This paper introduces $ \varsigma $-neutrosophic fuzzy metric spaces ($ \varsigma $-NFMSs), a significant generalization of neutrosophic fuzzy metric spaces (NFMSs). By extending the parameter space from a single dimension $ (0, \infty) $ to a multi-dimensional vector space $ (0, \infty)^{\varsigma} $, this framework offers enhanced flexibility for modeling complex systems where uncertainty depends on multiple factors simultaneously. The study investigates the topological properties of $ \varsigma $-NFMSs, rigorously proving that their topology is first-countable and that the associated space is Hausdorff. Furthermore, a generalized fixed-point theorem is established within this new framework, extending previous results in NFMSs.
Citation: Xiu-Liang Qiu, Ömer Kişi, Mehmet Gürdal, Qing-Bo Cai. A generalized framework for $ \varsigma $-neutrosophic fuzzy metric spaces and related fixed-point theorems[J]. AIMS Mathematics, 2025, 10(12): 28347-28373. doi: 10.3934/math.20251247
This paper introduces $ \varsigma $-neutrosophic fuzzy metric spaces ($ \varsigma $-NFMSs), a significant generalization of neutrosophic fuzzy metric spaces (NFMSs). By extending the parameter space from a single dimension $ (0, \infty) $ to a multi-dimensional vector space $ (0, \infty)^{\varsigma} $, this framework offers enhanced flexibility for modeling complex systems where uncertainty depends on multiple factors simultaneously. The study investigates the topological properties of $ \varsigma $-NFMSs, rigorously proving that their topology is first-countable and that the associated space is Hausdorff. Furthermore, a generalized fixed-point theorem is established within this new framework, extending previous results in NFMSs.
| [1] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
| [2] | F. Smarandache, A unifying field in logics: neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability, Rehoboth: American Research Press, 1999. |
| [3] | K. T. Atanassov, Intuitionistic fuzzy sets, Int. J. Bioautom., 20 (2016), S1–S6. |
| [4] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 |
| [5] | R. Biswas, On fuzzy sets and intuitionistic fuzzy sets, NIFS, 3 (1997), 3–11. |
| [6] | I. Kramosil, J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11 (1975), 336–344. |
| [7] |
A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7
|
| [8] |
D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets Syst., 88 (1997), 81–89. https://doi.org/10.1016/S0165-0114(96)00076-0 doi: 10.1016/S0165-0114(96)00076-0
|
| [9] |
J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fract., 22 (2004), 1039–1046. https://doi.org/10.1016/j.chaos.2004.02.051 doi: 10.1016/j.chaos.2004.02.051
|
| [10] |
R. Vinoth, M. Jayalakshmi, Generalization and properties of $\kappa$-intuitionistic fuzzy metric spaces with applications to fixed-point theorems, Contemp. Math., 6 (2025), 903–922. https://doi.org/10.37256/cm.6120255998 doi: 10.37256/cm.6120255998
|
| [11] | O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst., 12 (1984), 215–229. https://doi.org/10.1016/0165-0114(84)90069-1 |
| [12] | F. Smarandache, Neutrosophic set–a generalization of the intuitionistic fuzzy set, In: Proceedings of the IEEE International Conference on Granular Computing, 2006, 38–42. |
| [13] | A. A. Salama, S. A. Alblowi, Neutrosophic set and neutrosophic topological spaces, IOSR J. Math., 3 (2012), 31–35. |
| [14] | P. A. Ejegwa, S. O. Akowe, P. M. Otene, J. M. Ikyule, An overview on intuitionistic fuzzy sets, Int. J. Sci. Technol. Res., 3 (2014), 142–145. |
| [15] | P. Majumdar, Neutrosophic sets and its applications to decision making, In: Computational intelligence for big data analysis, Cham: Springer, 2015, 97–115. https://doi.org/10.1007/978-3-319-16598-1_4 |
| [16] |
A. Şahiner, M. Gürdal, T. Yigit, Ideal convergence characterization of the completion of linear $n$-normed spaces, Comput. Math. Appl., 61 (2011), 683–689. https://doi.org/10.1016/j.camwa.2010.12.015 doi: 10.1016/j.camwa.2010.12.015
|
| [17] | E. Savaş, Ö. Kişi, M. Gürdal, On statistical convergence in credibility space, Numer. Funct. Anal. Optim., 43 (2022), 987–1008. |
| [18] |
M. Karaev, M. Gürdal, S. Saltan, Some applications of Banach algebra techniques, Math. Nachr., 284 (2011), 1678–1689. https://doi.org/10.1002/mana.200910129 doi: 10.1002/mana.200910129
|
| [19] |
M. Gürdal, Description of extended eigenvalues and extended eigenvectors of integration operators on the Wiener algebra, Expo. Math., 27 (2009), 153–160. https://doi.org/10.1016/j.exmath.2008.10.006 doi: 10.1016/j.exmath.2008.10.006
|
| [20] |
M. T. Karaev, M. Gürdal, M. B. Huban, Reproducing kernels, Englis algebras and some applications, Stud. Math., 232 (2016), 113–141. https://doi.org/10.4064/sm8385-4-2016 doi: 10.4064/sm8385-4-2016
|
| [21] | K. Menger, Statistical metrics, In: Selecta Mathematica II, Vienna: Springer, 2003,433–435. https://doi.org/10.1007/978-3-7091-6045-9_35 |
| [22] |
S. Heilpern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl., 83 (1981), 566–569. https://doi.org/10.1016/0022-247X(81)90141-4 doi: 10.1016/0022-247X(81)90141-4
|
| [23] |
R. K. Bose, D. Sahani, Fuzzy mappings and fixed point theorems, Fuzzy Sets Syst., 21 (1987), 53–58. https://doi.org/10.1016/0165-0114(87)90152-7 doi: 10.1016/0165-0114(87)90152-7
|
| [24] |
C. Alaca, D. Türkoglu, C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Chaos Solitons Fract., 29 (2006), 1073–1078. https://doi.org/10.1016/j.chaos.2005.08.066 doi: 10.1016/j.chaos.2005.08.066
|
| [25] | M. Kirişci, N. Şimşek, Neutrosophic metric spaces, Math. Sci., 14 (2020), 241–248. https://doi.org/10.1007/s40096-020-00335-8 |
| [26] | N. Şimşek, M. Kirişci, Fixed point theorems in neutrosophic metric spaces, Infinite Study, 2019. |
| [27] |
M. Kirişci, N. Şimşek, M. Akyiğit, Fixed point results for a new metric space, Math. Methods Appl. Sci., 44 (2021), 7416–7422. https://doi.org/10.1002/mma.6189 doi: 10.1002/mma.6189
|
| [28] | S. Sowndrarajan, M. Jeyaraman, F. Smarandache, Fixed point results for contraction theorems in neutrosophic metric spaces, Neutrosophic Sets Syst., 36 (2020), 308–318. |
| [29] | M. Pandiselvi, M. Jeyaraman, New insights into fixed points results in neutrosophic metric like-spaces and their applications, Stat. Optim. Inf. Comput., 2025. |
| [30] |
M. Akram, U. Ishtiaq, K. Ahmad, T. A. Lazăr, V. L. Lazăr, L. Guran, Some generalized neutrosophic metric spaces and fixed point results with applications, Symmetry, 16 (2024), 1–33. https://doi.org/10.3390/sym16080965 doi: 10.3390/sym16080965
|
| [31] | S. Ghosh, R. Bhardwaj, S. Narayan, S. Sonam, Fixed point theorems in neutrosophic fuzzy metric space and a characterization to its completeness, Neutrosophic Sets Syst., 81 (2025), 575–602. |
| [32] |
M. Younis, A. A. N. Abdou, Novel fuzzy contractions and applications to engineering science, Fractal Fract., 8 (2024), 1–19. https://doi.org/10.3390/fractalfract8010028 doi: 10.3390/fractalfract8010028
|
| [33] |
S. Jabeena, M. E. Köksal, M. Younis, Convergence results based on graph-Reich contraction in fuzzy metric spaces with application, Nonlinear Anal. Model. Control, 29 (2023), 71–95. https://doi.org/10.15388/namc.2024.29.33668 doi: 10.15388/namc.2024.29.33668
|
| [34] |
S. Das, B. K. Roy, M. B. Kar, S. Kar, D. Pamucar, Neutrosophic fuzzy set and its application in decision making, J. Ambient Intell. Humaniz. Comput., 11 (2020), 5017–5029. https://doi.org/10.1007/s12652-020-01808-3 doi: 10.1007/s12652-020-01808-3
|
| [35] |
S. Ghosh, Sonam, R. Bhardwaj, S. Narayan, On neutrosophic fuzzy metric space and its topological properties, Symmetry, 16 (2024), 1–14. https://doi.org/10.3390/sym16050613 doi: 10.3390/sym16050613
|
| [36] |
S. K. De, R. Biswas, A. R. Roy, An application of intuitionistic fuzzy sets in medical diagnosis, Fuzzy Sets Syst., 117 (2001), 209–213. https://doi.org/10.1016/S0165-0114(98)00235-8 doi: 10.1016/S0165-0114(98)00235-8
|
| [37] | M. Younis, M. Öztürk, Some novel proximal point results and applications, Univers. J. Math. Appl., 8 (2025), 8–20. |