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Abstract: Ranked set sampling (RSS) is a sampling design that combines random sampling with the
judgment of researchers through preliminary ranking. The current study introduced a new
generalization of RSS, called median-augmented ranked set sampling (MARSS), designed to further
reduce the measurement cost and lessen the influence of outliers in estimating the population mean.
The proposed MARSS estimator was compared with both simple random sampling (SRS) and RSS
estimators. Its exact relative precision and bias were evaluated for a range of symmetric and skewed
distributions under perfect ranking. A simulation study was also conducted to assess its performance
under imperfect ranking, when using concomitant variables, in the presence of outliers, and when
considering ranking cost efficiency. The variance and robustness were also interpreted in topological
space. The theoretical results showed that the MARSS estimator was unbiased for symmetric
distributions and achieved less variance than both RSS and SRS in unimodal symmetric distributions.
Overall, MARSS is more precise than SRS and surpassed RSS in most scenarios, though some bias
was observed for skewed distributions. Importantly, MARSS demonstrated a greater robustness to
outliers than either SRS or RSS. Finally, the new sampling design was illustrated through an
application to body health data analysis.
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1. Introduction

In many practical applications, such as environmental, agricultural, biological, and ecological
studies, the process of taking actual measurements is often more expensive and time-consuming than
performing a preliminary ranking based on judgment, concomitant variables, or visual inspection [1].
For instance, in estimating the average height of trees in a forest, it is generally easier to rank the trees
visually than to measure their exact heights. To address the challenge of measurement cost, ranked set
sampling (RSS) was introduced by Mclntyre [2] in an agricultural setting to estimate the mean of
pasture yield more efficiently. Since then, numerous modifications of RSS have been proposed to
reduce measurement costs and improve estimation precision.

Researchers have introduced many innovative RSS methods aimed at improving sampling
efficiency and flexibility. Among these are the median ranked set sampling (MRSS), which uses the
median ranks [3]; the moving extreme RSS, which emphasizes the extreme ranks while varying the
set sizes [4]; and L-ranked set sampling (LRSS) as a generalization of RSS through excluding certain
extremes and replacing them with their nearest ranks [5]. Other designs have also been proposed, such
as the systematic design of RSS [6]; and the recent except extreme RSS, which excludes the extreme
ranks from all sets [7]. In addition to these single-stage procedures, researchers have also proposed
multistage modifications, including double RSS [8], multistage ranked set sampling [9], double
LRSS [10], and double except extreme RSS [11]. Further contributions in this area can be found in the
works of [12—14], among others. These developments demonstrate the ongoing efforts to adapt RSS
to different practical and theoretical requirements.

The RSS method and its modifications have been applied in a wide range of statistical inference
problems and practical applications. For example, RSS designs have been used in the estimation of the
cumulative distribution function [15], median [16], in quality control estimation [17,18], and in the
estimation of variance [19] and ratio [12]. Further applications include regression estimation [20],
estimation of reliability models [21-23], estimation of shape and scale parameters [24], in small area
estimation [25,26], and more recent work on parameter estimation under RSS variations [27,28]. These
various applications highlight the precision of RSS as a sampling design and its importance in both
theoretical and applied statistics.

The aim of this study is to propose and evaluate a new variation of RSS that can improve mean
estimation by reducing the effect of outliers. The proposed design, called median-augmented RSS
(MARSS), will be compared with other traditional sampling methods. MARSS is expected to improve
the efficiency and accuracy of mean estimation, offer more robust sampling against outliers, and thus
reduce the time and cost of data collection. The importance of this study lies in its introduction of a
new sampling method. To the best of our knowledge, this is the first study to explore the connection
between topological spaces and ordered sampling methods, providing a novel framework for
understanding and improving sampling efficiency. It can also be applied in estimating the other
parameters of probability distributions under different truncation combinations, as in [29], reliability
models, quality control, and other population characteristics, in addition to the practical application in
data collection.

The remainder of the paper is structured as follows: Section 2 presents the foundation of the
existing sampling method; Section 3 suggests and explains the proposed sampling design; Section 4
gives a comparative study of the new estimator under imperfect ranking with some estimators and a
discussion of other cases, such as ranking using the concomitant variable, the impact of outliers, and
ranking cost; Section 5 interprets the variance and robustness aspects in topological space; Section 6
presents applications and a numerical example; and finally, Section 7 gives the conclusions and future
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directions.
2. Existing sampling designs

This section presents a brief overview of existing sampling methods, highlighting the estimators
of the population mean and measures of precision.

2.1. Simple random sampling

Simple random sampling (SRS) is a widely used probability sampling. Let X;,X,,...,X,, be a
random sample from a population with a probability density function (PDF) f(x) and cumulative
density function (CDF) F(x). The SRS estimator of the population mean u is given by:

n = 1
fsgrs = X = ;Z?::LXL'- (1)

The variance of that estimator is:

— g2
Vi) =—, 2
where o2 is the population variance.

2.2. Ranked set sampling

RSS was introduced by Mclntyre [2] to estimate the average pasture yield using preliminary
judgment ranking. Independently, Takahasi and Wakimoto [30] established the mathematical
foundation of RSS. The procedure can be summarized as follows:

(1) Randomly select m? units from the population and divide them into m sets.

(2) Rank the unit within each set using judgment, visual inspection, or an auxiliary variable related to
the study variable.

(3) From the i*" set, measure the i" ranked unit, for i = 1,2,...,m.

(4) Repeat Steps 1-3 over ¢ cycles to obtain a final sample of size n = mc.

Let X (ji) denote the i*" ranked unitinthe j* cycle. Then the RSS estimator of u under perfect
ranking is given by:
frss = — %54 XX}y (3)
Here, [izss is an unbiased estimator [31]. The variance of the RSS estimator figgs 1
V(figss) = ﬁ =1 0(21')' (4)

where a(zl-) is the variance of the it" ordered statistic. It can be evaluated from its PDF as:

fiy(0) = —— FEO[F (O] [1 = F(x)]™ (5)

(i—-D!(m-i)!

For more details on ordered statistic and their moments, see [32]. The relative precision (RP) of
the RSS estimator compared to SRS is:
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1

RP = . (6)

T
1= meZ Li=17()

where 7(;y = u) — 1 and p;) represents the expected value of the it" ordered statistic.

3. Proposed sampling design (MARSS)

In this study, we propose a new modification of ranked set sampling (RSS) designed to provide
greater robustness in the presence of outliers. The new design is termed the median-augmented ranked
set sampling (MARSS). The procedure for implementing MARSS can be outlined as follows:

(1) Randomly select m samples of each size m.

(2) Rank the elements within each set using any costless procedure.

(3) Define a coefficient h = [dm], where 0 < § < 0.5, and [v] is the largest integer less than or
equal to v.

(4) If m is odd, measure the ((m + 1)/2)" ranked elements in the first 4 sets and last / sets, which
means for i =1,--,h and i=m—h+1,---m. In the remaining sets, measure the (i)"
elements in the it" set, for i =h+ 1,---,m — h.

(5) If m is even, measure the ((m)/2)*" ranked elements in the first 4 sets at i = 1,--+,h, and
((m +2)/2)™" inthelast hsetsat i = m — h + 1,---m. In the remaining sets, measure the (i)%"
elements in the it" set, for i=h+1,---,m — h.

(6) Steps 1-5 can be repeated ¢ cycles to obtain a larger sample n = cm.

For more clarification and without loss of generality, suppose that the number of cycles is one
(c = 1). The following example includes some cases.

Example 3.1. To demonstrate the MARSS procedure, we consider two cases with different set sizes
and coefficients.

Case 1. At the coefficient # = I and the odd set size m = 5.

X1 X1 X1z X Xis X1 Xies Xi@s Xiws) Xies)
Xo1 Xoo Xoz Xou Xos X215 X225) Xa@is) Xo@s) Xoss)
X31 X3z X3z Xsu X35 p = (Xzas) Xsz@s) Xz@s) Xzus) Xaes)
X41 X42 X43 X44 X45 X4(1:5) X4(2:5) X4(3:5) X4(4:5) X4(5:5)

51 X52 X53 X54- X55
Selecting m random samples
X1(3:5)
X2(2:5)
= X3(3:5)
Xa(as)
X5(3:5)

S—— ——
The selected elements

Xs:s) Xs@is) Xs@s) Xsus) Xsss)

Ranking and selecting for actual measurement

Case 2. At the coefficient # = 2 and the even set size m = 6.
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X11 X1 Xi3 X1 Xis Xi6) (X1(1:6) X1(2:6) X1(3:6) X1(4-:6) X1(5:6) X1(6;6)\
(X21 Xoo Xoz Xou Xos Xog Xo1:6) X22:6) X2(3:6) X2a6) X2(56) X2(6:6)
X31:6) X326) X33:6) X3a6) X3(5:6) X3(6:6) >
Xs:e) Xaze) Xae) Xawe) Xaie) Xae)
Xs1 Xsp Xs3 Xsa Xss Xse Xs1:6) Xsze) Xs@e) Xswe) Xsie) Xsee)

61 Xe2 Xe3 Xea Xes Xoo/ \Xo(1:6) Xoz:6) Xo3:6) Xoa6) Xese) Xo(6:6)/

Selecting m random samples Ranking and selecting for actual measurement

(X1(3:6)\
X2(3:6)
< X3(3:6)
Xa(a:6)
Xs5(4:6)
\X6(4:6)/

~—_— ————
The selected elements

U

Further cases of the MARSS design are illustrated in Figure 1. Some well-known schemes that
arise as special cases of the MARSS. For example, when h = 0, the MARSS design reduces to the
RSS design. Moreover, if m is odd and (m —1)/2 = h, or if m is even and (m — 2)/2 = h, the
MARSS design coincides with MRSS. In certain cases, the MARSS design also aligns with LRSS.

The estimator of the population mean at m set sizes, odd and even respectively, can be defined as:

ﬁMARSS,Odd - lz Xj m+1 Zl h+1 l(l) +Zl =m-h+1 ](m+1)l (7)

2

and

AmaRss Even = i j=1 lZ?ﬂ Xl](%) + Y Xl + Zmeni j(z“)l. (8)
The expectations of the corresponding estimator are:
E(Amarss0ad) = % [Zhll(mTH) + 37 .U(i)], )
and
E (ﬁMARss,Even) = % [h#(%) + hll(%ﬂ) + X ll(i)]- (10)

The corresponding variances are given by:

14 14 z Z Xf +Z +Z
(.uMARSSOdd) (mc i 1[ m+1 —hat l(l) SR lm_+1)

z
= [Zha (m) +ymoh U(z)] (11)

and
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. m .
v v Z XJ )+ z "X+ 2 e
(.UMARSSEven) (mc j= 1[ i1 l_ - i(0) i=m-h+1 i(%+1)

=ty Moy + T 12

a) Ath=1Ilandm =3 b) Ath=/landm =6

Xi:6) X12:6) X13:6) X1a6) Xisie)  Xi(e:6)
X2t1:6) Xz226) X2(3:6) Xo2(ae) X2(5:6) X2(6:6)
X31:6) X326) X336) X3a6) X3(56) X3(6:6)
Xae) Xaze) Xa@e) Xawe) Xacie) Xaceo
Xs:6) Xsze) Xs@e) Xs@e) Xsie) Xseee)
Xe1:6) Xoz6) Xoz:6) Xe6) Xo(s:6) Xo(e:6)
c) Ath=Ilandm =4 d) Ath=2andm =35

Xias) Xies) X135 Xi@s) XiGs)
Xoa:s) Xozs) X2@s) Xos) Xa(s:s)
X3a:5) X32s) X335 X3ws) X3(s:5)
Xaas) Xazs) Xa@s) Xaws) Xass)
Xs:5) Xszs) X535 Xss) Xs(s:s)

X11:3) X123 Xi3:3)
Xoa3) X2023) X23:3)
X31:3) X32:3) X3(3:3)

X110 X1z Xi@e X4
X210 X2 X2 X2m4)
X3a1:0) Xz X334 X3
Xaae) Xaa Xa@e Xiww

Figure 1. Selected MARSS scenarios.

Theorem 3.1. Assume the parent distribution f(x) is symmetric, and then the estimator fiygss 1S
an unbiased estimator of .

Proof. It is known that Y%, u¢;y = mu. Moreover, by the symmetry property [32], we have
U= UG = Him-i+1) — K-
For odd m:

E(:uMARSS Odd) = I:Zhﬂ m+1 + Z h+1‘u(l):| Zhﬂ + (m Zh)ﬂ]
i=

For even m:
1
E(#MARSS Even) = [hll + hll( +1) + Z ,u(i)] = —|[2hu + (m — 2h)u] =
i=h+1 m

The proof is complete.

Theorem 3.2. Assume the parent distribution f(x) is symmetric and unimodal. Then

a) V(dpyarss) < V(figss)-
b) V(fimarss) < V(fsrs)-

Proof.
a) For a symmetric unimodal distribution, the variances of the order statistics decrease as the ranks
move toward the median
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) 1 ) m-—h 2 2
V(,UMARSS,Odd) = m hO'(mTﬂ) + 2i=h+1 O-(i) + hO'(mTH) ’

while

1 m ) 1 h ) m-—h ) m )
RN N T e DO
RS T mecLayy @7 m2clduyny @ i=he1 O i=mht1

As mentioned earlier, because the density is higher as we move toward the median ranks, the median
order statistic has the smallest variance [5,32], hence

h m
ho? < Z 2. ho? < Z z
Iy = 2, 0oy = 2 00

Thus, V(ﬁM ARSS,Odd) < V(figss).- The argument extends directly to the even m case with variance:

N 1 2 mhe 2
V(.“MARSS,Even) = m{ka(%) + Zi=h+1 ot ka(%ﬂ)}'

Finally, the inequality with respect to SRS follows from the decomposition

o, 2 " 2
Z. O = mo —Z_ (1w — 1)
i=1 =1

and the established results show that V(figss) < V(fggs) [33]. Since

V(fmarss) < V(figss),

we also have

V(fmarss) < V(fsgs)-

The proof is now complete.
In the case of a skewed distribution, fiy4rss 1S no longer unbiased. The bias (B) is given by:

B(fimarss) = E(fimarss) — M. (13)

Here, E(flyarss) is given in Eq (9) to Eq (10). Therefore, by using Eq (11) to Eq (12), the mean
squared error (MSE) of fiparss 1 then:

MSE (fiyrarss) =V (lmarss) + [B(lyarss)]? (14)

Accordingly, the RP of [iyarss compared to the SRS estimator can be expressed for odd and even m
as:

~ 2
RPoaa = MSE(;(:jzi odd) " (19
. {Zha(ZmT_H) +Z:7;71’-|1.1 J(Zi)}+c{2hu(mTH)+2ﬁ;l:l_1M(i)—m#}
_ V(fisrs)
Even — -
" MSE (.UMARSS,Even)
2
= i . (16)

2
{""@fzml“50*""(2%+1>}*C{""<%>+2?5'+‘1“<i>+"“<%+1)‘m“}
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Once the moments of the order statistics used in the MARSS design are derived from the PDF in
Eq (5), the corresponding performance measures (RP and B) can be calculated directly.

4. Results and discussion

In this section, we present a comparative analysis of the MARSS estimator against several
existing sampling methods (SRS and RSS). The evaluation covers a range of scenarios, including
perfect for some distributions and imperfect ranking, the use of concomitant variables, the impact of
outliers, and cost efficiency.

4.1. Perfect ranking

To test the performance of the MARSS estimator, using Walframe Mathematica 13, we evaluate
the analytical values of RP and bias of the estimators under RSS and MARSS with respect to the
corresponding SRS estimator, for the scenarios of 2 = 0,1, and 2, and the scenarios of m = 3 to 8. The
RP evaluated exactly, using Mathematica 13.0, for a group of symmetrical distributions: Uniform(0,1),
N(0,1), Logistic(2,1), StudentT(5), and Beta(5,5). In addition to RP and B of the estimators for the
skewed distributions: Beta(3,5), Gamma(4,1), Weibull(1,4), Exp(1), Chi(3), LogNormal(0,1), and
HalfNormal(35).

Table 1 reports the RPs of the RSS and MARSS estimators compared to the SRS for symmetric
distributions. In all cases, RP is greater than one, meaning that both RSS and MARSS are more efficient
than SRS. As m increases, RP also increases. Additionally, RPs vary depending on the distribution. For
all distributions except the uniform case, MARSS with 4 = 2 is the most efficient, while MARSS with
h = 1 is more efficient than RSS (Figure 2), which supports the findings in Theorem 2.

Table 2 illustrates the RP for some skewed distributions. In all considered cases, RP is greater
than one, indicating that both RSS and MARSS estimators are more efficient than the SRS estimator.
As m increases, the RP increases for RSS and for MARSS in some cases of m. Also, the RPs vary from
one distribution to another. In most cases, especially at a small set size m (m = 3 or 4) and some of the
larger m, the MARSS estimator with # = / is the most efficient (Figure 2). The superiority of RSS in
some cases 1s due to the bias of MARSS in certain skewed distributions.

It is known that the RSS and SRS estimators are unbiased estimators. For this reason, Table 3
presents only the bias of the MARSS estimator with 2 = 7 and /4 = 2. The results show that the bias of
the MARSS estimators varies significantly from one distribution to another; it is negligible in some
cases, such as Beta and Weibull, and large in the remaining cases. In general, the bias of MARSS with
h = 1 is smaller than MARSS with & = 2.

AIMS Mathematics Volume 10, Issue 12, 28954-28980.
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Table 1. RP of the mean estimators for selected symmetrical distributions under RSS and MARSS.

Distribution m RSS(h=0) MARSS (h=1) MARSS (h = 2)
Uniform(0,1) 3 2.00 1.67 ok
4 2.50 2.08 *x
5 3.00 244 2.33
6 3.50 2.88 2.72
7 4.00 3.29 3.17
8 4.50 3.75 3.46
N(0,1) 3 1.91 2.23 *x
4 2.35 2.77 *x
5 2.77 3.37 3.49
6 3.19 3.89 4.06
7 3.59 4.42 4.69
8 4.00 491 5.25
Logistic(2,1) 3 1.84 2.55 ok
4 2.22 3.16 *x
5 2.58 3.89 4.17
6 2.93 4.44 4.85
7 3.27 5.02 5.66
8 3.60 5.52 6.29
StudentT (5) 3 1.76 2.86 *x
4 2.08 3.54 *x
5 2.38 4.38 4.76
6 2.66 4.96 5.54
7 2.93 5.59 6.48
8 3.19 6.12 7.20
Beta(5,5) 3 1.95 2.07 *x
4 241 2.57 *x
5 2.87 3.11 3.15
6 3.32 3.60 3.68
7 3.77 4.10 4.22
8 4.21 4.59 4.73
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Table 2. RP of the mean estimators for selected skewed distributions under RSS and MARSS.

Distribution m RSS h=1 h=2
Beta(3,5) 3 1.94 2.03 ok
4 2.40 2.52 **
5 2.86 3.00 3.01
6 3.31 3.46 3.46
7 3.75 3.91 3.89
8 4.20 4.34 4.30
Gamma(4,1) 3 1.83 2.22 ok
4 2.21 2.66 ok
5 2.58 3.02 3.01
6 2.94 3.33 3.46
7 3.29 3.58 3.89
8 3.64 3.82 4.30
Weibull(1,4) 3 1.93 2.15 *E
4 2.38 2.67 ok
5 2.82 3.23 3.31
6 3.25 3.73 3.85
7 3.68 4.25 4.43
8 4.11 4.73 4.95
Exp(1) 3 1.64 2.25 o
4 1.92 2.44 ok
5 2.19 2.44 2.23
6 2.45 2.49 2.14
7 2.70 2.46 1.91
8 2.94 2.50 1.84
Chi(3) 3 1.71 2.23 *E
4 2.03 2.51 ok
5 2.34 2.64 2.47
6 2.63 2.77 2.46
7 2.92 2.81 2.29
8 3.20 2.90 2.25
LogNormal(0,1) 3 1.34 3.41 *ox
4 1.47 3.35 ok
5 1.59 3.08 2.80
6 1.70 2.94 2.51
7 1.80 2.75 2.14
8 1.89 2.67 1.98
HalfNormal(5) 3 1.84 2.01 *ok
4 2.24 2.37 *x
5 2.63 2.62 2.49
6 3.01 2.87 2.63
7 3.39 3.05 2.61
8 3.76 3.25 2.67
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Table 3. Bias of the mean estimators for selected skewed distributions under MARSS.

Distribution m MARSS (h =1) MARSS (h =2)
Beta(3,5) 3 -0.01 *E

4 -0.01 *

5 -0.01 -0.01

6 -0.01 -0.01

7 -0.01 -0.01

8 -0.01 -0.01
Gamma (4,1) 3 -0.18 ok

4 -0.18 *E

5 -0.20 -0.23

6 -0.19 -0.23

7 -0.19 -0.25

8 -0.18 -0.24
Weibull (1,4) 3 0.00 *x

4 0.00 **

5 0.00 0.00

6 0.00 0.00

7 0.00 0.00

8 0.00 0.00
Exp(1) 3 -0.17 *x

4 -0.17 **

5 -0.18 -0.22

6 -0.18 -0.22

7 -0.17 -0.23

8 -0.16 -0.22
Chi(3) 3 -0.35 *x

4 -0.35 **

5 -0.38 -0.45

6 -0.36 -0.45

7 -0.36 -0.47

8 -0.34 -0.46
LogNormal(0,1) 3 -0.40 o

4 -0.40 o

5 -0.43 -0.49

6 -0.41 -0.49

7 -0.41 -0.52

8 -0.39 -0.51
HalfNormal(5) 3 -0.33 ok

4 -0.33 *x

5 -0.36 -0.43

6 -0.34 -0.43

7 -0.34 -0.45

8 -0.33 -0.44
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Uniform(0,1) N(0,1) Logistic(2,1) StudentT(5)

Beta(5,5) Beta(3,5) i Gamma(4,1) Weibull(1,4)

RE
-
|
\’
L

RE
-

Figure 2. RP of MARSS and RSS mean estimators under perfect ranking.

In summary, the results of RP and bias demonstrate that the MARSS (4 = 2) design is the most
efficient sampling design for symmetric unimodal distributions, achieving the highest RP values. For
skewed distributions, MARSS (& = I) generally is the best choice, particularly when the set size is
small. However, this design exhibits bias in some of the skewed distributions.

4.2. Imperfect ranking

In the previous subsection, we assumed perfect ranking, meaning that the distribution of ranked
units is identical to the distribution of the corresponding ordered statistics. In practice, however, the
assumption of perfect ranking in RSS schemes is often unrealistic, as judgment errors can occur. This
subsection examines the impact of ranking errors on the performance of the proposed MARSS design.
The case of imperfect ranking was first formalized by Dell and Clutter [32] using a single-valued
function:

Yo = 9(Xp €0),

where e; represents the ranking error for the i*" ranked unit, ¥{;) denotes the variable used for
ranking (subject to error), while the true measurement is taken from X [*i] (with ranking error). The
simplest noisy model is

Yo = Xiy + e (17)

where X[17, X[5}, -, Xy and ey, €5,++, €, are mutually independent, and the errors are assumed to
follow a normal distribution,

el-~N(O, O'ez)

The RSS estimator of g under this error model is

A 1 *(]
HRss,imp = — j=1 Z?LX[SJ)- (18)

AIMS Mathematics Volume 10, Issue 12, 28954-28980.



28966

Similarly, the MARSS estimator flygssm, under an imperfect ranking is given by:

For odd m:
Hmarss,0ddmp = j=1 =1 [m+1 a1 i=m-h+1 [m_’rl] . (19)
2
For even m,
~ *( ) *(J) *(j)
HMARSS,Even,imp = Z] 1[21 1 [m]] l h+1X / +Zl =m-— h+1X[m]+1]l' (20)
2

The corresponding variances can be derived as:

m
2 2
V(Amarss,oaamp) = e [E : [m+1] + El h+1ax[i] * 2i=m-n+1ax %’flll

= mc + 2. IZhGY m+1 + Zl. h+1 UY(l)l (21)

)

and

m
2 2
V(Amarss Evenmp) = o [E : Gx[m] + Zl iy K T Zf:m-nﬂax[%ﬂ]]

_ 9

Tt e o + R+ B0 | (22)

It is noted that, for skewed distributions, the bias of the estimators under imperfect ranking is the
same as the bias under perfect ranking, as given in Subsection 4.1, because the expected value of the
error term 1s zero.

To evaluate the performance of the MARSS design under ranking error, a simulation study was
conducted. We generated 10,000 samples from a N(0, 1) distribution, with errors generated from a
normal distribution with variances ¢2 = 0.1,0.3, and 0.5. The RP was simulated for different
scenarios of MARSS at 7 =0, I, 2and m = 3, 4, 5, 6, 7, 8, using the equation:

2

o 2 2
me o 1 10,000 ( ~(D) _ )
RPuvrss.imp = V(HMARSSImp) 6/10,000 i=t  \Mmarssmp —H#) (23)
where ,u,s,zl rss,mp 18 the mean of the [*" simulated sample.

Table 4 reports the RP of the MARSS estimators of N(0, /) under imperfect ranking for different
levels of ranking error and set sizes. The results show that RP decreases as the ranking error increases,
reflecting the impact of imperfect ranking on efficiency. Across all set sizes m, the RP of MARSS with
h =1 and h = 2 consistently outperforms RSS. For the normal distribution with ranking error, the
results of RP further indicate that the MARSS estimator with # = 2 is the most efficient (Figure 3).
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Table 4. RP of MARSS mean estimators under imperfect ranking for N(0,1).

k = 0 (RSS) k=1 k=2
m o62=01 02=03 0¢2=05 062=01 0¢2=03 ¢2=05 ¢2=01 02=03 02=05
3 1.72 1.57 1.49 2.06 1.71 1.60 i ol ol
4 2.05 1.77 1.62 2.51 1.95 1.74 ok ok ok
5 2.40 1.99 1.73 2.80 2.17 1.90 2.93 2.19 1.93
6 2.61 2.12 1.86 3.07 2.37 2.00 3.10 2.36 2.08
7 2.88 2.30 1.91 342 2.43 2.08 3.63 2.57 2.05
8 3.14 2.35 2.02 3.63 2.60 2.11 3.77 2.55 2.12
o? =0.1 o? =03 o? =0.5
4 ¢ 3 ° 2.5 ¢
I h=1
Ch=2 2.5 2
3
2
1.5
) 1.5
1
1
1
05 0.5
0 - 0 — 0 -
3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8

Figure 3. RP of MARSS and RSS mean estimators under imperfect ranking.
4.3. Concomitant variable effects

Since RSS and its variations rely on ranking units based on the researcher’s judgment (either
visually or using a concomitant variable), difficulties may arise when the variable of interest is hard to
rank visually but is correlated with another variable. In such cases, using a concomitant variable
becomes essential. In this subsection, we discuss the role of concomitant variables in ranking. The use
of concomitant variables in RSS was first introduced by Stock [33], who considered the simple linear
regression model of the variable of interest X on the concomitant variable Y-

X =By + B1Y, (24)

where the ranking is performed based on the variable Y, and the actual measurements are observed
based on the corresponding X’s. The regression model can be written as:

X=px+p (Y —uy), (25)

ag .
XY s the

where puy, py are the population means, gy, gy are the standard deviations, and p = g
X0y

correlation between X and Y. The estimator of p under this model is

. 1 j
Hrssc = = ?:1 Zﬁ1x[]i]- (26)

Using the laws of total expectation and variance, the mean and variance of X[;) are given by:
Yi—u
E(Xiy) = E[E(XYw)] = ux + poxE (%YY) @27)
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and

2.2
V(Xt) = E[V(XI¥e))] + V[E(XIY)] = 01 = p?) + =25V (Y. (28)
Hence, the variance of the RSS estimator is

V(ﬁRss,c) = ﬁ iz1 V(X[i])- (29)

The RP of the figssc compared to the SRS estimator is

1
RPgss,c = oz o ) (30)
0]

Y—u
where U = —= and 7y, = E(Uy) — EQU).

Based on the moment of X[;; in Eqs (26) and (27), the variance of the MARSS estimator
Amirssc With a concomitant variable can be derived directly using the same moments employed in
the design. The RP of the MARSS estimator compared to SRS is obtained as follows.

For odd m:

m—h

A Ox
E(Amarssoaac) = bx +p—— [Zh <#y i1y #y) + <Z My — (m — 2h)#y>l-
moy =) i=h+1

For even m:

m-—h

Ox
E(a = uy + —(h m + Ry — 2R )+<2 (m — 2h) )l
(,uMARSS,Even,C) Ux T p may l .UY(7) 'uY(7+1) Uy My — Uy

i=h+1

The corresponding biases are:

B(#MARSSOddC) .0_ 2h <#Y(m_+1) ) (Zl h+1.uY(l) (m_Zh)liY)l (3D

mos
Y 2

and
N Ox
B(MMARSS,EUQTL,C) =p maoy I:hMY(m) + h.uY( 1 Zh’HY + z hal :u'Y(i)
2 2 i=

—(m — 2h)uy]. (32)

The variances are:

. 1 5 m-—h 5
V(#MARSS,Odd,c) =7 Zhgx[mﬂ] + Zi_h+1 OX
mt1 -

=L maf(l—p2)+ﬁ 2ho + Yo o2 (33)
m2c o} ey t=h+1 7Y )

V(Amarss,oaac) = {Zhax[mﬂ + Z h+1O-X[l}
i=

1 2 1 — p2 pzo.)Z( 2h 2 m—h 34
o ymox(1—p%) +—= ay(m+1) + Yithi1 ay() (34)
2 mt1

2
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Finally, the RP is defined as:

o%/mc
MSE(Bimarss,c)’

(35)

RP, MARSS,C =

To test the performance of the MARSS design using a concomitant variable Y for the target
variable X, a simulation study was conducted with 10,000 samples generated from a bivariate normal
distribution with mean 0 and variance 1. The ranking is conducted based on Y, while the actual
measurement is taken on X. Different levels of correlation between the variable of interest X and its
concomitant ¥ (p = 0.0, 0.25, 0.50, 0.75, 1.0) were considered to evaluate the RP of MARSS (& = 0,
1, 2) compared with the SRS estimator. Table 5 shows that the RP of the MARSS estimator increases
with both correlation and set size (m). It is known that if p = 0, RSS and its modified designs become
essentially random, so the RP is close to 1. At moderate p values, the RP of the MARSS estimator
shows clear gains over SRS and RSS, while perfect correlation (p = ) yields the highest efficiency,
especially for larger m. The benefit of higher / values becomes evident as correlation strengthens, with
MARSS at 4 = 2 performing best when the ranking is highly accurate (Figure 4).

Table 5. RP of the mean MARSS and RSS estimators using a concomitant variable.

h=0
m p =0 (SRS) p = 0.25 p = 0.50 p =0.75 p =1.00
3 098 1.03 1.15 1.38 1.96
4 099 1.06 1.17 1.46 2.37
5 1.00 1.07 1.16 1.54 2.77
6 1.03 1.02 1.19 1.65 3.17
7  1.01 1.05 1.21 1.73 3.57
8 1.00 1.04 1.25 1.77 4.07

h=1
3 1.00 1.04 1.17 1.46 2.16
4 1.01 1.04 1.22 1.53 2.76
5 0.99 1.05 1.24 1.64 3.39
6 1.00 1.02 1.22 1.73 3.91
7  1.00 1.05 1.28 1.72 4.52
8 1.02 1.07 1.27 1.81 4.88

h=2
5 098 1.05 1.21 1.70 3.48
6 1.01 1.02 1.28 1.78 4.05
7 0098 1.06 1.23 1.81 4.69
8 1.00 1.05 1.28 1.86 5.35
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Figure 4. RP of MARSS and RSS estimators using a concomitant variable at different
correlation levels.

4.4. Performance of outlier detection

To assess the performance of the MARSS design in handling outliers, we conducted a simulation
study with 10,000 replications using SRS, RSS, and MARSS with 42 = [ and 4 = 2. The simulations
were carried out with cycles (¢ = 10) and various set sizes (m = 3 to §). The methods were evaluated
for Normal(0, 1). Outliers were injected into the simulated data at different contamination percentages
(CP = 5%, 10%, 15%,) using the Normal(10, 1).

To evaluate the robustness of each sampling method to the presence of outliers, we employed two
performance measures. The first measure is the average percentage of outliers (PO) detected in the
selected samples, calculated as:

_ 1 10,000 (#Outliers;
PO = 10,000 ~1=1 ( n X100%)r (36)

where n = mc is the sample size. Outliers were identified as any values outside the interval:
(Q; — 1.5 XIQR,Q5 + 1.5 X IQR),

where (Q; and Q3 are the first and third quartiles, respectively, and IQR = Q3 — Q; 1is the
interquartile range. Lower PO values indicate greater robustness to contamination. The second
measure is the RP of the mean estimators. It is simulated by:
MSE (fisrs)
RP = ————

MSE(fimarss)’ (37)
where MSE (figrs) and MSE (fiyarss) represent the mean squared errors of the sample mean
estimators obtained via SRS and MARSS, respectively. These MSEs were estimated using simulation
under different sampling designs in the presence of outliers, and are computed as

. 1 , A (1 2
MSE (i) = o 2100 — 1) (38)

where ;2,(\? is the sample mean from the [*" replication under the sampling design M € {SRS, RSS (h

=0), MARSS(h = 1), MARSS (h = 2)}.

Table 6 summarizes the average PO in samples drawn using SRS, RSS, and MARSS at different
CP levels. The findings show that MARSS consistently produces fewer outliers than both RSS and
SRS. Moreover, the proportion of outliers decreases as % increases (Figure 5). Overall, these results
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indicate that MARSS provides greater improvement and robustness in minimizing the influence of
extreme values.

Table 7 and Figure 6 report the RP of the different estimators compared to SRS, in the presence
of outliers. The results show that MARSS is generally more efficient than SRS and RSS in the presence
of outliers. Overall, the findings highlight MARSS with 4 = 2 as a robust and highly efficient design,
particularly effective in handling outliers.

Table 6. Outlier percentage in samples obtained via SRS, RSS, and MARSS from
contaminated populations.

CP=5% CP=10% CP=15%
m SRS h=0 h=1 h=2 SRS h=0 h=1 h=2 SRS h=0 h=1 h=2
3 598 596 251 ** 1039 1048 434  ** 1338 14.13 7.21 ok
4 584 580 227 ** 1028 1050 421  ** 1352 1437 6.97 wx
5 577 571 224 169 1044 1045 3.76 2.55 1452 1495 6.12 422
6 566 563 213 154 1035 1035 387 247 1449 1507 6.50 4.08
7 569 562 243 156 1035 1035 4.14 231 1491 1522 6.71 3.65
8 5.63 557 230 157 1035 1027 422 237 1476 15.13 7.08 3.75
Table 7. RP of mean estimators under MARSS at different outlier percentage.
CP=5% CP=10% CP=15%
m_ CP h=0 h=1 h=2 h=0 h=1 h=2 h=0_ h=1 h=2
3 5 1.11 7.42 *x 1.07 5.12 *x 1.07 3.61 *x
4 5 1.11 8.50 ox 1.07 5.42 ok 1.06 3.77 ox
5 5 1.14  11.39 22.25 1.08 7.42 15.39 1.06 4.83 9.13
6 5 1.13 11.15 24.24 1.06 6.60 15.92 1.05 4.37 9.21
7 5 1.13 10.85  28.79 1.06 6.39 20.68 1.05 4.27 12.44
8 5 1.12 10.04  28.69 1.07 5.68 18.93 1.04 3.79 11.15
60 CP=5% 12 CP =10% 16 CP =15%
—6— SRS
- e 1 14::37323;@%
—6—h=2 12
u\°4 8 10
£
3 6 8
6
’ O —9¢ ! 4 —s—s -
1 2 b a— 2
3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8

Figure 5. Outlier percentage in samples obtained via SRS, RSS, and MARSS.
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Figure 6. RP of the estimator with the presence of outliers.

4.5. Impact of ranking cost

The RSS design and its variations are often used to reduce data collection costs, especially when
measurements are expensive but ranking is relatively easy. However, ranking itself may also involve
costs. This issue was first addressed by Dell and Clutter [32], who evaluated the efficiency of RSS
while accounting for ranking costs. In this framework, the total cost of data collection is expressed as
the sum of measurement cost (C,,) and ranking cost (C,). For SRS, only the measurement cost is
considered. The cost relative efficiency (RE) compares the variance per cost unit between RSS and
SRS. The adjusted-cost RE of the RSS estimator is expressed as:

Cm
Cm+Cr

-1
RE,,,, = RP. =RP.(1+ f—m) . (39)

Here, C,/C,, represent the cost ratio of the ranking cost to the measurement cost. Generally, the use
of RSS designs is more effective when measurements are expensive and ranking is inexpensive.
However, this advantage decreases as the cost of ranking increases. From Eq (39), it can be denoted

that the estimator becomes more efficient than SRS when RP is greater than 1 + f—r Figure 7 presents
m

the RE of the estimators for different RP values (RP = 1.0, 1.2, 1.4, 1.6, 1.8, 2.0). The results
demonstrate that RE increases with either an increase in RP or a decrease in the cost ratio (C,/Cyy,).

RP=1.0 RP =12 RP =14
2 2 2
2 z 9 i1
10 gy ™ = = = = = = - 1= By g = = = = = 1= = m— e =
L ’
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Cr/Cm Cr/Cm Cr/iCm
RP =16 RP =18 RP =2.0
2 2 2
e
L
2 & &
1= = = = o 1= = = = = = > L e e ’
1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Cr/Cm Cr/Cm CriCm

Figure 7. RE at different ranking cost ratios.
In summary, and based on the results, the MARSS method and its mean estimator offer the
following:

e They help reduce measurement costs and are less affected by outliers than traditional RSS.
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e They provide a smaller variance than both RSS and SRS when the distribution is unimodal and
symmetric, and they remain unbiased for symmetric populations.

e They are more robust to outliers and keep good precision under different ranking conditions,
including imperfect ranking or when using concomitant variables.

e They perform better than RSS in most cases, although they may show some bias when the
distribution is skewed.

5. Compactness, Lindelofness, and efficiency: a topological view of MARSS

In this section, we reinterpret the variance and robustness aspects in topological space. We model
the population as a topological space (X,7) with a probability law u, and represent the ranking
mechanism by a continuous function f: X — R. For a collection of open intervals I; € R, the
preimages U; := f~*(I;) form the rank strips, which results in an open cover Uy, = {U;}i=1™ of the
support of p. The MLRSS rule then appears as centralization in the first and last k strips together
with diagonal selections in the remaining strips. Imperfect ranking is modeled by noisy scores Y =
f(X) + €, sothatas Var(e) increases, the strip boundaries effectively thicken and the induced order
weakens.

Lemma 6.1. Let Z be a real-valued random variable with a continuous distribution that is symmetric
about its median Mz and unimodal. Then the variances of the order statistics decrease as one moves
inward from the tails: for i=1,..,m, the quantity Var(Z.,)) is nonincreasing when i

approaches the central index; for even m, the two middle order statistics achieve the minimal variance.

Theorem 6.2. Let (X,7) be a topological space, f: X — R continuous on the support of p, and
suppose Z = f(X) is symmetric and unimodal about Mz. Fix m >3 and h€{0,1,..,|(m—
1)/2]}. Consider one cycle of RSS and one cycle of MARSS constructed on the same m, h, and f.
Then the MARSS sample mean has variance not exceeding that of RSS: Var(f,, ,rcs) < Var(fygs)-
If, in addition, Z is symmetric, then E[f,,,pss] = E[X] = ux.

Proof. Push the design through the ranking function f. The variance comparison becomes a weighted
average of the ordered variances Var(Z.n)). Relative to RSS, MLRSS replaces 2 & extreme-order
contributions with 2 4 central-order contributions, while leaving the diagonal contributions for i =
h+1,...,m — hunchanged. By Lemma 6.1 the ordered variances are smaller at the center than at the
extremes, so the overall average cannot increase. Symmetry of Z implies that these central
replacements do not shift the mean, and the diagonal selections average to the center, yielding
unbiasedness.

Corollary 6.3. Let the observed ranking score be Y = f(X) + &, where ¢ is independent noise with

mean zero and finite variance. As Var(g) — oo, the MLRSS selection becomes asymptotically
uninformative and RE = MSE (l¢po)/MSE (i3, 4pss) = 1.

Proposition 6.4. If f(X) is Lindeldf, then for any &€ > 0 there exists m(e) such that an MLRSS
design using the first m(e) rank strips has mean squared error within & of the ideal design based on
the full countable cover induced by f.

Example 6.5. Let X be a cohort, f is the weight, and the measured variable is body-fat percentage.
Empirically f(X) lies in a compact interval. With m = 5, h = 1, define five rank strips by weight
quantiles. MARSS picks the within-strip median in the outer two strips and the diagonal elements in
the middle strip. The cover interpretation is f~*(I;) with I; as the weight intervals; centralization
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lowers the average ordered variance.

Example 6.6. Take X = R, f = id, and dyadic intervals I; = (j277,(j + 1)27") inside [—M, M]
with M — oo,r — oo. By Proposition 6.4, choose M,r so that the truncated design with m strips
has MSE within any prescribed ¢ of the limit. This yields a practical MARSS with theoretically
guaranteed error control.

Rank-strip cover via fix,y, z) = x— with median/diagonal selection

Population X
Rank strips
MARSS style picks

Figure 8. Visualization of an MARSS rank-strip design. The gray point cloud represents
the population x < R3. Ranking is induced by f(x,y,z) = x, which partitions x into m
rank strips (preimages of equal x-intervals). Triangular marker. Represents MARSS picks.

The topological interpretation of MARSS yields practical design rules. When f(X) is compact,
any finite interval cover of f(X) pulls back via f to a finite rank-strip cover on X, so a finite-cycle
design is feasible. If f(X) is Lindeldf, one may work with a countable interval cover and truncate
while controlling the mean squared error. In product populations X = X1 X X, with f(xq,x2) =
g1(x1) + g2(x2), the resulting rank strips are Minkowski-type sums of the one-dimensional strips;
subspaces inherit strips by intersection. Choosing an auxiliary variable amounts to selecting a
measurable f that is correlated with the response; larger correlation p sharpens strip separation and
improves ordered-variance profiles. Increasing m refines the cover; the median-centric replacements
stabilize the average of ordered variances, consistent with the observed efficiency gains under
symmetry. Conversely, when the pushforward fg, is skewed, centralization can introduce bias; in

practice, h = 1 often trades a small bias for robust variance reduction.
6. Application to real data

The Body Fat Prediction Dataset [34], which includes N = 252 adult males, was used to test the
applicability of the new sampling design, MARSS. This dataset records multiple characteristics,
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including body density, body fat percentage, age, weight, height, and measurements of several body
parts such as neck, chest, abdomen, hips, thighs, knees, ankles, biceps, forearms, and wrists. These
variables give a general picture of the health and physical characteristics of individuals [34]. Among
them, body fat percentage (BFP) is a key health indicator, calculated using Siri's (1956) formula:

PBF = 495 /density — 450.

In this application, the MARSS design was used to estimate the mean BFP. Measuring body is
often more costly and complex than other variables, such as weight, which can be easily measured and
ranked. Due to the strong correlation between weight and BFP, weight was used as a concomitant
variable to assist in ranking the target variable (body fat percentage). Table 8 presents descriptive
statistics for BFP (X) and weight (Y), including mean, dispersion measures, and skewness. The
correlation coefficient (p) between the two variables is also reported. BFP has a mean (uy) of
19.15 with a standard deviation (oy) of 8.37, while weight shows higher variability (oy = 29.39)
around its mean (uy = 178.92). BFP is approximately symmetric (skewness = 0.15), while the weight
is right-skewed (skewness ~ 1.20), indicating heavier tails in higher weight values (Figure 10). The
positive correlation (p = 0.61) indicates a strong linear relationship between BFP and weight. Figure
10 further presents this relationship, showing a clear linear trend between the concomitant variable
(weight) and the target variable (BFP). To illustrate the MARSS sampling design, a numerical example
is provided, based on the scenario with m = 5, ¢ = 2, and A = [, with full implementation steps
presented in Table 9.

To further evaluate the performance of the MARSS design in real-world data, we assessed the
sample mean using several measures, including the expected value, bias, mean squared error (MSE),
and RP. The simulation experiment was conducted using MATLAB R2024a, with 10,000 repetitions,
and the performance measures were computed as follows:

1 10,000 1 10,000 ,
E(j) = z 1, , Bi 1) = E(j1) — ,MSEAz—Z 1, — ,
(D) 10,000 2., M tas(@) = E(A) — px (D) 10,000 2ays (A — 1x)
and
MSE (i
RP = EHSRS) ’
MSE (fiyarss)

lth

where [i; represents the estimate from the replication, and u, denotes the true population mean.

Table 8. Descriptive statistics of body fat (X) and weight (7).

Mean (u)  Std. Dev. (o) Variance (62)  Skewness  Correlation (p)

Bodyfat (X) 19.1508 8.3687 70.0358 0.1455
Weight (Y) 178.9244 29.3892 863.7227 1.1981

0.61
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Figure 9. Distributions of weight and body fat.
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Figure 10. Scatter plot of weight versus BFP (%) with a fitted linear regression line.
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Table 9. Numerical implementation of MARSS for body fat estimation (m =5, ¢ =1, h = I).

Cycle 1
Set  Stepl: Step 2: Ranking based on weights Step 3: Step 4:
Random indices Selected Measuring
rank body fat
1 3,7,12,18,22 154 <181 <200.5 (15.2) <209.25 <216 3 15.2
2 5,9,14,20,25 151.25 < 184.25 (28.7) < 191 <205.25 <211.75 2 28.7
3 2,6,11,17,24 148.75 < 173.25 <186.25 (7.1) < 195.75 <210.25 3 7.1
4  4,8,13,19,23 140.25 <176 < 180.5 < 183.75 (16.0) < 184.75 4 16.0
5 1,10,15,21,16 154.25 <162.75 <179 (19.1) < 187.75 < 198.25 3 19.1
Cycle 2
Set  Stepl: Step 2: Ranking based on weights Step 3: Step 4:
Random indices Selected Measuring
rank body fat
1 26,34,42,58, 67 159.25 < 175.5 <193.5 (15.9) <218.5 <227.75 3 15.9
2 29,37,45,53,72 133.25 <135.75 (13.6) < 151 < 154.5 < 190.75 2 13.6
3 31,39,47,61,70 127.5 < 134.25 <148.25 (18.5) < 159.25 < 160.75 3 18.5
4 33,41,49, 63,74 153 < 158.25 <167 <168 (11.8) <207.5 4 11.8
5 36,44,52,65,68 155.5 <162.75 <189.75 (29.9) < 191.75 < 199.25 3 29.9

firss = (15.2 +28.7 + 7.1 + 16.0 + 19.1 + 15.9 + 13.6 + 18.5 + 11.8 + 29.9) /10 = 18.19%

Table 10 compares the performance of SRS, RSS (2 = 0), and MARSS (4 = I) estimators for
BFP across different sample sizes (m = 3, 4, 5) with 10 cycles (¢ = 10). The results indicate that SRS
is nearly unbiased, while RSS maintains minimal bias and MARSS introduces a slight positive bias.
Both RSS and MARSS outperform SRS in terms of MSE and RP (RP > [), and MARSS has the
highest efficiency for all cases.

Table 10. Performance measures of MARSS and RSS estimators for body fat.

m Method E(i1) B MSE RP
3 SRS 19.15 0.00 1.27 **
RSS (h=0) 19.13 -0.02 0.99 1.29
MARSS (h=1) 19.22 0.07 0.94 1.34
4 SRS 19.17 0.02 0.88 ok
RSS (h =0) 19.15 0.00 0.60 1.51
MARSS (h=1) 19.21 0.06 0.57 1.54
5 SRS 19.16 0.01 1.13 ok
RSS (h =0) 19.15 0.00 0.78 1.45
MARSS (h=1) 19.22 0.06 0.72 1.52

7. Conclusions

The study proposed a new sampling design for estimating the population mean. The new estimator
is an unbiased estimator with lower variance than SRS and RSS in most scenarios. The design is
effective when 4 = 2 for symmetrical unimodal distribution, and when 42 = [ for the most skewed
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distribution, giving better efficiency and greater robustness to outliers. The estimator also performs
well under imperfect ranking and when using a concomitant variable.

This approach can be extended to other estimation problems, such as estimating distribution
parameters, reliability models, distribution functions, hazard rates, and variance and median. This
approach can be used for different practical applications where reducing measurement cost is important.

Author contributions

Mahmoud Zuhier Aldrabseh: Conceptualization, methodology, formal analysis, simulation,
writing original draft preparation, investigation, and visualization. Khudhayr A. Rashedi: Data curation,
software implementation, validation, and critical review. Ali A. Atoom: Theoretical support and
validation. Tariq S. Alshammari: Literature review, result interpretation, resources, and writing review
and editing. Nisrein Al-Elaimat: Formatting and proofreading. All authors have read and approved the
final version of the manuscript for publication.

Use of Generative-Al tools declaration

The authors declare that they have not used Artificial Intelligence (Al) tools in the creation of this
article.

Data availability
The data used in this study are available from the corresponding author upon reasonable request.
Acknowledgments

This research has been funded by the Scientific Research Deanship at University of Ha’il, Saudi
Arabia, through project number RG-24 067.

Conflict of interest
The authors declare that they have no conflicts of interest.
References

1. A. Haq, J. Brown, E. Moltchanova, A. I. Al-Omari, Partial ranked set sampling design,
Environmetrics, 24 (2013), 201-207. https://doi.org/10.1002/env.2203

2. G. A. Mclntyre, A method for unbiased selective sampling using ranked sets, Aust. J. Agr. Res., 3
(1952), 385-390. https://doi.org/10.1071/AR9520385

3. H. A. Muttlak, Median ranked set sampling, J. Appl. Stat. Sci., 6 (1997), 245-255.

4. M. T. Al-Odat, M. F. Al-Saleh, A variation of ranked set sampling, J. Appl. Stat. Sci., 10 (2001),
137-146.

5.  A. D. Al-Nasser, L ranked set sampling: a generalization procedure for robust visual sampling,
Commun. Stat. Simul. Comput., 36 (2007), 33—43. https://doi.org/10.1080/03610910601096510

AIMS Mathematics Volume 10, Issue 12, 28954-28980.


http://credit.niso.org/contributor-roles/resources/
https://doi.org/10.1002/env.2203
https://doi.org/10.1071/AR9520385
https://doi.org/10.1080/03610910601096510

28979

6.

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

L. Khan, J. Shabbir, U. Khalil, A new systematic ranked set-sampling scheme for symmetric
distributions, Life Cycle Reliab. Saf. Eng., 8 (2019), 205-210. https://doi.org/10.1007/s41872-
019-00080-5

M. Z. Aldrabseh, M. T. Ismail, New modification of ranked set sampling for estimating population
mean, J. Stat. Comput. Simul., 93 (2023), 2843-2855.
https://doi.org/10.1080/00949655.2023.2212312

M. F. Al-Saleh, M. A. Al-Kadiri, Double-ranked set sampling, Stat. Probab. Lett., 48 (2000), 205—
212. https://doi.org/10.1016/S0167-7152(99)00206-0

M. F. Al-Saleh, A. I. AlI-Omari, Multistage ranked set sampling, J. Stat. Plan. Infer., 102 (2002),
273-286. https://doi.org/10.1016/S0378-3758(01)00086-6

A. 1. Al-Omari, A. Haqg, A new sampling method for estimating the population mean, J. Stat.
Comput. Simul., 89 (2019), 1973—1985. https://doi.org/10.1080/00949655.2019.1604710

M. Z. Aldrabseh, M. T. Ismail, A. I. Al-Omari, Double except extreme ranked set sampling for
estimating population mean, Adv. Math. Model. Appl., 9 (2024), 415-430.
https://doi.org/10.62476/amma93415

M. Noor-ul-Amin, F. Arif, M. Hanif, Modified extreme ranked sets sampling with auxiliary
variable, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 91 (2021), 537-542.
https://doi.org/10.1007/s40010-020-00698-6

M. A. Shehzada, A. Nisara, A. Khana, W. Emamb, Y. Tashkandyb, H. Khurram, et al., Modified
median quartile double ranked set sampling for estimation of population mean, Heliyon, 10 (2024),
e34627. https://doi.org/10.1016/j.heliyon.2024.e34627

A. Hagq, J. Brown, E. Moltchanova, A. I. Al-Omari, Paired double-ranked set sampling, Commun.
Stat. Theory Methods, 45 (2016), 2873-2889. https://doi.org/10.1080/03610926.2014.892135

A. 1. Al-Omari, M. S. Abdallah, Estimation of the distribution function using moving extreme and
MiniMax ranked set sampling, Commun. Stat. Simul. Comput., 52 (2023), 1909-1925.
https://doi.org/10.1080/03610918.2021.1891433

A. I. Al-Omari, M. Z. Raqab, Estimation of the population mean and median using truncation-
based ranked set samples, J. Stat. Comput. Simul., 83 (2013), 1453-1471.
https://doi.org/10.1080/00949655.2012.662684

S. Asghari, B. S. Gildeh, J. Ahmadi, G. M. Borzadaran, Sign control chart based on ranked set
sampling, Qual. Technol. Quant. Manag., 15 (2018), 568-588.
https://doi.org/10.1080/16843703.2017.1314094

A. Mohammadkhani, A. Amiri, M. B. C. Khoo, A review of ranked set sampling and modified
methods in designing control charts, Qual. Reliab. Eng. Int., 39 (2023), 1465-1493.
https://doi.org/10.1002/qre.3282

M. Z. Aldrabseh, M. T. Ismail, A. 1. Al-Omari, Except-extremes ranked set sampling for
estimating the population variance with two applications of real data sets, Aust. J. Stat., 53 (2024),
99—113. https://doi.org/10.17713/ajs.v5314.1872

P. L. H. Yu, K. Lam, Regression estimator in ranked set sampling, Biometrics, 53 (1997), 1070-
1080. https://doi.org/10.2307/2533564

X. Dong, L. Zhang, Estimation of system reliability for exponential distributions based on L
ranked set sampling, Commun. Stat. Theory Methods, 49 (2020), 3650-3662.
https://doi.org/10.1080/03610926.2019.1691735

S. A. Benchiha, A. 1. Al-Omari, G. Alomani, Enhanced estimation of the unit Lindley distribution
parameter via ranked set sampling with real-data application, Mathematics, 13 (2025), 1645.
https://doi.org/10.3390/math13101645

AIMS Mathematics Volume 10, Issue 12, 28954-28980.


https://doi.org/10.1007/s41872-019-00080-5
https://doi.org/10.1007/s41872-019-00080-5
https://doi.org/10.1080/00949655.2023.2212312
https://doi.org/10.1016/S0167-7152(99)00206-0
https://doi.org/10.1016/S0378-3758(01)00086-6
https://doi.org/10.1080/00949655.2019.1604710
https://doi.org/10.62476/amma93415
https://doi.org/10.1007/s40010-020-00698-6
https://doi.org/10.1016/j.heliyon.2024.e34627
https://doi.org/10.1080/03610926.2014.892135
https://doi.org/10.1080/03610918.2021.1891433
https://doi.org/10.1080/00949655.2012.662684
https://www.tandfonline.com/author/Mohtashami+Borzadaran%2C+Golamreza
https://doi.org/10.1080/16843703.2017.1314094
https://doi.org/10.1002/qre.3282
https://doi.org/10.17713/ajs.v53i4.1872
https://doi.org/10.1080/03610926.2019.1691735
https://doi.org/10.3390/math13101645

28980

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

M. Z. Aldrabseh, M. T. Ismail, A. I. AI-Omari, Enhanced estimation of strength—stress reliability
using except extreme ranked set sampling under exponential distribution, Life Cycle Reliab. Saf.
Eng., 2025. https://doi.org/10.1007/s41872-025-00326-5
M. Chen, W. X. Chen, R. Yang, Y. W. Zhou, Exponential-Poisson parameters estimation in
moving extremes ranked set sampling design, Acta Math. Appl. Sin. Engl. Ser., 41 (2025), 973—
984. https://doi.org/10.1007/s10255-023-1076-1

A. Kumar, S. Bhushan, R. Pokhrel, Small area estimation under ranked set sampling: simulation
and real-life application with crop production data, Qual. Quant., 2025, 1-21.
https://doi.org/10.1007/s11135-025-02422-1
A. Kumar, S. Bhushan, R. Pokhrel, Direct and synthetic logarithmic estimators in small area
estimation via ranked set sampling, Statistics, 2025, 1-22.
https://doi.org/10.1080/02331888.2025.2542350
A. S.Hassan, D. S. Metwally, H. E. Semary, S. A. Benchiha, A. M. Gemeay, M. Elgarhy, Improved
estimation based on ranked set sampling for the Chris—Jerry distribution with application to
engineering  data, Comput. J.  Math.  Stat.  Sci., 4 (2025), 424-456.
https://doi.org/10.21608/cjmss.2025.375962.1156
G. Alomani, S. A. Benchiha, A. 1. Al-Omari, Estimation of the inverse power Lindley distribution
parameters using ranked set sampling with an application to failure time data, Axioms, 14 (2025),
801. https://doi.org/10.3390/axioms14110801
H. Kittani, M. Alaesa, G. Gharib, Comparison among some methods for estimating the parameters
of truncated normal  distribution, J = Adv Math., 20  (2021),  79-95.
https://doi.org/10.24297/jam.v20i.8934
K. Takahasi, K. Wakimoto, On unbiased estimates of the population mean based on the sample
stratified by means of ordering, Ann. Inst. Stat. Math., 20 (1968), 1-31.
https://doi.org/10.1007/BF02911622
T. R. Dell, J. L. Clutter, Ranked set sampling theory with order statistics background, Biometrics,
28 (1972), 545-555. https://doi.org/10.2307/2556166
H. A. David, H. N. Nagaraja, Order statistics, 3 Eds., Wiley Series in Probability and Statistics,
John Wiley & Sons, Hoboken, NJ, 2003. https://doi.org/10.1002/0471722162
S. L. Stokes, Ranked set sampling with concomitant variables, Commun. Stat. Theory Methods, 6
(1977), 1207—-1211. https://doi.org/10.1080/03610927708827563
Kaggle, Casper6290. BodyFat Prediction [Data set]. Kaggle. Available from:
https://www.kaggle.com/code/casper6290/bodyfat-prediction.

E% ©2025 the Author(s), licensee AIMS Press. This is an open access

M S AIMS PI'GSS article distributed under the terms of the Creative Commons

@ Attribution License (https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 12, 28954-28980.


https://doi.org/10.1007/s41872-025-00326-5
https://doi.org/10.1007/s10255-023-1076-1
https://doi.org/10.1007/s11135-025-02422-1
https://doi.org/10.1080/02331888.2025.2542350
https://doi.org/10.21608/cjmss.2025.375962.1156
https://doi.org/10.21608/cjmss.2025.375962.1156
https://doi.org/10.3390/axioms14110801
https://doi.org/10.24297/jam.v20i.8934
https://doi.org/10.1007/BF02911622
https://doi.org/10.2307/2556166
https://doi.org/10.1002/0471722162
https://doi.org/10.1080/03610927708827563
https://www.kaggle.com/code/casper6290/bodyfat-prediction

