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Abstract: This paper investigates the existence and non-existence of normalized ground state
solutions for the following Choquard equation with mixed local and nonlocal operators, involving
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states, which are shown to be radially symmetric and strictly decreasing in |x|. For the supercritical
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demonstrate the existence of normalized ground state solutions in this regime as well.
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1. Introduction

In this paper, we consider the normalized solutions to the following Hardy-Littlewood-
Sobolev (HLS) lower critical Choquard equation with mixed local and non-local operators:

— Au+ (=A)’u = Bu+ (X% 5 Ju) )V u + Aul’?u, inRY, (1.1)

where N > 3,0 < s < 1l,@ € (O,N), 1> 0,2 < p <2} = 2. Here, 2; = ;2L is the fractional

Sobolev critical exponent and 1 + £ is the lower critical exponent in the sense of the HLS inequality.
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The fractional Laplacian operator (—A)* is defined by

(—=A)’u(x) = Cy ,P.V. f M) = UO) b RN,
’ RN |X _ y|N+25
where Cy is an appropriate normalization constant, and P.V. denotes the Cauchy principal value [2].
The equation

—Au+u=@*uPu inR® wueH'R?, (1.2)

often called the Choquard equation, was introduced in 1976 as a model arising from the Hartree-Fock
theory of a one-component plasma [14]. It has important applications in quantum physics; for instance,
it can describe the self-trapping of an electron in its own vacancy [25]. The term (I, * |u|*)u represents
a nonlocal self-interaction, where I, is the Riesz potential, commonly appearing in Coulomb-type
interactions (e.g., in Bose-Einstein condensates or plasmas). In Bose-Einstein condensation, such
equations describe collective behavior of particles under long-range interactions. The nonlocal term
captures pairwise particle interactions in a mean-field approximation.

The study of Choquard equations involving the HLS lower critical exponent has received
widespread attention due to its unique mathematical challenges. A pivotal contribution was made by
Moroz and Van Schaftingen [20], who provided a comprehensive analysis of the Choquard equation’s
ground states across the full range of exponents, including the HLS lower critical cases.

Building upon this foundational understanding, recent research has focused on more complex
models that incorporate additional terms, often to investigate the interplay between nonlocal and local
nonlinearities. In this direction, Yao et al. [30] studied the following Choquard equation with the HL.S
lower critical exponent

a

— Au+ Bu = A5 s ")l ¥ u + plulPu, in RV, (1.3)

where A and p are given positive numbers. The equation is constrained on the mass manifold

H, = {u e H'RY) : f lul*dx = cz},
RN

where c is a given positive number. Their work represents a significant step in analyzing problems with
competing critical nonlinearities, where the concentration-compactness principle and careful energy
level estimates are essential for overcoming the lack of compactness. Based on these, Li et al. [16]
highlight the subtle balance between the nonlocal Choquard nonlinearity and local interactions under
a constraint. Furthermore, Li [17] obtained the existence of normalized ground states in the Sobolev
critical case by the Sobolev subcritical approximation method.

On the other hand, some authors considered the following general fractional Choquard equation

(=AY u = Bu + A(X"™N s [ulP)|ulPu + plul*u, in RY, (1.4)

where 0 < s < 1, @ € (O,N), N > 2s, A,u > 0, and S is an unknown Lagrange multiplier.
Bhattarai [1], using the concentration compactness techniques, proved existence and stability of
normalized solution when 2 < p < N+++25,and 2<g<2+ 4—/\;. Feng et al. [9], by involving the
profile decomposition of bounded sequences in H*(R") and variational methods, extended the result of
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Bhattarai to the case 1 + { < ¢ <2+ %‘. Based on some suitable properties and the min-max principle,
Yang [31] showed that the problem has a mountain type solution for cases N+++25 Sp<2,= g’fgs
and 2 + % < g < 2. Furthermore, they also obtain a ground state. A more interesting result of HLS
critical Choquard equation can be seen in references [11, 18].

In recent years, the existence of equations with mixed operator (—A)*'u + (—A)*u has received

widespread attention. Yang and Mao [32] studied the following problem:

(=A)"'u + (=A)*?u + Au = f(u), in R",

where N > 2, f € C(R,R), and 0 < s < s, < 1, where an energy state exists if ¢ > ¢y and does
not exist if 0 < ¢ < ¢y. Here, ¢y is a positive number. Let N > 1 and f(u#) = |u/’u in the above
equation. Luo and Hajaiej [33] proved the existence of the energy ground state with p € (0, %) by
using a scaling argument.

The study of mixed operators of the form —Au + (—A)*u brings a wide range of applications. Its
significance stems from the superposition of two random processes with different scales (i.e., a classical
random walk and a Lévy flight). Roughly speaking, low-order operators play a dominant role in large-
scale time, while high-order operators guide diffusion in small-scale time. These mixed operators
arise naturally in systems combining classical processes, and Lévy processes have been widely used
in biomathematics and animal foraging during the theory of optimal searching; See [7, 8] and the
references therein. See also [13,22,23,27] and the references therein for further applications.

Some other results of mixed local and nonlocal operators can be found in [5,28] and the references
therein. The combined effects of mixed operators, HSL lower critical exponent, Choquard terms, and
power-type nonlinearities under mass constraints require new analytical tools, particularly when p
approaches critical exponents.

It is standard to observe that the normalized solutions of Eq (1.1) correspond to critical points of the
energy functional

1 S I
Iy(u) =5 f (—A) ufdx + f |Vuldx
2 RN 2 RN

N a [¢3 ﬂ
- —f (™™ s Jua )]V dx - —f |ul”dx
2(N + a’) RN P JrN

restricted to the (mass) constraint

H, = {u e H'RY) : f lul*dx = cz}.
RN

For s € (0, 1), the space H'(R") is continuously embedded in the fractional Sobolev space H*(R"), i.e.,
H'RY) — HY®RM).

This ensures that | |(=A)3 u?dx is well-defined on H'(RV) for 0 < s < 1.
We define

e(c) = Mienqulc L(u). (1.5

A function u € H'(R") is called a normalized ground state solution of Eq (1.1) if it satisfies (1.1) for
some S € R, belongs to the mass-constrained set H,, and attains the minimal energy among all critical
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points on H.. Moreover, a radial normalized ground state solution of Eq (1.1) is a normalized ground
state solution that is additionally radially symmetric, meaning u(x) = u(|x|). Our analysis will further
make use of the fundamental Hardy-Littlewood-Sobolev inequality, stated as follows.

Lemma 1.1. [15] Assume that 1 < y < oo, g € L"(RY), and h € L*(RN). Then there exists a
constant C > 0 such that

llg * Allr@yy < Cligllpu @mlAll e @y,

where

1 1 1
—+—=1+-.
A A Y

It follows from Lemma 1.1 that for any v € LY(R"), g € (1, %), |x[*N % v € L%(RN), and

I vl we < Cla@, N, @lVlla). (1.6)
LN“"I(RN)

Particularly, for any u € H'(RV),

N+a

(¢4 N
f (™ s Ju] R dx < ;0N ( f Iulzdx) , (1.7)
RN RN
where
S, = inf {f luPdx : u e LQ(RN),f (o™ s Ju) V)] ¥V dx = 1} > 0. (1.8)
RN RN
It follows from [15, Theorem 4.3] that S, is attained by
C c " 1.9
u(x) = Qc(x) := (m) ) (1.9)

for some C € R, e > 0,and y € R,
We now state our main results for Eq (1.1).

Theorem 1.2. Assume that N > 3,0 < s < 1,2 < p <2+ %, a € (O,N), and ¢ > 0. Then the
following hold:

1. There exists A > 0 such that for any A > A, the energy level satisfies

__ N o0 2048
e c) < 2(N+a)S” c .

2. The energy e (c) is attained by a function it € H, with the following properties:

(a) u is radially symmetric and strictly decreasing in |x|.
(b) i is a solution of (1.1) with an associated Lagrange multiplier 5 satisfying

_ N

~(1+4) 22
< - S N,
B N+a ¢

Moreover, it is a normalized ground state solution of (1.1).
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Remark 1.1. For2 < p < 2 + 4, Theorem 1.2 establishes the existence of normalized ground states
with strictly negative energy and quantitatively sharp Lagrange multipliers (), improving the results
in [16]. Two major difficulties arise in proving Theorem 1.2:

(1) The combination of the HLS lower critical exponent and a local perturbation in the Choquard
equation introduces inherent analytical challenges.
(2) The interplay between the local and nonlocal operators hinders a direct critical point analysis.

Foru € H.,0 € R, and a.e. x € R", define
(6 % u)(x) := egeu(egx),

which ensures that (6 x u)(x) € H,. With this scaling, we now introduce the fibering map
2560 260

e
Ty =00 % u) = ||u|| IIMII

DS Z(RN)

N a a
T T f (1™ s a5 -
2N + @) Jgn

We first consider the case p = 2 + %. For every u € H., it follows from Lemma 2.4 that

NaA(p — 2)e*
DL2(RN) T” ||Lp(RN)

NAcv
2 0 20 2
> : ||u||Dv2(RN) € [1 - N + 2CN,p) ||u||Dl,2(RN)-

D! Z(RN)

Np-2) (1.10)
e

||u||LP(RN)

() (0) =s*|lull; + & ull

DS Z(RN)

Under condition N
+
0<i<—*2 (1.11)

Ncwv CN,p
we find that (JL’})/ (6) > 0 for all § € R. Consequently, J(6) is strictly increasing on (—oo, +00), which
leads to the following nonexistence result.

Theorem 1.3. Assume that N > 3,0 < s < 1, € (O,N), p = 2 + 1iv’ and (1.11) hold. Then the
functional I,(u) has no critical point on H..

Now, we introduce the following Pohozaev identity. From reference [4, 19], the result of the next
proposition can be easy obtained.
Proposition 1.4. Let u € H'(RN) be a weak solution of (1.1), then u satisfies the Pohozaev identity:

N —2s
2 ”u”DsZ(RN) —”u”[)l 2(RN)

N e e AN
ol — 72z, + f(IXI“N Iul“N)Iul“NdX+—f lulPdx.
P JrN

Lemma 1.5. Let u € H'(RY) be a weak solution of (1.1), then u satisfies the following Nehair-
Pohozaev manifold:

(1.12)

M :={ueH, : Ex(u) =0},
where the Nehair-Pohozaev functional is given by

AN (p 2)

E(u) = slull} DI2RN) — ”LP(RN)

DTZ(RN) + ||l/l||
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Proof. By Proposition 1.4, we obtain that u satisfies the Pohozaev identity (1.12). Moreover, since u is
the weak solution of (1.1), we have

2 -N 1+& 1+&
el gy + el 2y = B f Juldx + f (™ s Ju R )l Ve + 4 f Jul”dx.
RN RN RN

Therefore, we have
AN(p - 2)

P
+ ||u||D] 2(RN) TH““LP(RN)

slull? =0,

Ds Z(RN)
which means that the proof is completed. O

In the following, we restrict our attention to the supercritical case 2+% < p < 2}, whichis equivalent
to m <s<l1

By the Pohozaev identity, any critical point of the restricted functional I,1| must lie in M, ,.
Moreover, following an argument analogous to that in [18, Lemmas 2.12 and 2.13], we conclude

that M., is a natural constraint.

Proposition 1.6. Assume that N >3, 0 < s <1, and 2 + % < p <2.1Ifue M., is a critical point
of ilm.,» then u is a critical point of I|..

We aim to show that /|, is bounded from below. To this end, we analyze the structure of the
Pohozaev manifold M. ,, which is closely related to the monotonicity and convexity of the fibering
map J*. Specifically, a direct calculation shows that

Np-2)

AN(p —2)e 2

(J/l) (9) _S6236||u|| DIZ(RN) 2p || ||LP(RN)

+ &|ul? = E (0 % u), (1.13)

DYZ(RN)

which yields that # € R is a critical point of J? if and only if § x u € M,,. Furthermore, we
have (Jj)'(O) = E,(u). To proceed, we decompose the Pohozaev manifold M., into three disjoint
parts M., = M, UM UM_,, where
o={ue Mea: (UD(0) > 0f = {ue H. - (71 (0) = 0,(7)" (0) > 0},
My ={ue Mea: () (0) =0} = fu e H. : (J})(0) = 0,(J})"(0) = 0},

and
Mgy ={ue Moy (1) (0) < 0f = fu e H, : (J})(0) = 0,(J})"(0) < 0}.
Therefore, for any u € M, ,, it follows that

N?*A(p - 2)?
D ©) =25l g, + 2llrzgam, p—pn 1 e,
Nfl(p 2) N> A(p - 2)?
|| ”LP(RN) T” ”LP(RN)

_N/l(p—2) N(p 2)

- p || ||LP(RN)

According to 2 + ]i\, < p <2}, we have
(IJH'(0) <0, forallu e M., (1.14)
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and
M, = Mg’ 1=0.
From the preceding analysis of the Pohozaev manifold M. ,, we now establish the following result.

Theorem 1.7. Assume that N > 3,0 < s < 1,a € (O,N), and 2 + % < p < 2. Then there exists
a constant Ay > 0 such that for any A > Ay, (1.1) admits a radial ground state solution it and the
corresponding Lagrange multiplier 5 < 0.

The rest of this paper is organized as follows. In Section 2, we collect the necessary preliminary
results. We then prove Theorem 1.2 in Section 3 and proceed to establish Theorem 1.7 in Section 4.

2. Preliminaries

This section collects preliminary results needed for the proofs of our main theorems. We first recall
the following compactness lemma from [24].

Lemma 2.1. [24] For N > 3, there exists a constant S = S (N) such that

2
”VMHLZ(RN)

3 .
L7 ®N)

S =

in
ueH'®RM\{0} ||u|
Furthermore, H'(R") is continuously embedded into L’(RY) for all 2 < p < 2* and compactly
embedded into L} (RN) forall2 < p < 2.

We will also use the Gagliardo—Nirenberg—Sobolev inequality from [3].

Lemma 2.2. For any u € H'(RY), and p € (2,2%), there exists a constant C np > 0 such that

Np-2) 2p-(p-2N

4 4
f lul’dx < Cy,, ( f |Vu|2dx) ( f |u|2dx) : (2.1)
RN RN RN

q q
[ st = [ EEOE vy,
RV rY Jrv X = y[N e

We now introduce two lemmas that are essential for establishing the splitting property of the
energy functional.

Lemma 2.3. /2], Lemma 2.4] For N > 3, @ € (0,N), and ¢q € [1,-2X), and let {u,} be a bounded

> N+a

We denote

. 2Ngq
sequence in L¥ (R") such that u, — u a.e. on RN asn — oo, then

lim [ f (ol ™ s ot |9t | 7 — f (el ™ o gy — 0l )Nty — ul"dX] = f (el ™ Juel) el .
RN RN RN

n—oo

Lemma 2.4. [20] For N > 3, @ € (O,N), g € [1 + &, %] and r € [2,2*], and let {u,} ¢ H'(R") be

N> N-2
such that u, — uin H'(RN). Then, for all v € H'(RN),
f (N s fut | 1t vdx — f (N sl el uvdx (2.2)
RN RN
and
f |t u,vdx — |u| 2uvdx (2.3)
RN RN
asn — oo,
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3. Proof of Theorem 1.2

This section is devoted to the existence of normalized ground state solutions.

Lemma 3.1. Assume that N > 3,0 < s < 1,2 < p <2+ % v @ € (O,N), and ¢ > 0. Then the
functional 1, is bounded from below and coercive on ‘H..

Proof. 1t follows from (2.2) and (1.7) that for each u € H.,

N -0+
1,1(14) ”u”DSZ(RN) EHMIIZDI,Z(RN) - 2(N " Q)S i 02(1+N)
A Ned 2pNp-2) (3.1)
- _CNp”u”Du(RN)
Since 2 < p < 2+ %, we have 0 < N(’;_z) < 2. It follows that I, is bounded from below and coercive

on H.. O

Lemma 3.2. Assume that N > 3,0 < s < 1,2 <p <2+ 3 v @ € (O,N), and ¢ > 0. Then, there
exists A > 0 such that for any 1 > A, the energy level defined in (1 5) satisfies

N —(1+%) 2(1+2)
-———S, " v < 0. 3.2
e c) < SN+ @) c < 3.2)

Proof. Equation (1.9) shows that

N+a

P N
f (|x|“-N*|Q€|“7v>|Qe|“%dx:S;“*N)( f |QE|2dx)
RN RN

Based on the above equality, we define

W= Q€ nd 0 % W)(x) := e Ty(e’x), forx e RV,

Qell 2@y

It is clear that y € H, and (6 x ) € H,. A direct computation shows that

2s9 20

€ 2
1/1(9 * l/’) = ”l//”DsZ(RN) _”l//”DLZ(RN)
N(P 2)9
a— N I+ I+%

2(N+ 5 f (™ Bl e AL e,
2

B, + I Mg 00 caep)

Ds: Z(RN) Dl Z(RN) 2(N + (I)
N(p-2)
e 7 b
||w||Lp(RN)

Hence, for2 < p <2 + , it follows that there exists 6, < —1 such that

N S—(1+N)C2(1+")

6,1(6') < m
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For p = 2+ >, if

plvll?
1> 1 = ﬂ,
2||w||LP RN)

then, there exists 6y < —1 such that (3.2) holds.
F0r2+ L < p< 2+ ,lety; =2s,and y, = N(I’T_z). We have

O<yi <y <2

Set t = ¢’ > 0. Define
f(t)= A" + B —Cr?, t> 0,

lly 11 52N W12 2
where A = —=52 >0, B= 252 > = IILDIILP(RN)

Consider the function
g(t) = A" — Cr~.

Since y, > vy, for small > 0, g(r) > 0. Let

Then g(t;) = 0, and for ¢ > #;, we have g(¢) < 0.
Now, since g is continuous and g(¢) < 0 for ¢t > t;, there exists 6 > 0 such that for all 7 € (¢, #; + 9),

g(t) < —n forsomen > 0.

Now examine f(f) = g(¢) + B*. Since Bf? is continuous and #; > 0, we can choose ¢ small enough
and A > A, large enough so that for ¢ € (1, t; + 0),

Bt* < B(t; +6)* < 1.
Then for such ¢,
fO)<-n+Brf <-n+n=0.
Thus, f(f) < 0 for ¢ € (t;,¢; + 6). Taking A = max{A4;, A,}, we obtain the desired results. O

Lemma 3.3. Assume thatN >3,0<s<1,2<p< 2+%, a € (0,N), and ¢ > 0, and let {u,} C H,. be a
minimizing sequence of e,(c). Then, there exists a subsequence, still denoted by {u,}, a sequence {z,} C
RN and &t € H, such that u,(- + z,) — @ strongly in H'(RV).

Proof. It follows easily from (3.1)and 2 < p < 2+ % that {u,,} is bounded in H'(R"). Thus, there exists
a subsequence of {u,} (still denoted by {u,}) and & € H'(RY) such that

u, = it in H'®RY), u, » ot in L2 RY), u, » &t a.e.onR".

loc

We claim that & # 0. Suppose, for contradiction, that # = 0. Then u, — 0 in H'(R"). Applying
Lemma 2.4, we find that

f (™ s Jat |7 )| ¥ dx = 0,,(1), f |u,|Pdx = 0,(1).
RN RN
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Hence,
1 1
e/l(c) = I/l(un) + On(l) ||un”D52(RN) Ellunlllel(RN) > 0

This contradiction with Lemma 3.2 implies that &# # 0. Consequently, there exists a sequence {z,}
such that #, := u,(- + z,) converges weakly to & # 0 in H'(R"). By applying Brezis-Lieb Lemma and
Lemma 2.3, we derive that

C = ”un”LZ(RN) ”un u“LZ(RN) + ”u”LZ (RM) + On(l) (33)
L(uy) = Li(u, — ) + L(@) + 0,(1). (3.4)
If “””LZ(RN) < ¢?, then by setting ¢ : = @ Wehaver > 1,10 € H,. and
HlL2@N)
o P £ NPHW) a-N 1+2
1)(tir) =§IIMIIDSI,2(RN) + E”u”Dl,Z(RN) N+ (| | W)lal "tV dx
At?
- —f |l dx,
P JIr¥
which yields that
N S (R N e ier A=)
L) = t—zlﬁ(tu) + m LN(lxl * |1 +N)|Lt| *Ndx + T LN |u|”dx. 3.5
Similarly, setting ¢, m > 1, then, t,(u, — it) € H,, it follows that
n— U 2jN)
1 N(t, o
1H(u, — @) =gh(tn(un—ﬁ))+ 2EN+ ))f (1™ s fuay, — 20" V), — 1" ¥ dx
A -1
LA =D f 0, — 2P dx (3.6)
p RN

1 .
>t_21/l(tn(un — ).

n

In view of (1.7), and (3.3)—(3.6), we deduce that

ea(c) =L(uy) + 0,(1) = L) + Ly — it) + 04(1)

1 N 1 N(ti N 1+ 1+
>—=I(t —1(t,(u, — it o N vd
tza(u)+t%((u ) + 2N + )f(ll il X
AP -1
+ ¥ |&[Pdx + 0,(1)
RN

1 1
>t—26/1(C) + t—ze/z(c) = e, (o),

which is a contradiction. Hence, ||i||? = 2. Consequently, the sequence iI, := u,(- + z,) converges

LXRY)
strongly to i in L>(RY). Hence, by [21, Lemma 2.4], we obtain

f (™ s [, | W)t | ¥ dx = f (™ s @ ¥)la) v dx + 0,(1). (3.7)
RN RN
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By the interpolation inequality and the Sobolev embedding theorem, we deduce that

||ﬁn MHLF(RN) ”l/ln u”LZ(RN)”un I/ll Lz*(RN) Cllﬁn u”LZ(RN) 0 (38)

asn — oo, where p € (2, 2*)and% = £

of norm, we conclude that

(S]]

e (c) < () < liminf 1(#%,) = liminf 1,(u,) = e (c),
n—oo n—00
which 1mphes that ”ﬁn”Ds,Z(RN) - ||I’/\t||DS’2(RN) and ”ﬁn”D'vZ(RN) - ||ﬁ||Dl,2(RN) asn — oo, O

Proof of Theorem 1.2. Lemma 3.3 guarantees the existence of a minimizer & for I, on H,. Consider
the symmetric decreasing rearrangement |ii|* of &i. Clearly,

a2y = Ml z2gyy, Malllegyy = 1@y (3.9)

Combining the classical and fractional Polya-Szegd inequality [26] with (A.11) from [29], we
conclude that

Ak 2 ~ 2 A 2

|||I/t| ”DS,Z(RN) < ”lu”le,Z(RN) < ”u”Ds,Z(RN)’ (310)
INTIIY)

|||l/l| ”DI,Z(RN) |||u|||D12(RN) ||u”D12(RN) (311)

By the Riesz rearrangement inequality [15, Theorem 3.4], we have

f(IXI“ Nl ®)lal R dx < f(IXI“ N (al)" ®)(al)  F d. (3.12)

From (3.9)—(3.11), we obtain |i|* € H. and [,(|a]*) < I,(|it]) = e (c). Therefore, the minimizer |i|*,
which is radially symmetric and decreasing, attains e,(c). For simplicity, we continue to denote this
minimizer by #i. Furthermore, there exists a corresponding Lagrange multiplier S such that

n.2 ~112 ~112 -N 1
Be =||u||Ds,z(RN)+||u||D1,2<RN)—fRN(IXI“ [l doe = AR,
_ @ a-N _ 151+ a1+ § (p )
=2e,(c) N+afRN(IXI sl Ol v dx = ——Ifll}, g,
N

—(1+%) 2(1+2)
<2ey(c) < ———8, VeV <0,
S2e(©) N+a “

recalling Lemma 3.2, which implies that

N - "
ﬁ<—NTS (+) 2N < 0.

This completes the proof. O
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4. Proof of Theorem 1.7

In this section, we shall prove Theorem 1.7.

Lemma 4.1. Assume that N > 3,0 < s < 1,a € (O,N), and 2 + % < p < 2% Foreachu e H, J,j
admits a unique critical point 6, € R such that

1,6, *x u) = max L0 % u), (6, *u)e M., 4.1)
te

Particularly, the map u € H, — 6, € R is of class C".

Proof. For any u € H,, we have

IH'

1 2(1- S)gll || N/l(p - Z)e(N(ﬁ 2) (42)

2 0 -25)0
* (llullez(RN) + —e DL2(RV) T 9 ||u||Lp(RN))

Thanks to 1 > s > 0 and 2 + & < p, we can derive that (J})'(6) — 0* as 1 — —oco and (J}) () — —co
as 6§ — +oo. Furthermore, from (1.10), we conclude that (Jj)’(@) has a unique zero point 6,, which is
the unique maximum point of J4(#). Together with (1.10) and (1.13), (4.1) holds.

We denote by ¥ : R X H, — R the function W(6,u) = (Jj)’(@). Applying the implicit functon
theorem to the C! function ¥, we can complete the proof. O

Lemma 4.2. Assume that N > 3,0 < s < 1,a € (O,N), and 2 + % < p < 2. Then I, is coercive
on M. .

Proof. For each u € M, from (1.7) and Lemma 1.5, we observe that

1 : 1
L(u) == f |(=A)2uldx + = f IVul*dx
2 RN 2 RN

N a a ﬂ,
- mf (™™™ s Jau) V) eV dx — ;f |u|Pdx

4.3)
Np-2)-4s f N(p-2)— 2
>—— —A)2ufdx + ——— Vu|~d
2N(p —2) I(8) ufdx 2N(p —2) | Vuldx
_(1+w) 2(N+a)
2(N +a) ’
which completes the proof. O

We now introduce the following key definitions

md(RN Yi={ue H'®RY) : uis radially symmetric},
7_{rad _7_{ N Hl d(RN)
M =M. N H,y(RY),
m(c) = 1nf L(u).

ueM A
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Lemma 4.3. Assume that N >3,0<s<1,a € (0,N), and 2 + % < p < 2% Then,

inf I(u) = inf I;(u).

UEMc ue M4
Proof. From the embedding M’ c M., it follows that

nf Li(u) < inf I(u).
nf a(u) g a(u)

Ue. A
Thus, the proof reduces to show that

inf Lu)> inf L(u). (4.4)

ueMe, ue M

To this end, let |u|* represent the symmetric decreasing rearrangement of |u|. Through applications
of (3.9)~(3.11), we obtain |u|* € H'* and

T () = 10 * |ul*) < (0 * u) = T1(0).
From (3.9), (3.10) and (4.2), we obtain —co < 6~ < 6,. Combining this with Lemma 4.1 yields
T30 > T30 = Ty (Oupe)-
Since u € M. ,, it follows that 6, = 0, and consequently
L) = J3(0) > Jp-(Or) = L@ * [ul”).
Observing that 6, % |ul* € M/, we deduce that

inf I(u) > inf 1,1(9|u|* * |Lt|*) >
ueMa

f 1L,(u),
ueM., LAI /l(u)

uei/r\ltr.‘f‘
from which we conclude that (4.4) holds. O
Lemma 4.4. Let u € H'™ and 6 € R. The mapping
TWH ™ = TouHI ™, ¢ 0% ¢ (4.5)
is a linear isomorphism, with its inverse given by
@ (=0) x ¢.
Here T, H™ denotes the tangent space to H“ at u.

Proof. The proof is standard, see [30, Lemma 5.5]. m]

Next, we introduce the functional I, : H’* - R defined by
I_/l = 1/1(9,4 * I/l)

It follows from Lemma 4.1 that I is of class C' on H"“. Moreover, adapting the methods of [6,
Lemma 3.15], we obtain the following result.
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Lemma 4.5. For each u € H™ and € T,H'™, the following identity holds

L)y = [, * w6, * ¥]. (4.6)

Analogously to [6, Lemma 3.16], the existence of Palais-Smale sequences holds for any general
homotopy-stable family of symmetric subsets of . This follows from Lemmas 4.4 and 4.5.

Lemma 4.6. Let K be a homotopy-stable family of compact subsets of H™ ¢ with closed boundary D
and define

o« = inf max I,(u).
K BeK ueB /1( )

Suppose the following assumptions hold:
(i) D is contained in a connected component of M;“f

(ii) The min-max level o satisfies the strict inequality
max{sup I,(D),0} < o < co.

Then, there exists a Palais-Smale sequence {u,} C Mf,“f of I, restricted to 7-(:“" at level o k.

By Lemma 4.6, there exists a Palais-Smale sequence {u,} C M;"f for the restricted functional / Al(}{(md
at the level m(c) # 0.

Lemma 4.7. Assume that N > 3, and 2+% < p < 2}. Then, there exists a Palais-Smale sequence {u,} C
MZ“f Jor the restricted functional 1|4« at the level m(c) # 0.

Proof. Let K denote the family of all singletons with u € . Since K consists only of single-element
sets, its boundary D is trivially empty. Following the framework established in [10, Definition 3.1],
we observe that K forms a homotopy-stable family of compact subset in H’* without boundary.
Combining this structural property with Lemma 4.3, we obtain

or = infmax j(u) = inf Ii(u) = inf ILi(u) = inf I,(u) = m(c).
BeK u€B ueH! ueMred ueMea

Therefore, applying Lemma 4.6, we conclude the proof.
O

Next, we analyze the convergence of special Palais-Smale sequences satisfying additional structural
conditions. Our approach follows the pioneering framework introduced by Jeanjean in [12].

Lemma 4.8. Assume N > 3, and 2+% < p <2 Let{u,} C Mzaj’ be a bounded Palais-Smale sequence
Jor |y at level m(c) # 0 in H rla d(RN ). Then, there eixsts 1y > 0 such that for each A > Ay, up to a
subsequence, u, — i strongly in H! (RV).

Proof. The argument proceeds in four steps:
Step 1. Since {u,} C Mf“f is bounded in H} ,(R") and the embedding H! (R") — LYR") is compact

ra

for all g € (2,2%), there exists it € H! (R") such that, up to a subsequence,
w, — iin H! (R™), u, — itin LYR"), for g € (2,2%) and a.e. in R". (4.7)
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Furthermore, there exists a sequence {8,} C R such that for any v € H la d(RN ),

7

(—=A)2u,(—A) 2 vdx + f Vu,Vvdx — 3, f u,vdx
RN R

RN N

4.8)
- f (™ s futal )Vt vdx = A |l uvdx = 0, (DY
RN RN

Taking v = u, in (4.8), we observe that
2 -N 1+4 @4 2 2
_ﬁnc = /l”un”fp(RN) + LNGXVI * |un| +N)|un|N+ d-x - ”unHDs,Z(RN) - ||un||Dl,2(RN) + Oﬂ(l)a

which yields that S, is bounded. Then, up to a subsequence, there exists 3 € R such that 8, —
asn — oo,

Step 2. 3 <0and @i # 0. From 2 + ¢ < p < 2; and the fact that {u,} C M/*, we deduce that

o2 _[2ps=N(p-2) T 2p-N(p-2) T
ﬁnc - N(p _ 2) Mn Ds,Z(RN) N(p _ 2) l/ln DI,Z(RN)

+ f (™ 5 Juy |9, |V dx > 0,
]RN

4.9)

which leads to 8 < 0 with equality if and only if i = 0. We will show that § # 0; if not, due to (4.9)
and E,(u,) = 0,(1), we can see that m(c) + 0,(1) = I,(u,) = 0,(1), which contradicts Lemma 4.2.
Thus, 8 < 0 and @ # 0. )

Step 3. The upper bound of m(c) — £¢2. From (1.8) and (1.9), we obtain

2

f (|x|"-N*|Qe|“ﬁ>|Qe|“7vdx=S;“*”( f IQelde)
RN RN

¢ = _ Qe ond (0 * $)(x) 1= e0p(e ),
| Qell 2@
for a.e. x € RY. Obviously, ¢ € H. and (6 x ¢)(x) € H,. By Lemma 4.1, there exists a unique 0, € R

such that

N+a
N

Let

L0y x ¢) = max L@ * @), O, % e M.,

Lemma 4.3 yields that
m(c) < 1;(0, * ¢).
A direct computation yields

m(c) <I(0s * ¢)

256, )

=, + S0, — ﬁ fR g ey
de 50 )

W
B 0% 6 162520, p
_TH‘/’”D&Z(RN) + Tl|¢|lDls2(RN) - T||¢||LP(RN)

) % R,

N+«
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Consequently, taking

N(p-2)

82s6¢ e— 5 94,
/l ( ||¢||DJ Z(RN) ||¢||D1 Z(RN)) p )
||¢||LP(RN)
we conclude that for any 4 > A,
N —(1+%) 2(1+2 ).
<-——5, " N 4.10
me) < Nt ¢ (4.10)
Therefore, applying (4.10), we conclude that
B 2 N -(I+%) 231 B
—Lr e ——§, TV T2
me) = e < Nt @) ¢ 2°
Now, we define a function 2 : R* - R
h(c) = _LS—(HN)Cz(HN) écz_
2(N + )
Obviously, there exists a unique critical point
Co = (‘BS};;)M ,
and .
(04 - 1+ @
ey = 5 — (-Bsa)
)= 3T
is the maximum of g. Hence, it holds that
B 2 a N
—=c"< ——(-BS, . 4.11
me) =3¢ 2(N+oz)(’8 ) 10

Step 4. u, — @ in H! (RY). Since u, — it in H! ,(R"), according to (4.8) and Lemma 2.4, we deduce
that i is a weak solution of

— Al + (=Nt = Bii + (127N s [a) " 7)@ v + Aa2u, in RV, (4.12)

Thus, we derive that

AN (p 2)

Ey(@) = s} Nl gy = =5 —lll}, v, =

D5 Z(RN)

Letv, = u, — it, then v, — 0in H'! (R™). Thus,

rad
2 ~112 2
”un”Ds,Z(RN) = ”u”D:,Z(RN) + ”vn”D:,Z(RN)'

2 ~112 2
”un”Dl,Z(RN) = ”u”Dl,Z(RN) + ”vn”DI,Z(RN)'
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By (4.7) and Lemma 2.3, we conclude that

(™™ s Jua ) V), | ¥ dx = f (™ s v, [ W)y, | N dx
RN

f (™ s il )l dx + 0,(1),

f Iunlpdx:f [#|Pdx + 0,(1).
RN RN

Combining E,(u,) = 0 and E,(it) = 0, we derive that

and

||un||Dv2(RN) ”u”DvZ(RN), ”Vn”DvZ(RN) - On(l)'

”un”DlZ(RN) ”u”Dl Z(RN)’ ”vn”Dl Z(RN) - On(l)

On the other hand, by (4.12), we have for allv e H rla d(RN ) that

I,A(it)v —ﬁf ivdx =0
RN

Taking v = u, — i as a test function in (4.8) and (4.17), we deduce that

2 2 0 2 -N 1+¢ 1+¢
”v””Dsz(RN) + ||vn||D1,2(RN) :ﬁ”vn”LZ(RN) + f (lxla * |vn| +N)|vn| +Nd_x
RN

+ AWall}, gy + 0a(D).

LP(RN)

Using (4.14)—(4.16), we obtain

-N 1 1
= BlVallj2 ey, = f(IXI“ ol v R o,

Recalling (1.8), we see that

N+a

d=0or d>(-BS,) « .

We distinguish two cases:

(4.13)

(4.14)

(4.15)

(4.16)

4.17)

(4.18)

Casel.Ifd =0, thenu, — i@ in H}a d(RN ), and the proof concludes since i achieves the infimum m(c).

N+a

Case 2. If d > (—-f3S,) "« , by (4.13)—(4.16), we derive the strict inequality

L(it) > lim I;(u,) = m(c).
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Together with (4.13)—(4.16) and (4.18), recalling that 8 < 0, we have that

B a2 tim [,

2¢ 2 n> L&

m(c) -
Sm(e) =5 Tim v,

IR By

=1(@) + lim | L(v) = Sl

D f (o w5 - B ||v,,||L2(RN)) (4.19)

lmf(IXI"N vl v e

N+a

=[(it) + lim (

=L + ——— 2(N

>1,(it) + 2(N )( ~BSa)

N+a

(_ﬁ a)i

2(N+ @)

which contradicts (4.11), ruling out this possibility. Then, we complete the proof. O

Proof of Theorem 1.7. By Lemma 4.7, there exists a Palais-Smale sequence {u,} C M”’d for Iy, at
the level m(c) # 0. From Lemma 4.2, {u,} is bounded in H la d(RN ). Then, from Lemma 4.8, there
eixsts Ay > 0 such that for all 4 > Ay, up to a subsequence,

u, — ii strongly inH} ,(R").

By Lemma 4.3, i is a radial minimizer of /; on M., and solves (1.1) with 8 < 0. Finally, recalling
Lemma 4.1, we conclude that i is a ground state solution of 7, on H,. This completes the proof. O

5. Conclusions

In this paper, we study the existence and non-existence of normalized ground state solutions
for the Choquard equation with mixed operators and the Hardy-Littlewood-Sobolev lower critical
exponent. By employing the fibering map and the Gagliardo-Nirenberg-Sobolev inequality, we obtain
the non-existence of solutions for the critical case p = 2 + %. By utilizing variational method,
we get the existence of normalized ground states for he subcritical regime 2 < p < 2 + %. By
constructing a Palais—Smale sequence, we obtain the existence of normalized ground state solutions
for the supercritical case 2 + % <p<?2.

Our study extends previous result for Choquard equation with local or non-local operators, solving
significant technical challenges due to the combinations of mixed operators, the Hardy-Littlewood-
Sobolev lower critical exponent, and a local perturbation in the Choquard equation. These findings
contribute to the broader understanding of local and non-local partial differential equations and have
potential applications fields such as physics, optimization, and phase transitions. Future research could
explore more general potentials, multi-peak solutions, and further applications in stochastic processes.
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