
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(12): 28668–28688.
DOI: 10.3934/math.20251262
Received: 23 October 2025
Revised: 26 November 2025
Accepted: 27 November 2025
Published: 04 December 2025

Research article

Normalized solutions to lower critical Choquard equation with mixed
local-nonlocal operators

Chun Qin1,2 and Jie Yang1,2,*

1 School of Mathematics and Computational Science, Huaihua University, Huaihua, Hunan 418008,
China

2 Key Lab Intelligent Control Technol Wuling Mt Ecol, Huaihua, Hunan 418000, China

* Correspondence: E-mail: yangjie@hhtc.edu.cn.

Abstract: This paper investigates the existence and non-existence of normalized ground state
solutions for the following Choquard equation with mixed local and nonlocal operators, involving
the Hardy-Littlewood-Sobolev (HLS) lower critical exponent. For the critical case p = 2 + 4

N ,
we employ fibering map analysis to establish the non-existence of solutions. In the subcritical
regime 2 < p < 2 + 4

N , we utilize variational methods to prove the existence of normalized ground
states, which are shown to be radially symmetric and strictly decreasing in |x|. For the supercritical
case 2 + 4

N < p < 2∗s, we introduce a homotopy-stable family to construct a Palais–Smale sequence
with a negative Lagrange multiplier. By analyzing the compactness properties of this sequence, we
demonstrate the existence of normalized ground state solutions in this regime as well.
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1. Introduction

In this paper, we consider the normalized solutions to the following Hardy-Littlewood-
Sobolev (HLS) lower critical Choquard equation with mixed local and non-local operators:

− ∆u + (−∆)su = βu + (|x|α−N ∗ |u|1+ α
N )|u|

α
N −1u + λ|u|p−2u, in RN , (1.1)

where N > 3, 0 < s < 1, α ∈ (0,N), λ > 0, 2 < p < 2∗s = 2N
N−2s . Here, 2∗s = 2N

N−2s is the fractional
Sobolev critical exponent and 1 + α

N is the lower critical exponent in the sense of the HLS inequality.
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The fractional Laplacian operator (−∆)s is defined by

(−∆)su(x) = CN,sP.V.
∫
RN

u(x) − u(y)
|x − y|N+2s dy, x ∈ RN ,

where CN,s is an appropriate normalization constant, and P.V. denotes the Cauchy principal value [2].
The equation

− ∆u + u = (I2 ∗ |u|2)u in R3, u ∈ H1(R3), (1.2)

often called the Choquard equation, was introduced in 1976 as a model arising from the Hartree-Fock
theory of a one-component plasma [14]. It has important applications in quantum physics; for instance,
it can describe the self-trapping of an electron in its own vacancy [25]. The term (I2 ∗ |u|2)u represents
a nonlocal self-interaction, where I2 is the Riesz potential, commonly appearing in Coulomb-type
interactions (e.g., in Bose-Einstein condensates or plasmas). In Bose-Einstein condensation, such
equations describe collective behavior of particles under long-range interactions. The nonlocal term
captures pairwise particle interactions in a mean-field approximation.

The study of Choquard equations involving the HLS lower critical exponent has received
widespread attention due to its unique mathematical challenges. A pivotal contribution was made by
Moroz and Van Schaftingen [20], who provided a comprehensive analysis of the Choquard equation’s
ground states across the full range of exponents, including the HLS lower critical cases.

Building upon this foundational understanding, recent research has focused on more complex
models that incorporate additional terms, often to investigate the interplay between nonlocal and local
nonlinearities. In this direction, Yao et al. [30] studied the following Choquard equation with the HLS
lower critical exponent

− ∆u + βu = λ(|x|α−N ∗ |u|1+ α
N )|u|

α
N −1u + µ|u|p−2u, in RN , (1.3)

where λ and µ are given positive numbers. The equation is constrained on the mass manifold

Hc :=
{

u ∈ H1(RN) :
∫
RN
|u|2dx = c2

}
,

where c is a given positive number. Their work represents a significant step in analyzing problems with
competing critical nonlinearities, where the concentration-compactness principle and careful energy
level estimates are essential for overcoming the lack of compactness. Based on these, Li et al. [16]
highlight the subtle balance between the nonlocal Choquard nonlinearity and local interactions under
a constraint. Furthermore, Li [17] obtained the existence of normalized ground states in the Sobolev
critical case by the Sobolev subcritical approximation method.

On the other hand, some authors considered the following general fractional Choquard equation

(−∆)su = βu + λ(|x|α−N ∗ |u|p)|u|p−2u + µ|u|q−2u, in RN , (1.4)

where 0 < s < 1, α ∈ (0,N), N > 2s, λ, µ > 0, and β is an unknown Lagrange multiplier.
Bhattarai [1], using the concentration compactness techniques, proved existence and stability of
normalized solution when 2 ≤ p < N+α+2s

N , and 2 < q < 2 + 4s
N . Feng et al. [9], by involving the

profile decomposition of bounded sequences in H s(RN) and variational methods, extended the result of
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Bhattarai to the case 1 + α
N < q < 2 + 4s

N . Based on some suitable properties and the min-max principle,
Yang [31] showed that the problem has a mountain type solution for cases N+α+2s

N ≤ p < 2∗α,s = N+α
N−2s

and 2 + 4s
N ≤ q < 2∗s. Furthermore, they also obtain a ground state. A more interesting result of HLS

critical Choquard equation can be seen in references [11, 18].
In recent years, the existence of equations with mixed operator (−∆)s1u + (−∆)s2u has received

widespread attention. Yang and Mao [32] studied the following problem:

(−∆)s1u + (−∆)s2u + λu = f (u), in RN ,

where N > 2, f ∈ C(R,R), and 0 < s1 < s2 < 1, where an energy state exists if c > c0 and does
not exist if 0 < c < c0. Here, c0 is a positive number. Let N > 1 and f (u) = |u|pu in the above
equation. Luo and Hajaiej [33] proved the existence of the energy ground state with p ∈ (0, 4s1

N ) by
using a scaling argument.

The study of mixed operators of the form −∆u + (−∆)su brings a wide range of applications. Its
significance stems from the superposition of two random processes with different scales (i.e., a classical
random walk and a Lévy flight). Roughly speaking, low-order operators play a dominant role in large-
scale time, while high-order operators guide diffusion in small-scale time. These mixed operators
arise naturally in systems combining classical processes, and Lévy processes have been widely used
in biomathematics and animal foraging during the theory of optimal searching; See [7, 8] and the
references therein. See also [13, 22, 23, 27] and the references therein for further applications.

Some other results of mixed local and nonlocal operators can be found in [5, 28] and the references
therein. The combined effects of mixed operators, HSL lower critical exponent, Choquard terms, and
power-type nonlinearities under mass constraints require new analytical tools, particularly when p
approaches critical exponents.

It is standard to observe that the normalized solutions of Eq (1.1) correspond to critical points of the
energy functional

Iλ(u) :=
1
2

∫
RN
|(−∆)

s
2 u|2dx +

1
2

∫
RN
|∇u|2dx

−
N

2(N + α)

∫
RN

(|x|α−N ∗ |u|1+ α
N )|u|1+ α

N dx −
λ

p

∫
RN
|u|pdx

restricted to the (mass) constraint

Hc :=
{

u ∈ H1(RN) :
∫
RN
|u|2dx = c2

}
.

For s ∈ (0, 1), the space H1(RN) is continuously embedded in the fractional Sobolev space H s(RN), i.e.,

H1(RN) ↪→ H s(RN).

This ensures that
∫
RN |(−∆)

s
2 u|2dx is well-defined on H1(RN) for 0 < s < 1.

We define
eλ(c) := inf

u∈Hc

Iλ(u). (1.5)

A function u ∈ H1(RN) is called a normalized ground state solution of Eq (1.1) if it satisfies (1.1) for
some β ∈ R, belongs to the mass-constrained setHc, and attains the minimal energy among all critical
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points on Hc. Moreover, a radial normalized ground state solution of Eq (1.1) is a normalized ground
state solution that is additionally radially symmetric, meaning u(x) = u(|x|). Our analysis will further
make use of the fundamental Hardy-Littlewood-Sobolev inequality, stated as follows.

Lemma 1.1. [15] Assume that 1 ≤ γ ≤ ∞, g ∈ Lλ1(RN), and h ∈ Lλ2(RN). Then there exists a
constant C > 0 such that

‖g ∗ h‖Lγ(RN ) ≤ C‖g‖Lλ1 (RN )‖h‖Lλ2 (RN ),

where
1
λ1

+
1
λ2

= 1 +
1
γ
.

It follows from Lemma 1.1 that for any v ∈ Lq(RN), q ∈ (1, N
α

), |x|α−N ∗ v ∈ L
Nq

N−αq (RN), and

‖|x|α−N ∗ v‖
L

Nq
N−αq (RN )

≤ C(α,N, q)‖v‖Lq(RN ). (1.6)

Particularly, for any u ∈ H1(RN),∫
RN

(|x|α−N ∗ |u|1+ α
N )|u|1+ α

N dx 6 S −(1+ α
N )

α

(∫
RN
|u|2dx

) N+α
N

, (1.7)

where

S α = inf
{∫
RN
|u|2dx : u ∈ L2(RN),

∫
RN

(|x|α−N ∗ |u|1+ α
N )|u|1+ α

N dx = 1
}
> 0. (1.8)

It follows from [15, Theorem 4.3] that S α is attained by

u(x) = Qε(x) := C
(

ε

ε2 + |x − y|2

) N+α
2

, (1.9)

for some C ∈ R, ε > 0, and y ∈ RN .
We now state our main results for Eq (1.1).

Theorem 1.2. Assume that N ≥ 3, 0 < s < 1, 2 < p < 2 + 4
N , α ∈ (0,N), and c > 0. Then the

following hold:

1. There exists λ̄ > 0 such that for any λ > λ̄, the energy level satisfies

eλ(c) < −
N

2(N + α)
S
−(1+ α

N )
α c2(1+ α

N ).

2. The energy eλ(c) is attained by a function û ∈ Hc with the following properties:

(a) û is radially symmetric and strictly decreasing in |x|.
(b) û is a solution of (1.1) with an associated Lagrange multiplier β̄ satisfying

β̄ < −
N

N + α
S
−(1+ α

N )
α c

2α
N .

Moreover, û is a normalized ground state solution of (1.1).
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Remark 1.1. For 2 < p < 2 + 4
N , Theorem 1.2 establishes the existence of normalized ground states

with strictly negative energy and quantitatively sharp Lagrange multipliers (β̄), improving the results
in [16]. Two major difficulties arise in proving Theorem 1.2:

(1) The combination of the HLS lower critical exponent and a local perturbation in the Choquard
equation introduces inherent analytical challenges.

(2) The interplay between the local and nonlocal operators hinders a direct critical point analysis.

For u ∈ Hc, θ ∈ R, and a.e. x ∈ RN , define

(θ ? u)(x) := e
N
2 θu(eθx),

which ensures that (θ ? u)(x) ∈ Hc. With this scaling, we now introduce the fibering map

Jλu :=Iλ(θ ? u) =
e2sθ

2
‖u‖2Ds,2(RN ) +

e2θ

2
‖u‖2D1,2(RN )

−
N

2(N + α)

∫
RN

(|x|α−N ∗ |u|1+ α
N )|u|1+ α

N dx −
λe

N(p−2)
2 θ

p
‖u‖p

Lp(RN ).

(1.10)

We first consider the case p = 2 + 4
N . For every u ∈ Hc, it follows from Lemma 2.4 that

(Jλu )
′

(θ) =se2sθ‖u‖2Ds,2(RN ) + e2θ‖u‖2D1,2(RN ) −
Nλ(p − 2)e2θ

2p
‖u‖p

Lp(RN )

> se2sθ‖u‖2Ds,2(RN ) + e2θ

1 − Nλc
4
N

N + 2
CN,p

 ‖u‖2D1,2(RN ).

Under condition
0 < λ <

N + 2

Nc
4
N CN,p

, (1.11)

we find that (Jλu )
′

(θ) > 0 for all θ ∈ R. Consequently, Jλu (θ) is strictly increasing on (−∞,+∞), which
leads to the following nonexistence result.

Theorem 1.3. Assume that N > 3, 0 < s < 1, α ∈ (0,N), p = 2 + 4
N , and (1.11) hold. Then the

functional Iλ(u) has no critical point onHc.

Now, we introduce the following Pohozaev identity. From reference [4, 19], the result of the next
proposition can be easy obtained.

Proposition 1.4. Let u ∈ H1(RN) be a weak solution of (1.1), then u satisfies the Pohozaev identity:

N − 2s
2
‖u‖2Ds,2(RN ) +

N − 2
2
‖u‖2D1,2(RN )

=
βN
2
‖u‖2L2(RN ) +

N
2

∫
RN

(|x|α−N ∗ |u|1+ α
N )|u|1+ α

N dx +
λN
p

∫
RN
|u|pdx.

(1.12)

Lemma 1.5. Let u ∈ H1(RN) be a weak solution of (1.1), then u satisfies the following Nehair-
Pohozaev manifold:

Mc,λ := {u ∈ Hc : Eλ(u) = 0},

where the Nehair-Pohozaev functional is given by

Eλ(u) := s‖u‖2Ds,2(RN ) + ‖u‖2D1,2(RN ) −
λN(p − 2)

2p
‖u‖p

Lp(RN ).
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Proof. By Proposition 1.4, we obtain that u satisfies the Pohozaev identity (1.12). Moreover, since u is
the weak solution of (1.1), we have

‖u‖2Ds,2(RN ) + ‖u‖2D1,2(RN ) = β

∫
RN
|u|2dx +

∫
RN

(|x|α−N ∗ |u|1+ α
N )|u|1+ α

N dx + λ

∫
RN
|u|pdx.

Therefore, we have

s‖u‖2Ds,2(RN ) + ‖u‖2D1,2(RN ) −
λN(p − 2)

2p
‖u‖p

Lp(RN ) = 0,

which means that the proof is completed. �

In the following, we restrict our attention to the supercritical case 2+ 4
N < p < 2∗s, which is equivalent

to N
N+2 < s < 1.
By the Pohozaev identity, any critical point of the restricted functional Iλ

∣∣∣
Hc

must lie in Mc,λ.
Moreover, following an argument analogous to that in [18, Lemmas 2.12 and 2.13], we conclude
thatMc,λ is a natural constraint.

Proposition 1.6. Assume that N > 3, 0 < s < 1, and 2 + 4
N < p < 2∗s. If u ∈ Mc,λ is a critical point

of Iλ|Mc,λ , then u is a critical point of Iλ|Hc .

We aim to show that Iλ|Mc,λ is bounded from below. To this end, we analyze the structure of the
Pohozaev manifold Mc,λ, which is closely related to the monotonicity and convexity of the fibering
map Jλu . Specifically, a direct calculation shows that

(Jλu )
′

(θ) =se2sθ‖u‖2Ds,2(RN ) + e2θ‖u‖2D1,2(RN ) −
λN(p − 2)e

N(p−2)
2 θ

2p
‖u‖p

Lp(RN ) = Eλ(θ ? u), (1.13)

which yields that θ ∈ R is a critical point of Jλu if and only if θ ? u ∈ Mc,λ. Furthermore, we
have (Jλu )

′

(0) = Eλ(u). To proceed, we decompose the Pohozaev manifold Mc,λ into three disjoint
partsMc,λ =M+

c,λ ∪M
0
c,λ ∪M

−
c,λ, where

M+
c,λ =

{
u ∈ Mc,λ : (Jλu )

′′

(0) > 0
}

=
{
u ∈ Hc : (Jλu )

′

(0) = 0, (Jλu )
′′

(0) > 0
}
,

M0
c,λ =

{
u ∈ Mc,λ : (Jλu )

′′

(0) = 0
}

=
{
u ∈ Hc : (Jλu )

′

(0) = 0, (Jλu )
′′

(0) = 0
}
,

and
M−

c,λ =
{
u ∈ Mc,λ : (Jλu )

′′

(0) < 0
}

=
{
u ∈ Hc : (Jλu )

′

(0) = 0, (Jλu )
′′

(0) < 0
}
.

Therefore, for any u ∈ Mc,λ, it follows that

(Jλu )
′′

(0) =2s2‖u‖2Ds,2(RN ) + 2‖u‖2D1,2(RN ) −
N2λ(p − 2)2

4p
‖u‖p

Lp(RN )

6
Nλ(p − 2)

p
‖u‖p

Lp(RN ) −
N2λ(p − 2)2

4p
‖u‖p

Lp(RN )

=
Nλ(p − 2)

p

(
1 −

N(p − 2)
4

)
‖u‖p

Lp(RN ).

According to 2 + 4
N < p < 2∗s, we have

(Jλu )
′′

(0) < 0, for all u ∈ Mc,λ, (1.14)
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and
M+

c,λ =M0
c,λ = ∅.

From the preceding analysis of the Pohozaev manifoldMc,λ, we now establish the following result.

Theorem 1.7. Assume that N > 3, 0 < s < 1, α ∈ (0,N), and 2 + 4
N < p < 2∗s. Then there exists

a constant λ0 > 0 such that for any λ > λ0, (1.1) admits a radial ground state solution ũ and the
corresponding Lagrange multiplier β̄ < 0.

The rest of this paper is organized as follows. In Section 2, we collect the necessary preliminary
results. We then prove Theorem 1.2 in Section 3 and proceed to establish Theorem 1.7 in Section 4.

2. Preliminaries

This section collects preliminary results needed for the proofs of our main theorems. We first recall
the following compactness lemma from [24].

Lemma 2.1. [24] For N ≥ 3, there exists a constant S = S (N) such that

S = inf
u∈H1(RN )\{0}

‖∇u‖2L2(RN )

‖u‖2
L2∗ (RN )

.

Furthermore, H1(RN) is continuously embedded into Lp(RN) for all 2 6 p 6 2∗ and compactly
embedded into Lp

loc(R
N) for all 2 6 p < 2∗.

We will also use the Gagliardo–Nirenberg–Sobolev inequality from [3].

Lemma 2.2. For any u ∈ H1(RN), and p ∈ (2, 2∗), there exists a constant CN,p > 0 such that∫
RN
|u|pdx 6 CN,p

(∫
RN
|∇u|2dx

) N(p−2)
4

(∫
RN
|u|2dx

) 2p−(p−2)N
4

. (2.1)

We denote ∫
RN

(|x|α−N ∗ |un|
q)|un|

qdx =

∫
RN

∫
RN

|u(x)|q|u(y)|q

|x − y|N−α
dxdy.

We now introduce two lemmas that are essential for establishing the splitting property of the
energy functional.

Lemma 2.3. [21, Lemma 2.4] For N ≥ 3, α ∈ (0,N), and q ∈ [1, 2N
N+α

), and let {un} be a bounded
sequence in L

2Nq
N+α (RN) such that un → u a.e. on RN as n→ ∞, then

lim
n→∞

[∫
RN

(|x|α−N ∗ |un|
q)|un|

qdx −
∫
RN

(|x|α−N ∗ |un − u|q)|un − u|qdx
]

=

∫
RN

(|x|α−N ∗ |u|q)|u|qdx.

Lemma 2.4. [20] For N > 3, α ∈ (0,N), q ∈ [1 + α
N ,

N+α
N−2 ], and r ∈ [2, 2∗], and let {un} ⊂ H1(RN) be

such that un ⇀ u in H1(RN). Then, for all v ∈ H1(RN),∫
RN

(|x|α−N ∗ |un|
q)|un|

q−2unvdx→
∫
RN

(|x|α−N ∗ |u|q)|u|q−2uvdx (2.2)

and ∫
RN
|un|

r−2unvdx→
∫
RN
|u|r−2uvdx (2.3)

as n→ ∞.
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3. Proof of Theorem 1.2

This section is devoted to the existence of normalized ground state solutions.

Lemma 3.1. Assume that N ≥ 3, 0 < s < 1, 2 < p < 2 + 4
N , α ∈ (0,N), and c > 0. Then the

functional Iλ is bounded from below and coercive onHc.

Proof. It follows from (2.2) and (1.7) that for each u ∈ Hc,

Iλ(u) >
1
2
‖u‖2Ds,2(RN ) +

1
2
‖u‖2D1,2(RN ) −

N
2(N + α)

S −(1+ α
N )

α c2(1+ α
N )

−
λ

p
CN,p‖u‖

N(p−2)
2

D1,2(RN )c
2p−N(p−2)

2 .

(3.1)

Since 2 < p < 2 + 4
N , we have 0 < N(p−2)

2 < 2. It follows that Iλ is bounded from below and coercive
onHc. �

Lemma 3.2. Assume that N ≥ 3, 0 < s < 1, 2 < p < 2 + 4
N , α ∈ (0,N), and c > 0. Then, there

exists λ̄ > 0 such that for any λ > λ̄, the energy level defined in (1.5) satisfies

eλ(c) < −
N

2(N + α)
S −(1+ α

N )
α c2(1+ α

N ) < 0. (3.2)

Proof. Equation (1.9) shows that∫
RN

(|x|α−N ∗ |Qε |
1+ α

N )|Qε |
1+ α

N dx = S −(1+ α
N )

α

(∫
RN
|Qε |

2dx
) N+α

N

.

Based on the above equality, we define

ψ :=
Qεc

‖Qε‖L2(RN )
and (θ ? ψ)(x) := e

Nθ
2 ψ(eθx), for x ∈ RN .

It is clear that ψ ∈ Hc and (θ ? ψ) ∈ Hc. A direct computation shows that

Iλ(θ ? ψ) =
e2sθ

2
‖ψ‖2Ds,2(RN ) +

e2θ

2
‖ψ‖2D1,2(RN )

−
N

2(N + α)

∫
RN

(|x|α−N ∗ |ψ|1+ α
N )|ψ|1+ α

N dx −
λe

N(p−2)
2 θ

p
‖ψ‖

p
Lp(RN )

=
e2sθ

2
‖ψ‖2Ds,2(RN ) +

e2θ

2
‖ψ‖2D1,2(RN ) −

N
2(N + α)

S −(1+ α
N )

α c2(1+ α
N )

−
λe

N(p−2)
2 θ

p
‖ψ‖

p
Lp(RN ).

Hence, for 2 < p < 2 + 4s
N , it follows that there exists θ0 � −1 such that

eλ(c) < −
N

2(N + α)
S −(1+ α

N )
α c2(1+ α

N ).
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For p = 2 + 4s
N , if

λ > λ1 =
p‖ψ‖2D1,2(RN )

2‖ψ‖p
Lp(RN )

,

then, there exists θ0 � −1 such that (3.2) holds.
For 2 + 4s

N < p < 2 + 4
N , let γ1 = 2s, and γ2 =

N(p−2)
2 . We have

0 < γ1 < γ2 < 2.

Set t = eθ > 0. Define
f (t) = Atγ1 + Bt2 −Ctγ2 , t > 0,

where A =
‖ψ‖2

Ds,2(RN )

2 > 0, B =
‖ψ‖2

D1,2(RN )

2 > 0, C = λ
p‖ψ‖

p
Lp(RN ) > 0.

Consider the function
g(t) = Atγ1 −Ctγ2 .

Since γ2 > γ1, for small t > 0, g(t) > 0. Let

t1 =

(A
C

) 1
γ2−γ1

.

Then g(t1) = 0, and for t > t1, we have g(t) < 0.
Now, since g is continuous and g(t) < 0 for t > t1, there exists δ > 0 such that for all t ∈ (t1, t1 + δ),

g(t) ≤ −η for some η > 0.

Now examine f (t) = g(t) + Bt2. Since Bt2 is continuous and t1 > 0, we can choose δ small enough
and λ > λ2 large enough so that for t ∈ (t1, t1 + δ),

Bt2 ≤ B(t1 + δ)2 < η.

Then for such t,
f (t) ≤ −η + Bt2 < −η + η = 0.

Thus, f (t) < 0 for t ∈ (t1, t1 + δ). Taking λ̄ = max{λ1, λ2}, we obtain the desired results. �

Lemma 3.3. Assume that N ≥ 3, 0 < s < 1, 2 < p < 2+ 4
N , α ∈ (0,N), and c > 0, and let {un} ⊂ Hc be a

minimizing sequence of eλ(c). Then, there exists a subsequence, still denoted by {un}, a sequence {zn} ⊂

RN and û ∈ Hc such that un(· + zn)→ û strongly in H1(RN).

Proof. It follows easily from (3.1) and 2 < p < 2+ 4
N that {un} is bounded in H1(RN). Thus, there exists

a subsequence of {un} (still denoted by {un}) and û ∈ H1(RN) such that

un ⇀ û in H1(RN), un → û in L2
loc(R

N), un → û a.e. on RN .

We claim that û , 0. Suppose, for contradiction, that û = 0. Then un ⇀ 0 in H1(RN). Applying
Lemma 2.4, we find that∫

RN
(|x|α−N ∗ |un|

1+ α
N )|un|

1+ α
N dx = on(1),

∫
RN
|un|

pdx = on(1).
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Hence,

eλ(c) = Iλ(un) + on(1) =
1
2
‖un‖

2
Ds,2(RN ) +

1
2
‖un‖

2
D1,2(RN ) > 0.

This contradiction with Lemma 3.2 implies that û , 0. Consequently, there exists a sequence {zn}

such that ûn := un(· + zn) converges weakly to û , 0 in H1(RN). By applying Brezis-Lieb Lemma and
Lemma 2.3, we derive that

c2 = ‖un‖
2
L2(RN ) = ‖un − û‖2L2(RN ) + ‖û‖2L2(RN ) + on(1). (3.3)

Iλ(un) = Iλ(un − û) + Iλ(û) + on(1). (3.4)

If ‖û‖2L2(RN ) < c2, then by setting t := c
‖û‖L2(RN )

, we have t > 1, tû ∈ Hc and

Iλ(tû) =
t2

2
‖û‖2Ds1 ,2(RN ) +

t2

2
‖û‖2D1,2(RN ) −

Nt2(1+ α
N )

2(N + α)

∫
RN

(|x|α−N ∗ |û|1+ α
N )|û|1+ α

N dx

−
λtp

p

∫
RN
|û|pdx,

which yields that

Iλ(û) =
1
t2 Iλ(tû) +

N(t
2α
N − 1)

2(N + α)

∫
RN

(|x|α−N ∗ |û|1+ α
N )|û|1+ α

N dx +
λ(tp−2 − 1)

p

∫
RN
|û|pdx. (3.5)

Similarly, setting tn := c
‖un−û‖L2(RN )

> 1, then, tn(un − û) ∈ Hc, it follows that

Iλ(un − û) =
1
t2
n

Iλ(tn(un − û)) +
N(t

2α
N

n − 1)
2(N + α)

∫
RN

(|x|α−N ∗ |un − û|1+ α
N )|un − û|1+ α

N dx

+
λ(tp−2

n − 1)
p

∫
RN
|un − û|pdx

>
1
t2
n

Iλ(tn(un − û)).

(3.6)

In view of (1.7), and (3.3)–(3.6), we deduce that

eλ(c) =Iλ(un) + on(1) = Iλ(û) + Iλ(un − û) + on(1)

>
1
t2 Iλ(tû) +

1
t2
n

I(tn(un − û)) +
N(t

2α
N − 1)

2(N + α)

∫
RN

(|x|α−N ∗ |û|1+ α
N )|û|1+ α

N dx

+
λ(tp−2 − 1)

p

∫
RN
|û|pdx + on(1)

>
1
t2 eλ(c) +

1
t2
n
eλ(c) = eλ(c),

which is a contradiction. Hence, ‖û‖2L2(RN ) = c2. Consequently, the sequence ûn := un(· + zn) converges
strongly to û in L2(RN). Hence, by [21, Lemma 2.4], we obtain∫

RN
(|x|α−N ∗ |ûn|

1+ α
N )|ûn|

1+ α
N dx =

∫
RN

(|x|α−N ∗ |û|1+ α
N )|û|1+ α

N dx + on(1). (3.7)
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By the interpolation inequality and the Sobolev embedding theorem, we deduce that

‖ûn − û‖Lp(RN ) 6 ‖ûn − û‖θL2(RN )‖ûn − û‖1−θL2∗ (RN ) 6 C‖ûn − û‖θL2(RN ) → 0, (3.8)

as n→ ∞, where p ∈ (2, 2∗) and 1
p = θ

2 + 1−θ
2∗ . From (3.7) and (3.8), and the weakly lower semicontinuity

of norm, we conclude that

eλ(c) 6 Iλ(û) 6 lim inf
n→∞

Iλ(ûn) = lim inf
n→∞

Iλ(un) = eλ(c),

which implies that ‖ûn‖Ds,2(RN ) → ‖û‖Ds,2(RN ) and ‖ûn‖D1,2(RN ) → ‖û‖D1,2(RN ) as n→ ∞. �

Proof of Theorem 1.2. Lemma 3.3 guarantees the existence of a minimizer û for Iλ on Hc. Consider
the symmetric decreasing rearrangement |û|∗ of û. Clearly,

‖|û|‖L2(RN ) = ‖|û|∗‖L2(RN ), ‖|û|‖Lp(RN ) = ‖|û|∗‖Lp(RN ). (3.9)

Combining the classical and fractional Polya-Szegö inequality [26] with (A.11) from [29], we
conclude that

‖|û|∗‖2Ds,2(RN ) 6 ‖|û|‖
2
Ds,2(RN ) 6 ‖û‖

2
Ds,2(RN ), (3.10)

‖|û|∗‖2D1,2(RN ) 6 ‖|û|‖
2
D1,2(RN ) 6 ‖û‖

2
D1,2(RN ). (3.11)

By the Riesz rearrangement inequality [15, Theorem 3.4], we have∫
RN

(|x|α−N ∗ |û|1+ α
N )|û|1+ α

N dx 6
∫
RN

(|x|α−N ∗ (|û|∗)1+ α
N )(|û|∗)1+ α

N dx. (3.12)

From (3.9)–(3.11), we obtain |û|∗ ∈ Hc and Iλ(|û|∗) 6 Iλ(|û|) = eλ(c). Therefore, the minimizer |û|∗,
which is radially symmetric and decreasing, attains eλ(c). For simplicity, we continue to denote this
minimizer by û. Furthermore, there exists a corresponding Lagrange multiplier β̄ such that

β̄c2 =‖û‖2Ds,2(RN ) + ‖û‖2D1,2(RN ) −

∫
RN

(|x|α−N ∗ |û|1+ α
N )|û|1+ α

N dx − λ‖û‖p
Lp(RN )

=2eλ(c) −
α

N + α

∫
RN

(|x|α−N ∗ |û|1+ α
N )|û|1+ α

N dx −
(p − 2)λ

p
‖û‖p

Lp(RN )

62eλ(c) < −
N

N + α
S −(1+ α

N )
α c2(1+ α

N ) < 0,

recalling Lemma 3.2, which implies that

β̄ < −
N

N + α
S −(1+ α

N )
α c

2α
N < 0.

This completes the proof. �
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4. Proof of Theorem 1.7

In this section, we shall prove Theorem 1.7.

Lemma 4.1. Assume that N > 3, 0 < s < 1, α ∈ (0,N), and 2 + 4
N < p < 2∗s. For each u ∈ Hc, Jλu

admits a unique critical point θu ∈ R such that

Iλ(θu ? u) = max
t∈R

Iλ(θ ? u), (θu ? u) ∈ Mc,λ. (4.1)

Particularly, the map u ∈ Hc 7→ θu ∈ R is of class C1.

Proof. For any u ∈ Hc, we have

(Jλu )
′

(θ)

=se2sθ

(
‖u‖2Ds,2(RN ) +

1
s

e2(1−s)θ‖u‖2D1,2(RN ) −
Nλ(p − 2)

2p
e( N(p−2)

2 −2s)θ‖u‖p
Lp(RN )

)
.

(4.2)

Thanks to 1 > s > 0 and 2 + N
4 < p, we can derive that (Jλu )

′

(θ) → 0+ as t → −∞ and (Jλu )
′

(θ) → −∞
as θ → +∞. Furthermore, from (1.10), we conclude that (Jλu )

′

(θ) has a unique zero point θu, which is
the unique maximum point of Jλu (θ). Together with (1.10) and (1.13), (4.1) holds.

We denote by Ψ : R × Hc 7→ R the function Ψ(θ, u) = (Jλu )
′

(θ). Applying the implicit functon
theorem to the C1 function Ψ, we can complete the proof. �

Lemma 4.2. Assume that N > 3, 0 < s < 1, α ∈ (0,N), and 2 + 4
N < p < 2∗s. Then Iλ is coercive

onMc,λ.

Proof. For each u ∈ Mc,λ, from (1.7) and Lemma 1.5, we observe that

Iλ(u) =
1
2

∫
RN
|(−∆)

s
2 u|2dx +

1
2

∫
RN
|∇u|2dx

−
N

2(N + α)

∫
RN

(|x|α−N ∗ |u|1+ α
N )|u|1+ α

N dx −
λ

p

∫
RN
|u|pdx

>
N(p − 2) − 4s

2N(p − 2)

∫
RN
|(−∆)

s
2 u|2dx +

N(p − 2) − 4
2N(p − 2)

∫
RN
|∇u|2dx

−
N

2(N + α)
S −(1+ α

N )
α c

2(N+α)
N ,

(4.3)

which completes the proof. �

We now introduce the following key definitions

H1
rad(RN) :={u ∈ H1(RN) : u is radially symmetric},
H rad

c :=Hc ∩ H1
rad(RN),

Mrad
c,λ :=Mc,λ ∩ H1

rad(RN),
m(c) := inf

u∈Mc,λ
Iλ(u).

AIMS Mathematics Volume 10, Issue 12, 28668–28688.



28680

Lemma 4.3. Assume that N > 3, 0 < s < 1, α ∈ (0,N), and 2 + 4
N < p < 2∗s. Then,

inf
u∈Mc,λ

Iλ(u) = inf
u∈Mrad

c,λ

Iλ(u).

Proof. From the embeddingMrad
c,λ ⊂ Mc,λ, it follows that

inf
u∈Mc,λ

Iλ(u) 6 inf
u∈Mrad

c,λ

Iλ(u).

Thus, the proof reduces to show that

inf
u∈Mc,λ

Iλ(u) > inf
u∈Mrad

c,λ

Iλ(u). (4.4)

To this end, let |u|∗ represent the symmetric decreasing rearrangement of |u|. Through applications
of (3.9)–(3.11), we obtain |u|∗ ∈ H rad

c and

Jλ|u|∗(θ) = Iλ(θ ? |u|∗) 6 Iλ(θ ? u) = Jλu (θ).

From (3.9), (3.10) and (4.2), we obtain −∞ < θ|u|∗ 6 θu. Combining this with Lemma 4.1 yields

Jλu (θu) > Jλu (θ|u|∗) > Jλ|u|∗(θ|u|∗).

Since u ∈ Mc,λ, it follows that θu = 0, and consequently

Iλ(u) = Jλu (0) > Jλ|u|∗(θ|u|∗) = Iλ(θ|u|∗ ? |u|∗).

Observing that θ|u|∗ ? |u|∗ ∈ Mrad
c,λ , we deduce that

inf
u∈Mc,λ

Iλ(u) > inf
u∈Mc,λ

Iλ(θ|u|∗ ? |u|∗) > inf
u∈Mrad

c,λ

Iλ(u),

from which we conclude that (4.4) holds. �

Lemma 4.4. Let u ∈ H rad
c and θ ∈ R. The mapping

TuH
rad
c → Tθu?uH

rad
c , φ 7→ θu ? φ (4.5)

is a linear isomorphism, with its inverse given by

ϕ 7→ (−θ) ? ϕ.

Here TuH
rad
c denotes the tangent space toH rad

c at u.

Proof. The proof is standard, see [30, Lemma 5.5]. �

Next, we introduce the functional Īλ : H rad
c 7→ R defined by

Īλ = Iλ(θu ? u).

It follows from Lemma 4.1 that Īλ is of class C1 on H rad
c . Moreover, adapting the methods of [6,

Lemma 3.15], we obtain the following result.
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Lemma 4.5. For each u ∈ H rad
c and ψ ∈ TuH

rad
c , the following identity holds

Ī
′

λ(u)[ψ] = Ī
′

λ(θu ? u)[θu ? ψ]. (4.6)

Analogously to [6, Lemma 3.16], the existence of Palais-Smale sequences holds for any general
homotopy-stable family of symmetric subsets ofH rad

c . This follows from Lemmas 4.4 and 4.5.

Lemma 4.6. Let K be a homotopy-stable family of compact subsets of H rad
c with closed boundary D

and define
σK := inf

B∈K
max
u∈B

Īλ(u).

Suppose the following assumptions hold:
(i)D is contained in a connected component ofMrad

c,λ .
(ii) The min-max level σK satisfies the strict inequality

max{sup Īλ(D), 0} < σK < ∞.

Then, there exists a Palais-Smale sequence {un} ⊂ M
rad
c,λ of Īλ restricted toH rad

c at level σK .

By Lemma 4.6, there exists a Palais-Smale sequence {un} ⊂ M
rad
c,λ for the restricted functional Īλ|H rad

c

at the level m(c) , 0.

Lemma 4.7. Assume that N > 3, and 2+ 4
N < p < 2∗s. Then, there exists a Palais-Smale sequence {un} ⊂

Mrad
c,λ for the restricted functional Iλ|H rad

c
at the level m(c) , 0.

Proof. Let K̄ denote the family of all singletons with u ∈ H rad
c . Since K̄ consists only of single-element

sets, its boundary D is trivially empty. Following the framework established in [10, Definition 3.1],
we observe that K̄ forms a homotopy-stable family of compact subset in H rad

c without boundary.
Combining this structural property with Lemma 4.3, we obtain

σK̄ = inf
B∈K̄

max
u∈B

Īλ(u) = inf
u∈H rad

c

Īλ(u) = inf
u∈Mrad

c

Iλ(u) = inf
u∈Mc,λ

Iλ(u) = m(c).

Therefore, applying Lemma 4.6, we conclude the proof.
�

Next, we analyze the convergence of special Palais-Smale sequences satisfying additional structural
conditions. Our approach follows the pioneering framework introduced by Jeanjean in [12].

Lemma 4.8. Assume N > 3, and 2+ 4
N < p < 2∗s. Let {un} ⊂ M

rad
c,λ be a bounded Palais-Smale sequence

for Iλ|H rad
c

at level m(c) , 0 in H1
rad(RN). Then, there eixsts λ0 > 0 such that for each λ > λ0, up to a

subsequence, un → ũ strongly in H1
rad(RN).

Proof. The argument proceeds in four steps:
Step 1. Since {un} ⊂ M

rad
c,λ is bounded in H1

rad(RN) and the embedding H1
rad(RN) ↪→ Lq(RN) is compact

for all q ∈ (2, 2∗s), there exists ũ ∈ H1
rad(RN) such that, up to a subsequence,

un ⇀ ũ in H1
rad(RN), un → ũ in Lq(RN), for q ∈ (2, 2∗s) and a.e. in RN . (4.7)
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Furthermore, there exists a sequence {βn} ⊂ R such that for any v ∈ H1
rad(RN),∫

RN
(−∆)

s
2 un(−∆)

s
2 vdx +

∫
RN
∇un∇vdx − βn

∫
RN

unvdx

−

∫
RN

(|x|α−N ∗ |un|
1+ α

N )|un|
α
N −1unvdx − λ

∫
RN
|un|

p−2unvdx = on(1)‖v‖.
(4.8)

Taking v = un in (4.8), we observe that

−βnc2 = λ‖un‖
p
Lp(RN ) +

∫
RN

(|x|α−N ∗ |un|
1+ α

N )|un|
α
N +1dx − ‖un‖

2
Ds,2(RN ) − ‖un‖

2
D1,2(RN ) + on(1),

which yields that βn is bounded. Then, up to a subsequence, there exists β̄ ∈ R such that βn → β̄

as n→ ∞.
Step 2. β̄ < 0 and ũ , 0. From 2 + 4

N < p < 2∗s and the fact that {un} ⊂ M
rad
c,λ , we deduce that

−βnc2 =

(
2ps − N(p − 2)

N(p − 2)

)
‖un‖

2
Ds,2(RN ) +

(
2p − N(p − 2)

N(p − 2)

)
‖un‖

2
D1,2(RN )

+

∫
RN

(|x|α−N ∗ |un|
1+ α

N )|un|
α
N +1dx > 0,

(4.9)

which leads to β̄ 6 0 with equality if and only if ũ = 0. We will show that β̄ , 0; if not, due to (4.9)
and Eλ(un) = on(1), we can see that m(c) + on(1) = Iλ(un) = on(1), which contradicts Lemma 4.2.
Thus, β̄ < 0 and ũ , 0.
Step 3. The upper bound of m(c) − β̄

2c2. From (1.8) and (1.9), we obtain∫
RN

(|x|α−N ∗ |Qε |
1+ α

N )|Qε |
1+ α

N dx = S −(1+ α
N )

α

(∫
RN
|Qε |

2dx
) N+α

N

.

Let
φ :=

cQε

‖Qε‖L2(RN )
and (θ ? φ)(x) := e

N
2 θφ(eθx),

for a.e. x ∈ RN . Obviously, φ ∈ Hc and (θ ? φ)(x) ∈ Hc. By Lemma 4.1, there exists a unique θφ ∈ R
such that

Iλ(θφ ? φ) = max
θ∈R

Iλ(θ ? φ), θφ ? φ ∈ Mc,λ.

Lemma 4.3 yields that
m(c) 6 Iλ(θφ ? φ).

A direct computation yields

m(c) 6Iλ(θφ ? φ)

=
e2sθφ

2
‖φ‖2Ds,2(RN ) +

e2θφ

2
‖φ‖2D1,2(RN ) −

N
2(N + α)

∫
RN

(|x|α−N ∗ |φ|1+ α
N )|φ|1+ α

N dx

−
λe

N(p−2)
2 θφ

p
‖φ‖

p
Lp(RN )

=
e2sθφ

2
‖φ‖2Ds,2(RN ) +

e2θφ

2
‖φ‖2D1,2(RN ) −

λe
N(p−2)

2 θφ

p
‖φ‖

p
Lp(RN )

−
N

2(N + α)
S −(1+ α

N )
α c2(1+ α

N ).
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Consequently, taking

λ0 :=
(
e2sθφ

2
‖φ‖2Ds,2(RN ) +

e2θφ

2
‖φ‖2D1,2(RN )

)
pe−

N(p−2)
2 θφ

‖φ‖
p
Lp(RN )

,

we conclude that for any λ > λ0,

m(c) < −
N

2(N + α)
S −(1+ α

N )
α c2(1+ α

N ). (4.10)

Therefore, applying (4.10), we conclude that

m(c) −
β̄

2
c2 < −

N
2(N + α)

S −(1+ α
N )

α c2(1+ α
N ) −

β̄

2
c2.

Now, we define a function h : R+ → R

h(c) := −
N

2(N + α)
S −(1+ α

N )
α c2(1+ α

N ) −
β̄

2
c2.

Obviously, there exists a unique critical point

c0 =

(
−β̄S 1+ α

N
α

) N
2α
,

and

h(c0) =
α

2(N + α)

(
−β̄S 1+ α

N
α

) N+α
α

is the maximum of g. Hence, it holds that

m(c) −
β̄

2
c2 <

α

2(N + α)

(
−β̄S α

) N+α
α
. (4.11)

Step 4. un → ũ in H1
rad(RN). Since un ⇀ ũ in H1

rad(RN), according to (4.8) and Lemma 2.4, we deduce
that ũ is a weak solution of

− ∆ũ + (−∆)sũ = β̄ũ + (|x|α−N ∗ |ũ|1+ α
N )|ũ|

α
N −1 + λ|ũ|p−2u, in RN . (4.12)

Thus, we derive that

Eλ(ũ) = s‖ũ‖2Ds,2(RN ) + ‖ũ‖2D1,2(RN ) −
λN(p − 2)

2p
‖ũ‖p

Lp(RN ) = 0.

Let vn = un − ũ, then vn ⇀ 0 in H1
rad(RN). Thus,

‖un‖
2
Ds,2(RN ) = ‖ũ‖2Ds,2(RN ) + ‖vn‖

2
Ds,2(RN ).

‖un‖
2
D1,2(RN ) = ‖ũ‖2D1,2(RN ) + ‖vn‖

2
D1,2(RN ).
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By (4.7) and Lemma 2.3, we conclude that∫
RN

(|x|α−N ∗ |un|
1+ α

N )|un|
1+ α

N dx =

∫
RN

(|x|α−N ∗ |vn|
1+ α

N )|vn|
1+ α

N dx

+

∫
RN

(|x|α−N ∗ |ũ|1+ α
N )|ũ|1+ α

N dx + on(1),
(4.13)

and ∫
RN
|un|

pdx =

∫
RN
|ũ|pdx + on(1). (4.14)

Combining Eλ(un) = 0 and Eλ(ũ) = 0, we derive that

‖un‖
2
Ds,2(RN ) = ‖ũ‖2Ds,2(RN ), ‖vn‖

2
Ds,2(RN ) = on(1). (4.15)

‖un‖
2
D1,2(RN ) = ‖ũ‖2D1,2(RN ), ‖vn‖

2
D1,2(RN ) = on(1). (4.16)

On the other hand, by (4.12), we have for all v ∈ H1
rad(RN) that

I
′

λ(ũ)v − β
∫
RN

ũvdx = 0. (4.17)

Taking v = un − ũ as a test function in (4.8) and (4.17), we deduce that

‖vn‖
2
Ds,2(RN ) + ‖vn‖

2
D1,2(RN ) =β̄‖vn‖

2
L2(RN ) +

∫
RN

(|x|α−N ∗ |vn|
1+ α

N )|vn|
1+ α

N dx

+ λ‖vn‖
p
Lp(RN ) + on(1).

Using (4.14)–(4.16), we obtain

d := −β̄‖vn‖
2
L2(RN ) =

∫
RN

(|x|α−N ∗ |vn|
1+ α

N )|vn|
1+ α

N dx. (4.18)

Recalling (1.8), we see that

d = 0 or d > (−β̄S α)
N+α
α .

We distinguish two cases:
Case 1. If d = 0, then un → ũ in H1

rad(RN), and the proof concludes since ũ achieves the infimum m(c).
Case 2. If d > (−β̄S α)

N+α
α , by (4.13)–(4.16), we derive the strict inequality

Iλ(ũ) > lim
n→∞

Iλ(un) = m(c).
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Together with (4.13)–(4.16) and (4.18), recalling that β̄ < 0, we have that

m(c) −
β̄

2
c2 =m(c) −

β̄

2
lim
n→∞
‖un‖

2
L2(RN )

>m(c) −
β̄

2
lim
n→∞
‖vn‖

2
L2(RN )

=Iλ(ũ) + lim
n→∞

(
Iλ(vn) −

β̄

2
‖vn‖

2
L2(RN )

)
=Iλ(ũ) + lim

n→∞

(
−

N
2(N + α)

∫
RN

(|x|α−N ∗ |vn|
1+ α

N )|vn|
1+ α

N dx −
β̄

2
‖vn‖

2
L2(RN )

)
=Iλ(ũ) +

α

2(N + α)
lim
n→∞

∫
RN

(|x|α−N ∗ |vn|
1+ α

N )|vn|
1+ α

N dx

>Iλ(ũ) +
α

2(N + α)
(−β̄S α)

N+α
α

>
α

2(N + α)
(−β̄S α)

N+α
α ,

(4.19)

which contradicts (4.11), ruling out this possibility. Then, we complete the proof. �

Proof of Theorem 1.7. By Lemma 4.7, there exists a Palais-Smale sequence {un} ⊂ M
rad
c,λ for Iλ|Hc at

the level m(c) , 0. From Lemma 4.2, {un} is bounded in H1
rad(RN). Then, from Lemma 4.8, there

eixsts λ0 > 0 such that for all λ > λ0, up to a subsequence,

un → ũ strongly inH1
rad(RN).

By Lemma 4.3, ũ is a radial minimizer of Iλ on Mc,λ and solves (1.1) with β̄ < 0. Finally, recalling
Lemma 4.1, we conclude that ũ is a ground state solution of Iλ onHc. This completes the proof. �

5. Conclusions

In this paper, we study the existence and non-existence of normalized ground state solutions
for the Choquard equation with mixed operators and the Hardy-Littlewood-Sobolev lower critical
exponent. By employing the fibering map and the Gagliardo-Nirenberg-Sobolev inequality, we obtain
the non-existence of solutions for the critical case p = 2 + 4

N . By utilizing variational method,
we get the existence of normalized ground states for he subcritical regime 2 < p < 2 + 4

N . By
constructing a Palais–Smale sequence, we obtain the existence of normalized ground state solutions
for the supercritical case 2 + 4

N < p < 2∗s.
Our study extends previous result for Choquard equation with local or non-local operators, solving

significant technical challenges due to the combinations of mixed operators, the Hardy-Littlewood-
Sobolev lower critical exponent, and a local perturbation in the Choquard equation. These findings
contribute to the broader understanding of local and non-local partial differential equations and have
potential applications fields such as physics, optimization, and phase transitions. Future research could
explore more general potentials, multi-peak solutions, and further applications in stochastic processes.
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