 2.19 2.44 2.23 

 6 2.45 2.49 2.14 

 7 2.70 2.46 1.91 

 8 2.94 2.50 1.84 

𝐶ℎ𝑖(3) 3 1.71 2.23 ** 

 4 2.03 2.51 ** 

 5 2.34 2.64 2.47 

 6 2.63 2.77 2.46 

 7 2.92 2.81 2.29 

 8 3.20 2.90 2.25 

𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 3 1.34 3.41 ** 

 4 1.47 3.35 ** 

 5 1.59 3.08 2.80 

 6 1.70 2.94 2.51 

 7 1.80 2.75 2.14 

 8 1.89 2.67 1.98 

𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(5) 3 1.84 2.01 ** 

 4 2.24 2.37 ** 

 5 2.63 2.62 2.49 

 6 3.01 2.87 2.63 

 7 3.39 3.05 2.61 

 8 3.76 3.25 2.67 
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Table 3. Bias of the mean estimators for selected skewed distributions under MARSS. 

Distribution 𝑚 MARSS (h = 1) MARSS (h = 2) 

𝐵𝑒𝑡𝑎(3,5) 3 -0.01 ** 

 4 -0.01 ** 

 5 -0.01 -0.01 

 6 -0.01 -0.01 

 7 -0.01 -0.01 

 8 -0.01 -0.01 

𝐺𝑎𝑚𝑚𝑎 (4,1) 3 -0.18 ** 

 4 -0.18 ** 

 5 -0.20 -0.23 

 6 -0.19 -0.23 

 7 -0.19 -0.25 

 8 -0.18 -0.24 

𝑊𝑒𝑖𝑏𝑢𝑙𝑙 (1,4) 3 0.00 ** 

 4 0.00 ** 

 5 0.00 0.00 

 6 0.00 0.00 

 7 0.00 0.00 

 8 0.00 0.00 

𝐸𝑥𝑝(1) 3 -0.17 ** 

 4 -0.17 ** 

 5 -0.18 -0.22 

 6 -0.18 -0.22 

 7 -0.17 -0.23 

 8 -0.16 -0.22 

𝐶ℎ𝑖(3) 3 -0.35 ** 

 4 -0.35 ** 

 5 -0.38 -0.45 

 6 -0.36 -0.45 

 7 -0.36 -0.47 

 8 -0.34 -0.46 

𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 3 -0.40 ** 

 4 -0.40 ** 

 5 -0.43 -0.49 

 6 -0.41 -0.49 

 7 -0.41 -0.52 

 8 -0.39 -0.51 

𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(5) 3 -0.33 ** 

 4 -0.33 ** 

 5 -0.36 -0.43 

 6 -0.34 -0.43 

 7 -0.34 -0.45 

 8 -0.33 -0.44 



28965 

AIMS Mathematics  Volume 10, Issue 12, 28954–28980. 

 

Figure 2. RP of MARSS and RSS mean estimators under perfect ranking. 

In summary, the results of RP and bias demonstrate that the MARSS (h = 2) design is the most 

efficient sampling design for symmetric unimodal distributions, achieving the highest RP values. For 

skewed distributions, MARSS (h = 1) generally is the best choice, particularly when the set size is 

small. However, this design exhibits bias in some of the skewed distributions. 

4.2. Imperfect ranking 

In the previous subsection, we assumed perfect ranking, meaning that the distribution of ranked 

units is identical to the distribution of the corresponding ordered statistics. In practice, however, the 

assumption of perfect ranking in RSS schemes is often unrealistic, as judgment errors can occur. This 

subsection examines the impact of ranking errors on the performance of the proposed MARSS design. 

The case of imperfect ranking was first formalized by Dell and Clutter [32] using a single-valued 

function: 

𝑌(𝑖) = 𝑔(𝑋[𝑖], 𝑒𝑖), 

where 𝑒𝑖  represents the ranking error for the 𝑖𝑡ℎ  ranked unit, 𝑌(𝑖)  denotes the variable used for 

ranking (subject to error), while the true measurement is taken from 𝑋[𝑖]
∗  (with ranking error). The 

simplest noisy model is 

𝑌(𝑖) = 𝑋[𝑖]
∗ + 𝑒𝑖,           (17) 

where 𝑋[1]
∗ , 𝑋[2]

∗ , … ,𝑋[𝑚]
∗  and 𝑒1, 𝑒2,⋯ , 𝑒𝑚 are mutually independent, and the errors are assumed to 

follow a normal distribution, 

𝑒𝑖~𝑁(0, 𝜎𝑒
2). 

The RSS estimator of 𝜇 under this error model is 

𝜇̂𝑅𝑆𝑆,𝐼𝑚𝑝 =
1

𝑚𝑐
∑ ∑ 𝑋[𝑖]

∗(𝑗)𝑚
𝑖=1

𝑐
𝑗=1 .      (18) 
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Similarly, the MARSS estimator 𝜇̂𝑀𝐴𝑅𝑆𝑆,𝐼𝑚𝑝 under an imperfect ranking is given by: 

For odd m: 

𝜇̂𝑀𝐴𝑅𝑆𝑆,𝑂𝑑𝑑,𝐼𝑚𝑝 =
1

𝑚𝑐
∑ [∑ 𝑋

[
𝑚+1

2
]

∗(𝑗)ℎ
𝑖=1 + ∑ 𝑋[𝑖]

∗(𝑗)𝑚−ℎ
𝑖=ℎ+1 + ∑ 𝑋

[
𝑚+1

2
]

∗(𝑗)𝑚
𝑖=𝑚−ℎ+1 ]𝑐

𝑗=1 .   (19) 

For even m, 

𝜇̂𝑀𝐴𝑅𝑆𝑆,𝐸𝑣𝑒𝑛,𝐼𝑚𝑝 =
1

𝑚𝑐
∑ [∑ 𝑋

[
𝑚

2
]

∗(𝑗)ℎ
𝑖=1 + ∑ 𝑋[𝑖]

∗(𝑗)𝑚−ℎ
𝑖=ℎ+1 + ∑ 𝑋

[
𝑚

2
+1]

∗(𝑗)𝑚
𝑖=𝑚−ℎ+1 ]𝑐

𝑗=1 .  (20) 

The corresponding variances can be derived as: 

𝑉(𝜇̂𝑀𝐴𝑅𝑆𝑆,𝑂𝑑𝑑,𝐼𝑚𝑝) =
1

𝑚2𝑐
[∑ 𝜎𝑋

[
𝑚+1
2

]

2
ℎ

𝑖=1
+∑ 𝜎𝑋[𝑖]

2
𝑚−ℎ

𝑖=ℎ+1
+∑ 𝜎𝑋

[
𝑚
2
+1]

2
𝑚

𝑖=𝑚−ℎ+1
] 

=
𝜎𝑒
2

𝑚𝑐
+

1

𝑚2𝑐
[2ℎ𝜎𝑌

(
𝑚+1
2

)

2 + ∑ 𝜎𝑌(𝑖)
2𝑚−ℎ

𝑖=ℎ+1 ]        (21) 

and 

𝑉(𝜇̂𝑀𝐴𝑅𝑆𝑆,𝐸𝑣𝑒𝑛,𝐼𝑚𝑝) =
1

𝑚2𝑐
[∑ 𝜎𝑋

[
𝑚
2 ]

2
ℎ

𝑖=1
+∑ 𝜎𝑋[𝑖]

2
𝑚−ℎ

𝑖=ℎ+1
+∑ 𝜎𝑋

[
𝑚
2 +1]

2
𝑚

𝑖=𝑚−ℎ+1
] 

=
𝜎𝑒
2

𝑚𝑐
+

1

𝑚2𝑐
[ℎ𝜎𝑌

(
𝑚
2
)

2 + ℎ𝜎𝑌
(
𝑚
2 +1

)

2 + ∑ 𝜎𝑌(𝑖)
2𝑚−ℎ

𝑖=ℎ+1 ].    (22) 

It is noted that, for skewed distributions, the bias of the estimators under imperfect ranking is the 

same as the bias under perfect ranking, as given in Subsection 4.1, because the expected value of the 

error term is zero. 

To evaluate the performance of the MARSS design under ranking error, a simulation study was 

conducted. We generated 10,000 samples from a N(0,1) distribution, with errors generated from a 

normal distribution with variances 𝜎𝑒
2 = 0.1, 0.3 , and 0.5 . The RP was simulated for different 

scenarios of MARSS at h = 0, 1, 2 and m = 3, 4, 5, 6, 7, 8, using the equation: 

𝑅𝑃𝑀𝐿𝑅𝑆𝑆,𝐼𝑚𝑝 =
𝜎2

𝑚𝑐

𝑉(𝜇̂𝑀𝐴𝑅𝑆𝑆,𝐼𝑚𝑝)
=

𝜎2

𝑚𝑐

1

10,000
∑ (𝜇̂𝑀𝐴𝑅𝑆𝑆,𝐼𝑚[𝑝

(𝑙) − 𝜇)
2

,10,000
𝑙=1⁄    (23) 

where 𝜇̂𝑀𝐴𝑅𝑆𝑆,𝐼𝑚𝑝
(𝑙)

 is the mean of the 𝑙𝑡ℎ simulated sample. 

Table 4 reports the RP of the MARSS estimators of N(0,1) under imperfect ranking for different 

levels of ranking error and set sizes. The results show that RP decreases as the ranking error increases, 

reflecting the impact of imperfect ranking on efficiency. Across all set sizes m, the RP of MARSS with 

h = 1 and h = 2 consistently outperforms RSS. For the normal distribution with ranking error, the 

results of RP further indicate that the MARSS estimator with h = 2 is the most efficient (Figure 3). 
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Table 4. RP of MARSS mean estimators under imperfect ranking for 𝑁(0,1). 
 

𝑘 = 0 (𝑅𝑆𝑆) 𝑘 = 1 𝑘 = 2 

𝑚 𝜎𝑒
2 = 0.1 𝜎𝑒

2 = 0.3 𝜎𝑒
2 = 0.5 𝜎𝑒

2 = 0.1 𝜎𝑒
2 = 0.3 𝜎𝑒

2 = 0.5 𝜎𝑒
2 = 0.1 𝜎𝑒

2 = 0.3 𝜎𝑒
2 = 0.5 

3 1.72 1.57 1.49 2.06 1.71 1.60 ** ** ** 

4 2.05 1.77 1.62 2.51 1.95 1.74 ** ** ** 

5 2.40 1.99 1.73 2.80 2.17 1.90 2.93 2.19 1.93 

6 2.61 2.12 1.86 3.07 2.37 2.00 3.10 2.36 2.08 

7 2.88 2.30 1.91 3.42 2.43 2.08 3.63 2.57 2.05 

8 3.14 2.35 2.02 3.63 2.60 2.11 3.77 2.55 2.12 

 

Figure 3. RP of MARSS and RSS mean estimators under imperfect ranking. 

4.3. Concomitant variable effects 

Since RSS and its variations rely on ranking units based on the researcher’s judgment (either 

visually or using a concomitant variable), difficulties may arise when the variable of interest is hard to 

rank visually but is correlated with another variable. In such cases, using a concomitant variable 

becomes essential. In this subsection, we discuss the role of concomitant variables in ranking. The use 

of concomitant variables in RSS was first introduced by Stock [33], who considered the simple linear 

regression model of the variable of interest X on the concomitant variable Y: 

𝑋 = 𝛽0 + 𝛽1𝑌,          (24) 

where the ranking is performed based on the variable 𝑌, and the actual measurements are observed 

based on the corresponding 𝑋’s. The regression model can be written as: 

𝑋 = 𝜇𝑋 + 𝜌
𝜎𝑋

𝜎𝑌
(𝑌 − 𝜇𝑌),         (25) 

where 𝜇𝑋, 𝜇𝑌 are the population means, 𝜎𝑋, 𝜎𝑌 are the standard deviations, and 𝜌 =
𝜎𝑋𝑌

𝜎𝑋𝜎𝑌
 is the 

correlation between 𝑋 and 𝑌. The estimator of 𝜇 under this model is 

𝜇̂𝑅𝑆𝑆,𝐶 =
1

𝑚𝑐
∑ ∑ 𝑋[𝑖]

𝑗𝑚
𝑖=1

𝑐
𝑗=1 .        (26) 

Using the laws of total expectation and variance, the mean and variance of 𝑋[𝑖] are given by: 

𝐸(𝑋[𝑖]) = 𝐸[𝐸(𝑋|𝑌(𝑖))] = 𝜇𝑋 + 𝜌𝜎𝑋𝐸 (
𝑌(𝑖)−𝜇𝑌

𝜎𝑌
),    (27) 
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and 

𝑉(𝑋[𝑖]) = 𝐸[𝑉(𝑋|𝑌(𝑖))] + 𝑉[𝐸(𝑋|𝑌(𝑖))] = 𝜎𝑋
2(1 − 𝜌2) +

𝜌2𝜎𝑋
2

𝜎𝑌
2 𝑉(𝑌(𝑖)).  (28) 

Hence, the variance of the RSS estimator is 

𝑉(𝜇̂𝑅𝑆𝑆,𝐶) =
1

𝑚2𝑐
∑ 𝑉(𝑋[𝑖])
𝑚
𝑖=1 .        (29) 

The RP of the 𝜇̂𝑅𝑆𝑆,𝐶 compared to the SRS estimator is 

𝑅𝑃𝑅𝑆𝑆,𝐶 =
1

1−
𝜌2

𝑚
∑ 𝜏𝑈(𝑖)

2𝑚
𝑖=1

,         (30) 

where 𝑈 =
𝑌−𝜇𝑌

𝜎𝑌
 and 𝜏𝑈(𝑖) = 𝐸(𝑈(𝑖)) − 𝐸(𝑈). 

Based on the moment of 𝑋[𝑖]  in Eqs (26) and (27), the variance of the MARSS estimator 

𝜇̂𝑀𝐿𝑅𝑆𝑆,𝐶 with a concomitant variable can be derived directly using the same moments employed in 

the design. The RP of the MARSS estimator compared to SRS is obtained as follows. 

For odd m: 

𝐸(𝜇̂𝑀𝐴𝑅𝑆𝑆,𝑂𝑑𝑑,𝐶) = 𝜇𝑋 + 𝜌
𝜎𝑋
𝑚𝜎𝑌

[2ℎ (𝜇𝑌
(
𝑚+1
2

)
− 𝜇𝑌) + (∑ 𝜇𝑌(𝑖)

𝑚−ℎ

𝑖=ℎ+1
− (𝑚 − 2ℎ)𝜇𝑌)]. 

For even m: 

𝐸(𝜇̂𝑀𝐴𝑅𝑆𝑆,𝐸𝑣𝑒𝑛,𝐶) = 𝜇𝑋 + 𝜌
𝜎𝑋
𝑚𝜎𝑌

[(ℎ𝜇𝑌
(
𝑚
2
)
+ ℎ𝜇𝑌

(
𝑚
2
+1)
− 2ℎ𝜇𝑌) + (∑ 𝜇𝑌(𝑖)

𝑚−ℎ

𝑖=ℎ+1
− (𝑚 − 2ℎ)𝜇𝑌)]. 

The corresponding biases are: 

𝐵(𝜇̂𝑀𝐴𝑅𝑆𝑆,𝑂𝑑𝑑,𝐶) = 𝜌
𝜎𝑋

𝑚𝜎𝑌
[2ℎ (𝜇𝑌

(
𝑚+1
2

)
− 𝜇𝑌) + (∑ 𝜇𝑌(𝑖)

𝑚−ℎ
𝑖=ℎ+1 − (𝑚 − 2ℎ)𝜇𝑌)]   (31) 

and 

𝐵(𝜇̂𝑀𝐴𝑅𝑆𝑆,𝐸𝑣𝑒𝑛,𝐶) = 𝜌
𝜎𝑋
𝑚𝜎𝑌

[ℎ𝜇𝑌
(
𝑚
2
)
+ ℎ𝜇𝑌

(
𝑚
2
+1)
− 2ℎ𝜇𝑌 +∑ 𝜇𝑌(𝑖)

𝑚−ℎ

𝑖=ℎ+1
 

−(𝑚 − 2ℎ)𝜇𝑌].            (32) 

The variances are: 

𝑉(𝜇̂𝑀𝐴𝑅𝑆𝑆,𝑂𝑑𝑑,𝐶) =
1

𝑚2𝑐
{2ℎ𝜎𝑋

[
𝑚+1
2

]

2 +∑ 𝜎𝑋[𝑖]
2

𝑚−ℎ

𝑖=ℎ+1
} 

=
1

𝑚2𝑐
{𝑚𝜎𝑋

2(1 − 𝜌2) +
𝜌2𝜎𝑋

2

𝜎𝑌
2 [2ℎ𝜎𝑌

(
𝑚+1
2

)

2 + ∑ 𝜎𝑌(𝑖)
2𝑚−ℎ

𝑖=ℎ+1 ]}, (33) 

𝑉(𝜇̂𝑀𝐴𝑅𝑆𝑆,𝑂𝑑𝑑,𝐶) =
1

𝑚2𝑐
{2ℎ𝜎𝑋

[
𝑚+1
2

]

2 +∑ 𝜎𝑋[𝑖]
2

𝑚−ℎ

𝑖=ℎ+1
} 

=
1

𝑚2𝑐
{𝑚𝜎𝑋

2(1 − 𝜌2) +
𝜌2𝜎𝑋

2

𝜎𝑌
2 [2ℎ𝜎𝑌

(
𝑚+1
2

)

2 + ∑ 𝜎𝑌(𝑖)
2𝑚−ℎ

𝑖=ℎ+1 ]}.(34) 
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Finally, the RP is defined as: 

𝑅𝑃𝑀𝐴𝑅𝑆𝑆,𝐶 =
𝜎𝑋
2 𝑚𝑐⁄

𝑀𝑆𝐸(𝜇̂𝑀𝐴𝑅𝑆𝑆,𝐶)
.         (35) 

To test the performance of the MARSS design using a concomitant variable Y for the target 

variable X, a simulation study was conducted with 10,000 samples generated from a bivariate normal 

distribution with mean 0 and variance 1. The ranking is conducted based on Y, while the actual 

measurement is taken on X. Different levels of correlation between the variable of interest X and its 

concomitant Y (ρ = 0.0, 0.25, 0.50, 0.75, 1.0) were considered to evaluate the RP of MARSS (h = 0, 

1, 2) compared with the SRS estimator. Table 5 shows that the RP of the MARSS estimator increases 

with both correlation and set size (m). It is known that if ρ = 0, RSS and its modified designs become 

essentially random, so the RP is close to 1. At moderate ρ values, the RP of the MARSS estimator 

shows clear gains over SRS and RSS, while perfect correlation (ρ = 1) yields the highest efficiency, 

especially for larger m. The benefit of higher h values becomes evident as correlation strengthens, with 

MARSS at h = 2 performing best when the ranking is highly accurate (Figure 4). 

Table 5. RP of the mean MARSS and RSS estimators using a concomitant variable. 

 ℎ = 0 

𝑚 𝜌 = 0 (SRS) 𝜌 = 0.25 𝜌 = 0.50 𝜌 = 0.75 𝜌 = 1.00 

3 0.98 1.03 1.15 1.38 1.96 

4 0.99 1.06 1.17 1.46 2.37 

5 1.00 1.07 1.16 1.54 2.77 

6 1.03 1.02 1.19 1.65 3.17 

7 1.01 1.05 1.21 1.73 3.57 

8 1.00 1.04 1.25 1.77 4.07 

 ℎ = 1 

3 1.00 1.04 1.17 1.46 2.16 

4 1.01 1.04 1.22 1.53 2.76 

5 0.99 1.05 1.24 1.64 3.39 

6 1.00 1.02 1.22 1.73 3.91 

7 1.00 1.05 1.28 1.72 4.52 

8 1.02 1.07 1.27 1.81 4.88 

 ℎ = 2 

5 0.98 1.05 1.21 1.70 3.48 

6 1.01 1.02 1.28 1.78 4.05 

7 0.98 1.06 1.23 1.81 4.69 

8 1.00 1.05 1.28 1.86 5.35 
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Figure 4. RP of MARSS and RSS estimators using a concomitant variable at different 

correlation levels. 

4.4. Performance of outlier detection 

To assess the performance of the MARSS design in handling outliers, we conducted a simulation 

study with 10,000 replications using SRS, RSS, and MARSS with h = 1 and h = 2. The simulations 

were carried out with cycles (c = 10) and various set sizes (m = 3 to 8). The methods were evaluated 

for Normal(0,1). Outliers were injected into the simulated data at different contamination percentages 

(CP = 5%, 10%, 15%,) using the Normal(10, 1). 

To evaluate the robustness of each sampling method to the presence of outliers, we employed two 

performance measures. The first measure is the average percentage of outliers (PO) detected in the 

selected samples, calculated as: 

𝑃𝑂 =
1

10,000
∑ (

#𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠𝑙

𝑛
× 100%)10,000

𝑙=1 ,       (36) 

where 𝑛 = 𝑚𝑐 is the sample size. Outliers were identified as any values outside the interval: 

(𝑄1 − 1.5 × 𝐼𝑄𝑅, 𝑄3 + 1.5 × 𝐼𝑄𝑅), 

where 𝑄1  and 𝑄3  are the first and third quartiles, respectively, and 𝐼𝑄𝑅 = 𝑄3 − 𝑄1  is the 

interquartile range. Lower PO values indicate greater robustness to contamination. The second 

measure is the RP of the mean estimators. It is simulated by: 

𝑅𝑃 =
𝑀𝑆𝐸(𝜇̂𝑆𝑅𝑆)

𝑀𝑆𝐸(𝜇̂𝑀𝐴𝑅𝑆𝑆)
,          (37) 

where 𝑀𝑆𝐸(𝜇̂𝑆𝑅𝑆)  and 𝑀𝑆𝐸(𝜇̂𝑀𝐴𝑅𝑆𝑆)  represent the mean squared errors of the sample mean 

estimators obtained via SRS and MARSS, respectively. These MSEs were estimated using simulation 

under different sampling designs in the presence of outliers, and are computed as 

𝑀𝑆𝐸(𝜇̂𝑀) =
1

10,000
∑ (𝜇̂𝑀

(𝑙) − 𝜇)
2

10,000
𝑙=1 ,       (38) 

where 𝜇̂𝑀
(𝑙)

 is the sample mean from the 𝑙𝑡ℎ replication under the sampling design M ∈ {SRS, RSS (h 

= 0), MARSS(h = 1), MARSS (h = 2)}. 

Table 6 summarizes the average PO in samples drawn using SRS, RSS, and MARSS at different 

CP levels. The findings show that MARSS consistently produces fewer outliers than both RSS and 

SRS. Moreover, the proportion of outliers decreases as h increases (Figure 5). Overall, these results 
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indicate that MARSS provides greater improvement and robustness in minimizing the influence of 

extreme values. 

Table 7 and Figure 6 report the RP of the different estimators compared to SRS, in the presence 

of outliers. The results show that MARSS is generally more efficient than SRS and RSS in the presence 

of outliers. Overall, the findings highlight MARSS with h = 2 as a robust and highly efficient design, 

particularly effective in handling outliers. 

Table 6. Outlier percentage in samples obtained via SRS, RSS, and MARSS from 

contaminated populations. 

 CP = 5% CP = 10% CP = 15% 

m SRS h = 0 h = 1 h = 2 SRS h = 0 h = 1 h=2 SRS h = 0 h = 1 h = 2 

3 5.98 5.96 2.51 ** 10.39 10.48 4.34 ** 13.38 14.13 7.21 ** 

4 5.84 5.80 2.27 ** 10.28 10.50 4.21 ** 13.52 14.37 6.97 ** 

5 5.77 5.71 2.24 1.69 10.44 10.45 3.76 2.55 14.52 14.95 6.12 4.22 

6 5.66 5.63 2.13 1.54 10.35 10.35 3.87 2.47 14.49 15.07 6.50 4.08 

7 5.69 5.62 2.43 1.56 10.35 10.35 4.14 2.31 14.91 15.22 6.71 3.65 

8 5.63 5.57 2.30 1.57 10.35 10.27 4.22 2.37 14.76 15.13 7.08 3.75 

Table 7. RP of mean estimators under MARSS at different outlier percentage. 

  CP = 5% CP = 10% CP = 15% 

m CP  h = 0 h = 1 h = 2 h = 0 h = 1 h = 2 h = 0 h = 1 h = 2 

3 5 1.11 7.42 ** 1.07 5.12 ** 1.07 3.61 ** 

4 5 1.11 8.50 ** 1.07 5.42 ** 1.06 3.77 ** 

5 5 1.14 11.39 22.25 1.08 7.42 15.39 1.06 4.83 9.13 

6 5 1.13 11.15 24.24 1.06 6.60 15.92 1.05 4.37 9.21 

7 5 1.13 10.85 28.79 1.06 6.39 20.68 1.05 4.27 12.44 

8 5 1.12 10.04 28.69 1.07 5.68 18.93 1.04 3.79 11.15 

 

Figure 5. Outlier percentage in samples obtained via SRS, RSS, and MARSS. 
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Figure 6. RP of the estimator with the presence of outliers. 

4.5. Impact of ranking cost 

The RSS design and its variations are often used to reduce data collection costs, especially when 

measurements are expensive but ranking is relatively easy. However, ranking itself may also involve 

costs. This issue was first addressed by Dell and Clutter [32], who evaluated the efficiency of RSS 

while accounting for ranking costs. In this framework, the total cost of data collection is expressed as 

the sum of measurement cost (𝐶𝑚) and ranking cost (𝐶𝑟). For SRS, only the measurement cost is 

considered. The cost relative efficiency (RE) compares the variance per cost unit between RSS and 

SRS. The adjusted-cost RE of the RSS estimator is expressed as: 

𝑅𝐸𝑐𝑜𝑠𝑡 = 𝑅𝑃.
𝐶𝑚

𝐶𝑚+𝐶𝑟
= 𝑅𝑃. (1 +

𝐶𝑟

𝐶𝑚
)
−1

.       (39) 

Here, 𝐶𝑟 𝐶𝑚⁄  represent the cost ratio of the ranking cost to the measurement cost. Generally, the use 

of RSS designs is more effective when measurements are expensive and ranking is inexpensive. 

However, this advantage decreases as the cost of ranking increases. From Eq (39), it can be denoted 

that the estimator becomes more efficient than SRS when RP is greater than 1 +
𝐶𝑟

𝐶𝑚
. Figure 7 presents 

the RE of the estimators for different RP values (RP = 1.0, 1.2, 1.4, 1.6, 1.8, 2.0). The results 

demonstrate that RE increases with either an increase in RP or a decrease in the cost ratio (𝐶𝑟/𝐶𝑚). 

 

Figure 7. RE at different ranking cost ratios. 

In summary, and based on the results, the MARSS method and its mean estimator offer the 

following: 

• They help reduce measurement costs and are less affected by outliers than traditional RSS. 
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• They provide a smaller variance than both RSS and SRS when the distribution is unimodal and 

symmetric, and they remain unbiased for symmetric populations. 

• They are more robust to outliers and keep good precision under different ranking conditions, 

including imperfect ranking or when using concomitant variables. 

• They perform better than RSS in most cases, although they may show some bias when the 

distribution is skewed. 

5. Compactness, Lindelöfness, and efficiency: a topological view of MARSS 

In this section, we reinterpret the variance and robustness aspects in topological space. We model 

the population as a topological space (𝑋, 𝜏) with a probability law 𝜇 , and represent the ranking 

mechanism by a continuous function 𝑓: 𝑋 →  ℝ. For a collection of open intervals 𝐼ᵢ ⊂  ℝ, the 

preimages 𝑈ᵢ ∶= 𝑓⁻¹(𝐼ᵢ) form the rank strips, which results in an open cover 𝒰ₘ = {𝑈ᵢ}ᵢ₌₁ᵐ of the 

support of 𝜇. The MLRSS rule then appears as centralization in the first and last 𝑘 strips together 

with diagonal selections in the remaining strips. Imperfect ranking is modeled by noisy scores 𝑌 =
𝑓(𝑋) + 𝜀, so that as 𝑉𝑎𝑟(𝜀) increases, the strip boundaries effectively thicken and the induced order 

weakens. 

Lemma 6.1. Let 𝑍 be a real-valued random variable with a continuous distribution that is symmetric 

about its median 𝑀𝑧 and unimodal. Then the variances of the order statistics decrease as one moves 

inward from the tails: for 𝑖 = 1,… ,𝑚 , the quantity 𝑉𝑎𝑟(𝑍(𝑖:𝑚))  is nonincreasing when 𝑖 

approaches the central index; for even 𝑚, the two middle order statistics achieve the minimal variance. 

Theorem 6.2. Let (𝑋, 𝜏)  be a topological space, 𝑓: 𝑋 →  ℝ  continuous on the support of μ, and 

suppose 𝑍 = 𝑓(𝑋)  is symmetric and unimodal about 𝑀𝑧 . Fix 𝑚 ≥ 3  and ℎ ∈ {0, 1, … , ⌊(𝑚 −

1)/2⌋}. Consider one cycle of RSS and one cycle of MARSS constructed on the same 𝑚, ℎ, and 𝑓. 

Then the MARSS sample mean has variance not exceeding that of RSS: 𝑉𝑎𝑟(𝜇̂𝑀𝐴𝑅𝑆𝑆) ≤ 𝑉𝑎𝑟(𝜇̂𝑅𝑆𝑆). 

If, in addition, 𝑍 is symmetric, then 𝐸[𝜇𝑀̂𝐴𝑅𝑆𝑆] = 𝐸[𝑋] = 𝜇𝑋. 

Proof. Push the design through the ranking function f. The variance comparison becomes a weighted 

average of the ordered variances 𝑉𝑎𝑟(𝑍(𝑖:𝑚)). Relative to RSS, MLRSS replaces 2 h extreme-order 

contributions with 2 h central-order contributions, while leaving the diagonal contributions for 𝑖 =
ℎ + 1,… ,𝑚 − ℎ unchanged. By Lemma 6.1 the ordered variances are smaller at the center than at the 

extremes, so the overall average cannot increase. Symmetry of 𝑍  implies that these central 

replacements do not shift the mean, and the diagonal selections average to the center, yielding 

unbiasedness. 

Corollary 6.3. Let the observed ranking score be 𝑌 = 𝑓(𝑋) + 𝜀, where ε is independent noise with 

mean zero and finite variance. As 𝑉𝑎𝑟(𝜀) → ∞,  the MLRSS selection becomes asymptotically 

uninformative and 𝑅𝐸 = 𝑀𝑆𝐸(𝜇𝑆̂𝑅𝑆)/𝑀𝑆𝐸(𝜇𝑀̂𝐴𝑅𝑆𝑆) → 1. 

Proposition 6.4. If 𝑓(𝑋) is Lindelöf, then for any 𝜀 >  0 there exists 𝑚(𝜀) such that an MLRSS 

design using the first 𝑚(𝜀) rank strips has mean squared error within 𝜀 of the ideal design based on 

the full countable cover induced by 𝑓. 

Example 6.5. Let 𝑋 be a cohort, 𝑓 is the weight, and the measured variable is body-fat percentage. 

Empirically 𝑓(𝑋) lies in a compact interval. With 𝑚 = 5, ℎ = 1, define five rank strips by weight 

quantiles. MARSS picks the within-strip median in the outer two strips and the diagonal elements in 

the middle strip. The cover interpretation is 𝑓⁻¹(𝐼ᵢ) with 𝐼ᵢ as the weight intervals; centralization 
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lowers the average ordered variance. 

Example 6.6. Take 𝑋 = ℝ, 𝑓 = 𝑖𝑑 , and dyadic intervals 𝐼𝑗 = (𝑗2
−𝑟 , (𝑗 + 1)2−𝑟)  inside [−𝑀,𝑀] 

with 𝑀 →  ∞, 𝑟 →  ∞. By Proposition 6.4, choose 𝑀, 𝑟 so that the truncated design with m strips 

has MSE within any prescribed ε of the limit. This yields a practical MARSS with theoretically 

guaranteed error control. 

 

Figure 8. Visualization of an MARSS rank-strip design. The gray point cloud represents 

the population x ⊂ ℝ³. Ranking is induced by 𝑓(𝑥, 𝑦, 𝑧) = 𝑥, which partitions x into m 

rank strips (preimages of equal x-intervals). Triangular marker. Represents MARSS picks. 

The topological interpretation of MARSS yields practical design rules. When 𝑓(𝑋) is compact, 

any finite interval cover of 𝑓(𝑋) pulls back via 𝑓 to a finite rank-strip cover on 𝑋, so a finite-cycle 

design is feasible. If 𝑓(𝑋) is Lindelöf, one may work with a countable interval cover and truncate 

while controlling the mean squared error. In product populations 𝑋 = 𝑋₁ × 𝑋₂ with 𝑓(𝑥₁, 𝑥₂) =
𝑔₁(𝑥₁) + 𝑔₂(𝑥₂), the resulting rank strips are Minkowski-type sums of the one-dimensional strips; 

subspaces inherit strips by intersection. Choosing an auxiliary variable amounts to selecting a 

measurable 𝑓 that is correlated with the response; larger correlation ρ sharpens strip separation and 

improves ordered-variance profiles. Increasing m refines the cover; the median-centric replacements 

stabilize the average of ordered variances, consistent with the observed efficiency gains under 

symmetry. Conversely, when the pushforward 𝑓#𝜇 is skewed, centralization can introduce bias; in 

practice, ℎ = 1 often trades a small bias for robust variance reduction. 

6. Application to real data 

The Body Fat Prediction Dataset [34], which includes N = 252 adult males, was used to test the 

applicability of the new sampling design, MARSS. This dataset records multiple characteristics, 
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including body density, body fat percentage, age, weight, height, and measurements of several body 

parts such as neck, chest, abdomen, hips, thighs, knees, ankles, biceps, forearms, and wrists. These 

variables give a general picture of the health and physical characteristics of individuals [34]. Among 

them, body fat percentage (BFP) is a key health indicator, calculated using Siri's (1956) formula: 

𝑃𝐵𝐹 = 495/𝑑𝑒𝑛𝑠𝑖𝑡𝑦 − 450. 

In this application, the MARSS design was used to estimate the mean BFP. Measuring body is 

often more costly and complex than other variables, such as weight, which can be easily measured and 

ranked. Due to the strong correlation between weight and BFP, weight was used as a concomitant 

variable to assist in ranking the target variable (body fat percentage). Table 8 presents descriptive 

statistics for BFP (X) and weight (Y), including mean, dispersion measures, and skewness. The 

correlation coefficient (ρ) between the two variables is also reported. BFP has a mean (𝜇𝑋 ) of 

19.15 with a standard deviation (𝜎𝑋) of 8.37, while weight shows higher variability (𝜎𝑌 = 29.39) 

around its mean (𝜇𝑌 = 178.92). BFP is approximately symmetric (skewness ≈ 0.15), while the weight 

is right-skewed (skewness ≈ 1.20), indicating heavier tails in higher weight values (Figure 10). The 

positive correlation (𝜌 = 0.61) indicates a strong linear relationship between BFP and weight. Figure 

10 further presents this relationship, showing a clear linear trend between the concomitant variable 

(weight) and the target variable (BFP). To illustrate the MARSS sampling design, a numerical example 

is provided, based on the scenario with m = 5, c = 2, and h = 1, with full implementation steps 

presented in Table 9. 

To further evaluate the performance of the MARSS design in real-world data, we assessed the 

sample mean using several measures, including the expected value, bias, mean squared error (MSE), 

and RP. The simulation experiment was conducted using MATLAB R2024a, with 10,000 repetitions, 

and the performance measures were computed as follows: 

𝐸(𝜇̂) =
1

10,000
∑ 𝜇̂𝑙

10,000

𝑙=1
, 𝐵𝑖𝑎𝑠(𝜇̂) = 𝐸(𝜇̂) − 𝜇𝑥, 𝑀𝑆𝐸(𝜇̂) =

1

10,000
∑ (𝜇̂𝑙 − 𝜇𝑥)

2
10,000

𝑙=1
, 

and 

𝑅𝑃 =
𝑀𝑆𝐸(𝜇̂𝑆𝑅𝑆)

𝑀𝑆𝐸(𝜇̂𝑀𝐴𝑅𝑆𝑆)
, 

where 𝜇̂𝑙 represents the estimate from the 𝑙𝑡ℎ replication, and 𝜇𝑥 denotes the true population mean. 

Table 8. Descriptive statistics of body fat (X) and weight (Y). 

 Mean (𝜇) Std. Dev. (𝜎) Variance (𝜎2) Skewness Correlation (𝜌) 

Bodyfat (𝑋) 19.1508 8.3687 70.0358 0.1455 
0.61 

Weight (𝑌) 178.9244 29.3892 863.7227 1.1981 
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Figure 9. Distributions of weight and body fat. 

 

Figure 10. Scatter plot of weight versus BFP (%) with a fitted linear regression line. 
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Table 9. Numerical implementation of MARSS for body fat estimation (m = 5, c = 1, h = 1). 

 Cycle 1 

Set Step1: 

Random indices 

Step 2: Ranking based on weights Step 3: 

Selected 

rank 

Step 4: 

Measuring 

body fat 

1 3, 7, 12, 18, 22 154 < 181 < 200.5 (15.2) < 209.25 < 216 3 15.2 

2 5, 9, 14, 20, 25 151.25 < 184.25 (28.7) < 191 < 205.25 < 211.75 2 28.7 

3 2, 6, 11, 17, 24 148.75 < 173.25 < 186.25 (7.1) < 195.75 < 210.25 3 7.1 

4 4, 8, 13, 19, 23 140.25 < 176 < 180.5 < 183.75 (16.0) < 184.75 4 16.0 

5 1, 10, 15, 21, 16 154.25 < 162.75 < 179 (19.1) < 187.75 < 198.25 3 19.1 

 Cycle 2 

Set Step1: 

Random indices 

Step 2: Ranking based on weights Step 3: 

Selected 

rank 

Step 4: 

Measuring 

body fat 

1 26, 34, 42, 58, 67 159.25 < 175.5 < 193.5 (15.9) < 218.5 < 227.75 3 15.9 

2 29, 37, 45, 53, 72 133.25 < 135.75 (13.6) < 151 < 154.5 < 190.75 2 13.6 

3 31, 39, 47, 61, 70 127.5 < 134.25 < 148.25 (18.5) < 159.25 < 160.75 3 18.5 

4 33, 41, 49, 63, 74 153 < 158.25 < 167 < 168 (11.8) < 207.5 4 11.8 

5 36, 44, 52, 65, 68 155.5 < 162.75 < 189.75 (29.9) < 191.75 < 199.25 3 29.9 

𝜇̂𝑀𝐿𝑅𝑆𝑆 = (15.2 + 28.7 + 7.1 + 16.0 + 19.1 + 15.9 + 13.6 + 18.5 + 11.8 + 29.9)/10 = 18.19% 

Table 10 compares the performance of SRS, RSS (h = 0), and MARSS (h = 1) estimators for 

BFP across different sample sizes (m = 3, 4, 5) with 10 cycles (c = 10). The results indicate that SRS 

is nearly unbiased, while RSS maintains minimal bias and MARSS introduces a slight positive bias. 

Both RSS and MARSS outperform SRS in terms of MSE and RP (RP > 1), and MARSS has the 

highest efficiency for all cases. 

Table 10. Performance measures of MARSS and RSS estimators for body fat. 

m Method 𝐸(𝜇̂) B MSE RP 

3 SRS 19.15 0.00 1.27 ** 

 RSS (ℎ = 0) 19.13 -0.02 0.99 1.29 

 MARSS (ℎ = 1) 19.22 0.07 0.94 1.34 

4 SRS 19.17 0.02 0.88 ** 

 RSS (ℎ = 0) 19.15 0.00 0.60 1.51 

 MARSS (ℎ = 1) 19.21 0.06 0.57 1.54 

5 SRS 19.16 0.01 1.13 ** 

 RSS (ℎ = 0) 19.15 0.00 0.78 1.45 

 MARSS (ℎ = 1 ) 19.22 0.06 0.72 1.52 

7. Conclusions 

The study proposed a new sampling design for estimating the population mean. The new estimator 

is an unbiased estimator with lower variance than SRS and RSS in most scenarios. The design is 

effective when h = 2 for symmetrical unimodal distribution, and when h = 1 for the most skewed 
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distribution, giving better efficiency and greater robustness to outliers. The estimator also performs 

well under imperfect ranking and when using a concomitant variable. 

This approach can be extended to other estimation problems, such as estimating distribution 

parameters, reliability models, distribution functions, hazard rates, and variance and median. This 

approach can be used for different practical applications where reducing measurement cost is important. 
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