The Windkessel model is a lumped-parameter representation that simplifies the complex cardiovascular system into an equivalent hydraulic circuit comprising resistive and compliant components. It plays a crucial role in understanding the dynamics of blood flow and pressure within the circulatory system, especially in the arterial network. In this study, we employ the Caputo fractional operator to obtain approximate solutions for the Windkessel model within the framework of usual topological Banach spaces. An efficient hybrid analytical technique, termed the Aboodh residual power series method (ARPSM), has been developed by integrating the Aboodh transform with the residual power series method. This approach is used to investigate and derive approximate solutions of the modified Caputo fractional Windkessel model. The accuracy, reliability, and applicability of the proposed ARPSM are demonstrated through numerical and graphical analyses, confirming its effectiveness in solving fractional differential equations of this type.
Citation: Faten H. Damag. The Caputo fractional Windkessel model and cardiovascular circulatory system: Some approximate solutions in usual topological Banach spaces by using some techniques[J]. AIMS Mathematics, 2025, 10(12): 28651-28667. doi: 10.3934/math.20251261
The Windkessel model is a lumped-parameter representation that simplifies the complex cardiovascular system into an equivalent hydraulic circuit comprising resistive and compliant components. It plays a crucial role in understanding the dynamics of blood flow and pressure within the circulatory system, especially in the arterial network. In this study, we employ the Caputo fractional operator to obtain approximate solutions for the Windkessel model within the framework of usual topological Banach spaces. An efficient hybrid analytical technique, termed the Aboodh residual power series method (ARPSM), has been developed by integrating the Aboodh transform with the residual power series method. This approach is used to investigate and derive approximate solutions of the modified Caputo fractional Windkessel model. The accuracy, reliability, and applicability of the proposed ARPSM are demonstrated through numerical and graphical analyses, confirming its effectiveness in solving fractional differential equations of this type.
| [1] |
Y. Jawarneh, H. Yasmin, M. M. Al-Sawalha, A. Khan, Fractional comparative analysis of Camassa–Holm and Degasperis–Procesi equations, AIMS Math., 8 (2023), 25845–25862. https://doi.org/10.3934/math.20231343 doi: 10.3934/math.20231343
|
| [2] |
B. Zhu, B. Hu, Approximate controllability for mixed-type non-autonomous fractional differential equations, Qual. Theory Dyn. Syst., 21 (2022), 111. https://doi.org/10.1007/s12346-022-00617-2 doi: 10.1007/s12346-022-00617-2
|
| [3] |
B. Zhu, B. Hu, W. G. Yang, Existence of mild solutions for a class of fractional non-autonomous evolution equations with delay, Acta Math. Appl. Sin. Engl. Ser., 36 (2020), 870–878. https://doi.org/10.1007/s10255-020-0966-8 doi: 10.1007/s10255-020-0966-8
|
| [4] |
F. H. Damag, A. Saif, On solving modified time Caputo fractional Kawahara equations using Laplace residual power series method, Fractal Fract., 9 (2025), 301. https://doi.org/10.3390/fractalfract9050301 doi: 10.3390/fractalfract9050301
|
| [5] |
K. Shah, A. R. Seadawy, M. Arfan, Evaluation of one-dimensional fuzzy fractional partial differential equations, Alex. Eng. J., 59 (2020), 3347–3353. https://doi.org/10.1016/j.aej.2020.05.020 doi: 10.1016/j.aej.2020.05.020
|
| [6] | S. Kılıç, E. Çelik, Complex solutions to the higher-order nonlinear Boussinesq-type wave equation transform, Ric. Mat., (2022). https://doi.org/10.1007/s11587-022-00698-1 |
| [7] |
B. Zhu, L. Li, Y. Wu, Local and global existence of mild solutions for nonlinear fractional reaction–diffusion equations with delay, Appl. Math. Lett., 61 (2016), 73–79. https://doi.org/10.1016/j.aml.2016.05.007 doi: 10.1016/j.aml.2016.05.007
|
| [8] |
F. H. Damag, On comparing analytical and numerical solutions of time Caputo fractional Kawahara equations, Mathematics, 13 (2025), 2995. https://doi.org/10.3390/math13182995 doi: 10.3390/math13182995
|
| [9] |
B. Hu, B. Zhu, Existence and stability of mixed-type Hilfer fractional differential equations with impulses and time delay, Results Appl. Math., 28 (2025), 100653. https://doi.org/10.1016/j.rinam.2024.100653 doi: 10.1016/j.rinam.2024.100653
|
| [10] |
A. Akgül, A. Cordero, J. R. Torregrosa, A fractional Newton method with $2\alpha$-order of convergence and its stability, Appl. Math. Lett., 98 (2019), 344–351. https://doi.org/10.1016/j.aml.2019.06.017 doi: 10.1016/j.aml.2019.06.017
|
| [11] |
F. H. Damag, A. Saif, A. Kılıçman, $\phi$-Hilfer fractional Cauchy problems with almost sectorial and Lie bracket operators, Fractal Fract., 8 (2024), 741. https://doi.org/10.3390/fractalfract8120741 doi: 10.3390/fractalfract8120741
|
| [12] |
T. Yazgan, E. İlhan, E. Çelik, H. Bulut, New hyperbolic wave solutions to Wu–Zhang system models, Opt. Quantum Electron., 54 (2022), 298. https://doi.org/10.1007/s11082-022-03726-4 doi: 10.1007/s11082-022-03726-4
|
| [13] |
D. Burkhoff, J. Alexander, J. Schipke, Assessment of Windkessel as a model of aortic input impedance, Am. J. Physiol. Heart Circ. Physiol., 255 (1988), H742–H753. https://doi.org/10.1152/ajpheart.1988.255.4.H742 doi: 10.1152/ajpheart.1988.255.4.H742
|
| [14] |
F. Duronio, A. Di Mascio, Blood flow simulation of aneurysmatic thoracic aorta using OpenFOAM, Fluids, 8 (2023), 272. https://doi.org/10.3390/fluids8100272 doi: 10.3390/fluids8100272
|
| [15] |
G. Gnudi, Analytical solution to Windkessel models using piecewise linear aortic flow waveform, Physiol. Meas., 44 (2023), 06NT01. https://doi.org/10.1088/1361-6579/acd6cd doi: 10.1088/1361-6579/acd6cd
|
| [16] | A. Gil, R. Navarro, P. Quintero, A. Mares, Transient performance analysis of left ventricular assist devices coupled with Windkessel model, J. Biomech. Eng., 146 (2024). https://doi.org/10.1115/1.4064974 |
| [17] |
M. Fernandes, L. C. Sousa, C. A. António, S. I. Pinto, Modeling the five-element Windkessel using blood viscoelasticity, Mathematics, 11 (2023), 4877. https://doi.org/10.3390/math11244877 doi: 10.3390/math11244877
|
| [18] | N. Westerhof, J. W. Lankhaar, B. E. Westerhof, The arterial Windkessel, Med. Biol. Eng. Comput., 47 (2009), 131–141. https://doi.org/10.1007/s11517-008-0359-2 |
| [19] | A. D. Choudhury, R. Banerjee, A. Sinha, S. Kundu, Estimating blood pressure using Windkessel model on PPG, Proc. IEEE Eng. Med. Biol. Soc., (2014), 4567–4570. https://doi.org/10.1109/EMBC.2014.6944642 |
| [20] |
T. Kind, T. J. Faes, J. W. Lankhaar, A. Vonk-Noordegraaf, M. Verhaegen, Estimation of three- and four-element Windkessel parameters, IEEE Trans. Biomed. Eng., 57 (2010), 1531–1538. https://doi.org/10.1109/TBME.2010.2046487 doi: 10.1109/TBME.2010.2046487
|
| [21] |
T. Gamilov, Y. Ruslan, Fractional-order Windkessel boundary conditions, Fractal Fract., 7 (2023), 373. https://doi.org/10.3390/fractalfract7050373 doi: 10.3390/fractalfract7050373
|
| [22] |
A. Bahloul, T. Taous, Assessment of fractional-order arterial Windkessel, IEEE Open J. Eng. Med. Biol., 1 (2020), 123–132. https://doi.org/10.1109/OJEMB.2020.2990498 doi: 10.1109/OJEMB.2020.2990498
|
| [23] |
J. E. Traver, C. Nuevo-Gallardo1, I. Tejado1, J. Fernández-Portales, J. F. Ortega-Morán, J. Blas Pagador, et al., Cardiovascular circulatory system and left carotid model: A fractional approach, Fractal Fract., 6 (2022), 64. https://doi.org/10.3390/fractalfract6020064 doi: 10.3390/fractalfract6020064
|
| [24] |
V. L. Resmi, N. Selvaganesan, Fractional-order arterial Windkessel model via optimization, IETE J. Educ., 64 (2023), 103–111. https://doi.org/10.1080/09747338.2021.2016751 doi: 10.1080/09747338.2021.2016751
|
| [25] |
B. E. Belinskii, R. T. Liflyand, The Banach algebra $A$ and its properties, J. Fourier Anal. Appl., 3 (1997), 103–129. https://doi.org/10.1007/BF02649131 doi: 10.1007/BF02649131
|
| [26] |
F. H. Damag, A. Kılıçman, A. T. Al-Arioi, On hybrid-type nonlinear fractional integro-differential equations, Mathematics, 8 (2020), 984. https://doi.org/10.3390/math8060984 doi: 10.3390/math8060984
|
| [27] |
M. A. Oqielat, T. Eriqat, O. Ogilat, A. El-Ajou, S. E. Alhazmi, S. Al-Omari1, Laplace residual power series method for solving time-fractional reaction–diffusion model, Fractal Fract., 7 (2023), 309. https://doi.org/10.3390/fractalfract7040309 doi: 10.3390/fractalfract7040309
|
| [28] |
S. Noor, W. Albalawi, R. Shah, M. M. Al-Sawalha, S. M. E. Ismaeel, S. A. El-Tantawy, Approximations to fractional nonlinear damped Burgers-type equations, Front. Phys., 12 (2024), 1374481. https://doi.org/10.3389/fphy.2024.1374481 doi: 10.3389/fphy.2024.1374481
|
| [29] |
M. I. Liaqat, A. Akgül, H. Abu-Zinadah, Time-fractional Black–Scholes models via Aboodh residual power series, Mathematics, 11 (2023), 276. https://doi.org/10.3390/math11020276 doi: 10.3390/math11020276
|
| [30] |
H. Yasmin, A. H. Almuqrin, Analytical study of time-fractional heat, diffusion and Burgers equations, AIMS Math., 9 (2024), 16721–16752. https://doi.org/10.3934/math.2024837 doi: 10.3934/math.2024837
|
| [31] |
S. A. Edalatpanah, E. Abdolmaleki, Aboodh residual power series for fractional Newell–Whitehead–Segel equation, Comput. Algorithms Numer. Dimens., 3 (2024), 115–131. https://doi.org/10.1007/s44243-024-00052-0 doi: 10.1007/s44243-024-00052-0
|
| [32] | M. Catanho, M. Sinha, V. Vijayan, Model of aortic blood flow using the Windkessel effect, Univ. California San Diego, Tech. Rep., (2012). |