Research article

Normalized solutions to lower critical Choquard equation with mixed local-nonlocal operators

  • Received: 23 October 2025 Revised: 26 November 2025 Accepted: 27 November 2025 Published: 04 December 2025
  • MSC : 35R11, 49J35

  • This paper investigates the existence and non-existence of normalized ground state solutions for the following Choquard equation with mixed local and nonlocal operators, involving the Hardy-Littlewood-Sobolev (HLS) lower critical exponent. For the critical case $ p = 2 + \frac{4}{N} $, we employ fibering map analysis to establish the non-existence of solutions. In the subcritical regime $ 2 < p < 2 + \frac{4}{N} $, we utilize variational methods to prove the existence of normalized ground states, which are shown to be radially symmetric and strictly decreasing in $ |x| $. For the supercritical case $ 2 + \frac{4}{N} < p < 2_s^* $, we introduce a homotopy-stable family to construct a Palais–Smale sequence with a negative Lagrange multiplier. By analyzing the compactness properties of this sequence, we demonstrate the existence of normalized ground state solutions in this regime as well.

    Citation: Chun Qin, Jie Yang. Normalized solutions to lower critical Choquard equation with mixed local-nonlocal operators[J]. AIMS Mathematics, 2025, 10(12): 28668-28688. doi: 10.3934/math.20251262

    Related Papers:

  • This paper investigates the existence and non-existence of normalized ground state solutions for the following Choquard equation with mixed local and nonlocal operators, involving the Hardy-Littlewood-Sobolev (HLS) lower critical exponent. For the critical case $ p = 2 + \frac{4}{N} $, we employ fibering map analysis to establish the non-existence of solutions. In the subcritical regime $ 2 < p < 2 + \frac{4}{N} $, we utilize variational methods to prove the existence of normalized ground states, which are shown to be radially symmetric and strictly decreasing in $ |x| $. For the supercritical case $ 2 + \frac{4}{N} < p < 2_s^* $, we introduce a homotopy-stable family to construct a Palais–Smale sequence with a negative Lagrange multiplier. By analyzing the compactness properties of this sequence, we demonstrate the existence of normalized ground state solutions in this regime as well.



    加载中


    [1] S. Bhattarai, On fractional Schrödinger systems of Choquard type, J. Differ. Equations, 263 (2017), 3197–3229. https://doi.org/10.1016/j.jde.2017.04.034 doi: 10.1016/j.jde.2017.04.034
    [2] V. Ambrosio, Nonlinear fractional Schrödinger equations in $R^{N}$, Birkhäuser Cham, 2021. https://doi.org/10.1007/978-3-030-60220-8
    [3] H. Brezis, Functional Analysis, Sobolev spaces and partial differential equations, New York: Springer, 2011. https://doi.org/10.1007/978-0-387-70914-7
    [4] H. Berestycki, P. L. Lions, Nonlinear scalar field equations, I existence of a ground state, Arch. Ration. Mech. An., 82 (1983), 313–345. https://doi.org/10.1007/BF00250555 doi: 10.1007/BF00250555
    [5] S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic operators: Regularity and maximum principles, Commun. Part. Diff. Eq., 47 (2022), 585–629. https://doi.org/10.1080/03605302.2021.1998908 doi: 10.1080/03605302.2021.1998908
    [6] S. Cingolani, L. Jeanjean, Stationary waves with prescribed $L^{2}$-norm for the planar schrödinger-poisson system, SIAM J. Math. Anal., 51 (2019), 3533–3568. https://doi.org/10.1137/19M1243907 doi: 10.1137/19M1243907
    [7] S. Dipierro, E. P. Lippi, E. Valdinoci, (Non)local logistic equations with Neumann conditions, Ann. I. H. Poincare-An., 40 (2022), 1093–1166. https://doi.org/10.4171/aihpc/57 doi: 10.4171/aihpc/57
    [8] S. Dipierro, E. Valdinoci, Description of an ecological niche for a mixed local/nonlocal dispersal: An evolution equation and a new Neumann condition arising from the superposition of Brownian and Lévy processes, Physica A, 575 (2021), 126052. https://doi.org/10.1016/j.physa.2021.126052 doi: 10.1016/j.physa.2021.126052
    [9] B. H. Feng, H. H. Zhang, Stability of standing waves for the fractional Schrödinger–Choquard equation, Comput. Math. Appl., 75 (2018), 2499–2507. https://doi.org/10.1016/j.camwa.2017.12.025 doi: 10.1016/j.camwa.2017.12.025
    [10] N. Ghoussoub, Duality and perturbation methods in critical point theory, Cambridge University Press, 1993. https://doi.org/10.1017/CBO9780511551703
    [11] X. M. He, V. D. Rădulescu, W. M. Zou, Normalized ground states for the critical fractional Choquard equation with a local perturbation, J. Geom. Anal., 32 (2022), 252. https://doi.org/10.1007/s12220-022-00980-6 doi: 10.1007/s12220-022-00980-6
    [12] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal.-Theor., 28 (1997), 1633–1659. https://doi.org/10.1016/S0362-546X(96)00021-1 doi: 10.1016/S0362-546X(96)00021-1
    [13] C. Y. Kao, Y. Lou, W. Shen, Evolution of mixed dispersal in periodic environments, Discrete Cont. Dyn.-B, 17 (2012), 2047–2072. https://doi.org/10.3934/dcdsb.2012.17.2047 doi: 10.3934/dcdsb.2012.17.2047
    [14] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 57 (1977), 93–105. https://doi.org/10.1002/sapm197757293 doi: 10.1002/sapm197757293
    [15] E. H. Lieb, M. P. Loss, Analysis, 2 Eds., American Mathematical Society, Providence, Rhode Island, 14 (1997). https://doi.org/10.1090/gsm/014
    [16] X. Li, J. Bao, W. Tang, Normalized solutions to lower critical Choquard equation with a local perturbation, Discrete Cont. Dyn.-B, 28 (2023), 3216–3232. https://doi.org/10.3934/dcdsb.2022213 doi: 10.3934/dcdsb.2022213
    [17] X. Li, Existence of normalized ground states for the Sobolev critical Schrödinger equation with combined nonlinearities, Calc. Var. Partial Dif., 60 (2021), 169. https://doi.org/10.1007/s00526-021-02020-7 doi: 10.1007/s00526-021-02020-7
    [18] G. B. Li, X. Luo, T. Yang, Normalized solutions for the fractional Schrödinger equation with a focusing nonlocal perturbation, Math. Method. Appl. Sci., 44 (2021), 10331–10360. https://doi.org/10.1007/s00526-024-02699-4 doi: 10.1007/s00526-024-02699-4
    [19] T. J. Luo, H. Hajaiej, Normalized solutions for a class of scalar field equations involving mixed fractional Laplacians, Adv. Nonlinear Stud., 22 (2022), 228–247. https://doi.org/10.1515/ans-2022-0013 doi: 10.1515/ans-2022-0013
    [20] V. Moroz, J. V. Schaftingen, Ground states of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent. Commun. Contemp. Math., 17 (2015), 1550005. https://doi.org/10.1017/prm.2018.135
    [21] V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153–184. https://doi.org/10.1016/j.jfa.2013.04.007 doi: 10.1016/j.jfa.2013.04.007
    [22] A. Massaccesi, E. Valdinoci, Is a nonlocal diffusion strategy convenient for biological populations in competition? J. Math. Biol., 74 (2017), 113–147. https://doi.org/10.1007/s00285-016-1019-z
    [23] M. I. Marin, R. P. Agarwal, I. A. Abbas, Effect of intrinsic rotations, microstructural expansion and contractions in initial boundary value problem of thermoelastic bodies, Bound. Value Probl., 1 (2014), 129. https://doi.org/10.1186/1687-2770-2014-129 doi: 10.1186/1687-2770-2014-129
    [24] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, B. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
    [25] R. Penrose, On gravity's role in quantum state reduction, Gen. Relat. Gravit., 28 (1996), 581–600. https://doi.org/10.1007/BF02105068 doi: 10.1007/BF02105068
    [26] Y. Park, Fractional Polya-Szegö inequality, J. Chungcheong Math. Soc., 42 (2011), 267–271.
    [27] B. Pellacci, G. Verzini, Best dispersal strategies in spatially heterogeneous environments: Optimization of the principal eigenvalue for indefinite fractional Neumann problems, J. Math. Biol., 76 (2017), 1357–1386. https://doi.org/10.1007/s00285-017-1180-z doi: 10.1007/s00285-017-1180-z
    [28] X. Su, E. Valdinoci, Y. Wei, J. Zhang, On some regularity properties of mixed local and nonlocal elliptic equations, J. Differ. Equations, 416 (2025), 576–613. https://doi.org/10.1016/j.jde.2024.10.003 doi: 10.1016/j.jde.2024.10.003
    [29] R. Servadei, E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Cont. Dyn.-S, 33 (2013), 2105–2137. https://doi.org/10.3934/dcds.2013.33.2105 doi: 10.3934/dcds.2013.33.2105
    [30] S. Yao, H. Chen, V. D. Rădulescu, J. Sun, Normalized Solutions for lower critical Choquard equations with critical Sobolev perturbation, SIAM J. Math. Anal., 54 (2022) 3696–3723. https://doi.org/10.1137/21m1463136
    [31] T. Yang, Normalized solutions for the fractional Schrödinger equation with a focusing nonlocal $L^{2}$ critical or $L^{2}$ supercritical perturbation, J. Math. Phys., 61 (2020) 051505. https://doi.org/10.1063/1.5144695
    [32] A. Mao, C. Yan, Normalized solutions to nonlinear Schrödinger equations with mixed fractional Laplacians, Adv. Nonlinear Anal., 14 (2025), 20250088. https://doi.org/10.1515/anona-2025-0088 doi: 10.1515/anona-2025-0088
    [33] L. Chergui, T. Gou, H. Hajaiej, Existence and dynamics of normalized solutions to nonlinear Schrödinger equations with mixed fractional Laplacians, Calc. Var. Partial Dif., 62 (2023) 208. https://doi.org/10.1007/s00526-023-02548-w
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(59) PDF downloads(9) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog