Research article

Analytical soliton solutions and dynamical behavior of a conformable fractional nonlinear system with Hamiltonian structure

  • Received: 16 August 2025 Revised: 22 October 2025 Accepted: 28 October 2025 Published: 04 December 2025
  • MSC : 34G20, 35A20, 35A22, 35R11

  • This paper focuses on solving the precise wave solution and dynamics properties, as well as stability in a nonlinear system in space-time in terms of conformable fractional derivatives. The generalized Riccati-Bernoulli sub-ODE method along with Bäcklund transformation of analyzing the underlying model captures key nonlinear dynamics that are of interest in contemporary engineering, physics, and applied mathematics. Using a conformable fractional derivative operator we have made a leap beyond classical models in integer orders to be able to represent more realistic aspects of the effects of memory and heredity both on the complex media. We have obtained the solutions and they include new types of dark kink solitons whose propagations correspond to localized transitions between two different states of medium. The qualitative character of these solutions can be visualized by 2D profiles with different values of the fractional-order parameter ($ \alpha $) and 3D plots in the classical case. The influence of the changes in the fractional ordering on the amplitude of the waves and stability of the solitons is explained with the help of these graphical representations. Moreover, a section of the phase-space and bifurcation diagrams related to the associated planar dynamical system emphasize the sensitivity and abundance of dynamics of the model with respect to parameter perturbation. This multifaceted research enriches the knowledge about nonlinear wave propagation in multi-complex media, as well as providing insights of relevance into the dynamics and relationships between nonlinearity, dispersion, and fractional-order dynamics.

    Citation: Maher Alwuthaynani. Analytical soliton solutions and dynamical behavior of a conformable fractional nonlinear system with Hamiltonian structure[J]. AIMS Mathematics, 2025, 10(12): 28689-28713. doi: 10.3934/math.20251263

    Related Papers:

  • This paper focuses on solving the precise wave solution and dynamics properties, as well as stability in a nonlinear system in space-time in terms of conformable fractional derivatives. The generalized Riccati-Bernoulli sub-ODE method along with Bäcklund transformation of analyzing the underlying model captures key nonlinear dynamics that are of interest in contemporary engineering, physics, and applied mathematics. Using a conformable fractional derivative operator we have made a leap beyond classical models in integer orders to be able to represent more realistic aspects of the effects of memory and heredity both on the complex media. We have obtained the solutions and they include new types of dark kink solitons whose propagations correspond to localized transitions between two different states of medium. The qualitative character of these solutions can be visualized by 2D profiles with different values of the fractional-order parameter ($ \alpha $) and 3D plots in the classical case. The influence of the changes in the fractional ordering on the amplitude of the waves and stability of the solitons is explained with the help of these graphical representations. Moreover, a section of the phase-space and bifurcation diagrams related to the associated planar dynamical system emphasize the sensitivity and abundance of dynamics of the model with respect to parameter perturbation. This multifaceted research enriches the knowledge about nonlinear wave propagation in multi-complex media, as well as providing insights of relevance into the dynamics and relationships between nonlinearity, dispersion, and fractional-order dynamics.



    加载中


    [1] M. Vinyas, Computational analysis of smart magneto-electro-elastic materials and structures: Review and classification, Arch. Comput. Methods Eng., 28 (2021), 1205–1248. http://dx.doi.org/10.1007/s11831-020-09406-4 doi: 10.1007/s11831-020-09406-4
    [2] B. L. Wang, Y. W. Mai, Applicability of the crack-face electromagnetic boundary conditions for fracture of magneto-electro-elastic materials, Int. J. Solids Struct., 44 (2007), 387–398. http://dx.doi.org/10.1016/j.ijsolstr.2006.04.028 doi: 10.1016/j.ijsolstr.2006.04.028
    [3] Y. Sui, W. Wang, H. Zhang, Effects of electromagnetic fields on the contact of magneto-electro-elastic materials, Int. J. Mech. Sci., 223 (2022), 107283. http://dx.doi.org/10.1016/j.ijmecsci.2022.107283 doi: 10.1016/j.ijmecsci.2022.107283
    [4] M. A. Koc, I. Esen, M. Eroglu, Thermo-mechanical vibration response of nano-plates with magneto-electro-elastic face layers and functionally graded porous core using nonlocal strain gradient elasticity, Mech. Adv. Mater. Struct., 31 (2024), 4477–4509. http://dx.doi.org/10.1080/15376494.2023.2199412 doi: 10.1080/15376494.2023.2199412
    [5] X, Li, P, Gao, W. Liu, Geometric-stair-shaped super-regular breathers induced by PT-symmetric nonlinearity, Phys. Rev. A, 111 (2025), 033515. http://dx.doi.org/10.1103/PhysRevA.111.033515 doi: 10.1103/PhysRevA.111.033515
    [6] A. A. Alderremy, S. Aly, R. Fayyaz, A. Khan, R. Shah, N. Wyal, The analysis of fractional-order nonlinear systems of third order KdV and Burgers equations via a novel transform, Complexity, 2022 (2022), 4935809. http://dx.doi.org/10.1155/2022/4935809 doi: 10.1155/2022/4935809
    [7] E. M. Elsayed, R. Shah, K. Nonlaopon, The analysis of the fractional-order Navier-Stokes equations by a novel approach, J. Funct. Space, 2022 (2022), 8979447. http://dx.doi.org/10.1155/2022/8979447 doi: 10.1155/2022/8979447
    [8] M. Naeem, H. Rezazadeh, A. A. Khammash, S. Zaland, Analysis of the fuzzy fractional-order solitary wave solutions for the KdV equation in the sense of Caputo-Fabrizio derivative, J. Math., 2022 (2022), 3688916. http://dx.doi.org/10.1155/2022/3688916 doi: 10.1155/2022/3688916
    [9] M. Alqhtani, K. M., Saad, W. M. Hamanah, Discovering novel soliton solutions for (3+1)-modified fractional Zakharov-Kuznetsov equation in electrical engineering through an analytical approach, Opt. Quant. Electron., 55 (2023), 1149. http://dx.doi.org/10.1007/s11082-024-06763-3 doi: 10.1007/s11082-024-06763-3
    [10] H. Yasmin, A. S. Alshehry, A. H. Ganie, A. Shafee, Noise effect on soliton phenomena in fractional stochastic Kraenkel-Manna-Merle system arising in ferromagnetic materials, Sci. Rep., 14 (2024), 1810. http://dx.doi.org/10.1038/s41598-024-52211-3 doi: 10.1038/s41598-024-52211-3
    [11] H. Rezazadeh, H. Tariq, M. Eslami, M. Mirzazadeh, Q. Zhou, New exact solutions of nonlinear conformable time-fractional Phi-4 equation, Chin. J. Phys., 56 (2018), 2805–2816. http://dx.doi.org/10.1016/j.cjph.2018.08.001 doi: 10.1016/j.cjph.2018.08.001
    [12] A. K. Alsharidi, A. Bekir, Discovery of new exact wave solutions to the M-fractional complex three coupled Maccari's system by Sardar sub-equation scheme, Symmetry, 15 (2023), 1567. http://dx.doi.org/10.3390/sym15081567 doi: 10.3390/sym15081567
    [13] K. Faisal, S. Abbagari, A. Pashrashid, A. Houwe, S. W. Yao, H. Ahmad, Pure-cubic optical solitons to the Schrodinger equation with three forms of nonlinearities by Sardar sub-equation method, Results Phys., 48 (2023), 106412. http://dx.doi.org/10.1016/j.rinp.2023.106412 doi: 10.1016/j.rinp.2023.106412
    [14] Y. Asghari, M. Eslami, H. Rezazadeh, Exact solutions to the conformable time-fractional discretized mKdV lattice system using the fractional transformation method, Opt. Quant. Electron., 55 (2023), 318. http://dx.doi.org/10.1007/s11082-022-04529-3 doi: 10.1007/s11082-022-04529-3
    [15] B. Hong, Exact solutions for the conformable fractional coupled nonlinear Schrodinger equations with variable coefficients, J. Low Freq. Noise Vib. Act. Control, 42 (2023), 628–641. https://doi.org/10.1177/14613484221135478 doi: 10.1177/14613484221135478
    [16] Q. Yin, B. Gao, Z. Shi, Distinct exact solutions for the conformable fractional derivative Gerdjikov-Ivanov equation via three credible methods, J. Taibah Univ. Sci., 17 (2023), 2251219. https://doi.org/10.1080/16583655.2023.2251219 doi: 10.1080/16583655.2023.2251219
    [17] H. Ahmad, M. N. Alam, M. A. Rahman, M. F. Alotaibi, M. Omri, The unified technique for the nonlinear time-fractional model with the beta derivative, Results Phys., 29 (2021), 104785. http://dx.doi.org/10.1016/j.rinp.2021.104785 doi: 10.1016/j.rinp.2021.104785
    [18] M. S. Ullah, H. O. Roshid, M. Z. Ali, New wave behaviors of the Fokas-Lenells model using three integration techniques, PloS One, 18 (2023), e0291071. http://dx.doi.org/10.1371/journal.pone.0291071 doi: 10.1371/journal.pone.0291071
    [19] M. S. Ullah, M. Mostafa, M. Z. Ali, H. O. Roshid, M. Akter, Soliton solutions for the Zoomeron model applying three analytical techniques, PloS One, 18 (2023), e0283594. http://dx.doi.org/10.1371/journal.pone.0283594 doi: 10.1371/journal.pone.0283594
    [20] M. N. Alam, S. M. R. Islam, The agreement between novel exact and numerical solutions of nonlinear models, Partial Differ. Equ. Appl. Math., 8 (2023), 100584. http://dx.doi.org/10.1016/j.padiff.2023.100584 doi: 10.1016/j.padiff.2023.100584
    [21] M. Alqhtani, K. M. Saad, R. Shah, W. Weera, W. M. Hamanah, Analysis of the fractional-order local Poisson equation in fractal porous media, Symmetry, 14 (2022), 1323. http://dx.doi.org/10.3390/sym14071323 doi: 10.3390/sym14071323
    [22] R. Shah, Y. Alkhezi, K. Alhamad, An analytical approach to solve the fractional Benney equation using the q-homotopy analysis transform method, Symmetry, 15 (2023), 669. http://dx.doi.org/10.3390/sym15030669 doi: 10.3390/sym15030669
    [23] S. Noor, A. S. Alshehry, A. Shafee, R. Shah, Families of propagating soliton solutions for (3+ 1)-fractional Wazwaz-BenjaminBona-Mahony equation through a novel modification of modified extended direct algebraic method, Phys. Scr., 99 (2024), 045230. http://dx.doi.org/10.1088/1402-4896/ad23b0 doi: 10.1088/1402-4896/ad23b0
    [24] R. Shah, A. Saad Alshehry, W. Weera, A semi-analytical method to investigate fractional-order gas dynamics equations by Shehu transform. Symmetry, 14 (2022), 1458. http://dx.doi.org/10.3390/sym14071458
    [25] A. S. Alshehry, H. Yasmin, F. Ghani, R. Shah, K. Nonlaopon, Comparative analysis of advection-dispersion equations with Atangana-Baleanu fractional derivative, Symmetry, 15 (2023), 819. http://dx.doi.org/10.3390/sym15040819 doi: 10.3390/sym15040819
    [26] K. Wang, An effective computational approach to the local fractional low-pass electrical transmission lines model, Alex. Eng. J., 110 (2025), 629–635. http://dx.doi.org/10.1016/j.aej.2024.07.021 doi: 10.1016/j.aej.2024.07.021
    [27] K. Yang, A unified solution for longitudinal wave propagation in an elastic rod, J. Sound Vib., 314 (2008), 307–329. http://dx.doi.org/10.1016/j.jsv.2008.01.007 doi: 10.1016/j.jsv.2008.01.007
    [28] M. N. Alam, C. Tunc, Construction of soliton and multiple soliton solutions to the longitudinal wave motion equation in a magneto-electro-elastic circular rod and the Drinfeld-Sokolov-Wilson equation, Miskolc Math. Notes, 21 (2020), 545–561. http://dx.doi.org/10.18514/MMN.2020.3138 doi: 10.18514/MMN.2020.3138
    [29] B. K. Singh, S. Agrawal, A new approximation of conformable time fractional partial differential equations with proportional delay, Appl. Numer. Math., 157 (2020), 419–433. http://dx.doi.org/10.1016/j.apnum.2020.07.001 doi: 10.1016/j.apnum.2020.07.001
    [30] A. R. Seadawy, J. Manafian, New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod, Results Phys., 8 (2018), 1158–1167. http://dx.doi.org/10.1016/j.rinp.2018.01.062 doi: 10.1016/j.rinp.2018.01.062
    [31] H. Durur, A. Yokus, D. Kaya, H. Ahmad, Modeling of dark solitons for nonlinear longitudinal wave equation in a magneto-electro-elastic circular rod, Sound Vib., 55 (2021), 241–251. http://dx.doi.org/10.32604/sv.2021.014157 doi: 10.32604/sv.2021.014157
    [32] M. S. Islam, M. A. Akbar, K. Khan, The improved F-expansion method and its application to the MEE circular rod equation and the ZKBBM equation, Cogent Math., 4 (2017), 1378530. http://dx.doi.org/10.1080/23311835.2017.1378530 doi: 10.1080/23311835.2017.1378530
    [33] M. Iqbal, A. R. Seadawy, D. Lu, Applications of nonlinear longitudinal wave equation in a magneto-electro-elastic circular rod and new solitary wave solutions, Mod. Phys. Lett. B, 33 (2019), 1950210. http://dx.doi.org/10.1142/S0217984919502105 doi: 10.1142/S0217984919502105
    [34] H. M. Baskonus, H. Bulut, A. Atangana, On the complex and hyperbolic structures of the longitudinal wave equation in a magneto-electro-elastic circular rod, Smart Mater. Struct., 25 (2016), 035022. http://dx.doi.org/10.1088/0964-1726/25/3/035022 doi: 10.1088/0964-1726/25/3/035022
    [35] N. Sajid, G. Akram, Solitary dynamics of longitudinal wave equation arises in magneto-electro-elastic circular rod, Mod. Phys. Lett. B, 35 (2021), 2150086. http://dx.doi.org/10.1142/S021798492150086X doi: 10.1142/S021798492150086X
    [36] C. X. Xue, E. Pan, S. Y. Zhang, Solitary waves in a magneto-electro-elastic circular rod, Smart Mater. Struct., 20 (2011), 105010. http://dx.doi.org/10.1088/0964-1726/20/10/105010 doi: 10.1088/0964-1726/20/10/105010
    [37] N. H. Aljahdaly, R. G. ALoufi, A. R. Seadawy, Stability analysis and soliton solutions for the longitudinal wave equation in magneto electro-elastic circular rod, Results Phys., 26 (2021), 104329. https://doi.org/10.1016/j.rinp.2021.104329 doi: 10.1016/j.rinp.2021.104329
    [38] F. S. Khodadad, F. Nazari, M. Eslami, H. Rezazadeh, Soliton solutions of the conformable fractional Zakharov-Kuznetsov equation with dual-power law nonlinearity, Opt. Quant. Electron., 49 (2017), 384. http://dx.doi.org/10.1007/s11082-017-1225-y doi: 10.1007/s11082-017-1225-y
    [39] E. M. E. Zayed, K. A. E. Alurrfi, The Bäcklund transformation of the Riccati equation and its applications to the generalized KdV-mKdV equation with any-order nonlinear terms, Pan-Am. Math. J., 26 (2016), 50–62.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(65) PDF downloads(8) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog