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1. Introduction and background

A mathematical method for handling sets in which elements may have partial degrees of
membership is provided by fuzzy set theory. Unlike classical set theory, where membership is
binary—an element is either in or out—fuzzy sets provide a more adaptable framework, especially
useful for modeling situations with unclear or uncertain boundaries. This innovative concept
was first introduced by Zadeh in [1], which has profoundly influenced numerous fields of
study. Building on Zadeh’s pioneering ideas, further developments enriched the theory. For
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example, Smarandache [2] introduced neutrosophic sets, whereas Atanassov [3] proposed
intuitionistic fuzzy sets, both of which broadened the theoretical and practical horizons of
fuzzy sets. Although intuitionistic fuzzy sets are fuzzy sets, this is not always the case [4].
Indeed, intuitionistic fuzzy set theory is better suited to some circumstances [5]. These initial
breakthroughs paved the way for subsequent advancements. Kramosil and Michélek [6] defined
fuzzy metric spaces in 1975, and George and Veeramani [7] improved upon them in 1994,
The usefulness and reach of fuzzy set theory were further expanded in 1997 by Coker [8]
with intuitionistic fuzzy topological spaces and in 2004 by Park [9] with intuitionistic fuzzy
metric spaces (IFMSs). Vinoth and Jayalakshmi [10] explored new concept and examined
some features of this concept in k-IFMS.

The introduction of these concepts has had a significant influence on numerous subsequent
research efforts by mathematicians. Kaleva and Seikkala [11] developed fuzzy metric
spaces, for example, as the distances between two locations, expressed as positive fuzzy
integers, in 1984. Neutosophic sets are an extension of intuitionistic fuzzy sets that were
introduced by Smarandache [12] in 2006. In 2012, Salama and Alblowi [13] expanded
the concepts of intuitionistic fuzzy topological spaces and fuzzy topological spaces to the
neutrosophic set setting. The modal operator and normalization are two algebraic procedures
that Ejegwa [14] introduced to intuitionistic fuzzy sets in 2014. The area was further advanced
by Majumdar [15], who looked at the real-world uses of neutrosophic sets in decision-making.

The drive to generalize mathematical structures extends beyond the standard fuzzy
framework. Various approaches have been developed to handle generalized norms, exemplified
by the study of linear n-normed spaces and their completions using ideal convergence [16].
Furthermore, the analysis of uncertainty utilizes diverse mathematical tools; for instance,
advanced convergence concepts, such as statistical convergence, have been successfully
applied in spaces modeling uncertainty, like credibility spaces [17]. The analytical techniques
underpinning the study of these generalized spaces often leverage deep results from functional
analysis. Advanced techniques utilizing Banach algebras [18] and operator theory—including
the analysis of spectral properties on specific spaces like the Wiener algebra [19] and the
application of reproducing kernels [20]—continue to offer powerful analytical frameworks that
often intersect with the study of generalized metric structures.

Probabilistic metric spaces (PMSs), introduced by K. Menger [21], extended usual metric
spaces (MSs) by incorporating a probabilistic approach to distance. Instead of using a
numerical value, Menger employed a distribution function vz, for each pair of elements S
and y. For each real number ©, vz, (®) represents the probability that the distance from S
to y is less than ®. The distribution function v is a left-continuous, non-decreasing function
R — [0, 1], with infeer v (R) = 0 and supgz v (R) = 1. An important characteristic of fuzzy
metrics is the inclusion of a parameter ®, which has found applications across various domains,
including engineering, economics, marketing, and medicine.

Heilpern [22] introduced the fixed-point theorem for fuzzy contraction maps. Heilpern’s
analysis was expanded by Bose and Sahani [23]. Fixed-point theorems pertaining to IFMS are
presented to Alaca et al. [24]. A major breakthrough in the field was made in 2020 when Kirisci
and Simgek [25] established the idea of neutrosophic metric spaces. Kiris¢i and Simsek [26]
explored the notions of neutrosophic contractive and neutrosophic mappings.
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In this research, we derived multiple findings regarding the fixed points of a neutrosophic
mapping.  Subsequently, several fixed-point results have been established within this
framework [27, 28], along with further generalizations of neutrosophic fuzzy metric spaces,
enhancing their theoretical and practical applications. Indeed, the field of neutrosophic metric
spaces is expanding rapidly, with researchers exploring various generalizations in different
directions. For instance, some studies focus on relaxing the classical metric axioms, leading
to the development of neutrosophic metric-like spaces [29] and other generalized structures
like neutrosophic Eg-metric spaces and neutrosophic quasi-S g-metric spaces [30]. Other works
focus on strengthening the foundational fixed-point theory within the standard neutrosophic
fuzzy metric space (NFMS) itself, establishing key results like the Banach, Edelstein,
and Kannan fixed-point theorems [31]. However, these valuable generalizations primarily
focus on modifying the metric axioms or applying existing contractions. The challenge of
modeling uncertainty that depends on multiple, independent parameters simultaneously (a
multi-dimensional parameter vector) remains largely unaddressed. Our work aims to fill this
specific gap by introducing the ¢-neutrosophic fuzzy metric space (¢-NFMS) framework, a
novel generalization focused on the parameter space (0, c0)* rather than the metric axioms.
This field remains highly active, with recent studies exploring novel fuzzy contractions for
applications in engineering science [32] and convergence results for specific contractions like
the graph-Reich type [33].

The theory of fuzzy metric spaces has advanced significantly since Das et al. [34] proposed
the idea of neutrosophic fuzzy sets. In their study, Ghosh et al. [35] investigated the idea of
neutrosophic fuzzy metric space.

Neutroposophic fuzzy metric spaces were introduced because they are better than typical
fuzzy or crisp sets in modeling uncertainty and indeterminacy in real-world occurrences.
Neutrosophic sets give a more thorough representation of uncertainty by representing items
with three components: truth, indeterminacy, and falsity.

In the area of medical diagnosis, for example, NFMS can handle situations in which a
patient’s symptoms are not indicative of a particular illness. Conventional fuzzy sets might
use a scale of 0 to 1 to reflect the probability of a diagnosis. This approach, therefore, might
not adequately convey the ambiguity or contradictory character of symptoms. Conversely,
neutrophilic sets take into consideration the degrees of truth, indeterminacy, and falsity
connected to every symptom and possible diagnosis. Through the use of NFMS, a metric space
can be created in which the distance between two diagnoses represents both their resemblance
and the intrinsic uncertainty or indeterminacy of the diagnostic process.

A robust mathematical foundation that closely matches the intricacy and unpredictability
of real-world issues is offered by the introduction of NFMS. Applications include identifying
patterns in confusing data sets, making decisions under ambiguity, and diagnosing medical
conditions. Our goal in creating NFMS theory is to enhance our capacity to model, evaluate,
and make wise choices in unpredictable situations.

This study aims to develop a generalized framework by extending the concept of NFMS. We
consider an NFMS where the fuzzy distance is characterized by degrees of truth, indeterminacy,
and falsity relative to a parameter ®. For example, ® could represent the uncertainty in
diagnosing a medical condition, allowing for varying degrees of similarity and dissimilarity
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between potential diagnoses based on conflicting or ambiguous symptoms.

Consider the uncertainty in diagnosing a medical condition as a way to measure the
“closeness” between two potential diagnoses, 8 and y. Incorporating factors such as symptom
ambiguity, conflicting test results, and patient history as parameters adds complexity, reflecting
the multifaceted nature of medical assessments influenced by numerous variables. Classical
NFMSs successfully model uncertainty with a single parameter ©, for instance, the “closeness”
between two potential medical diagnoses [36]. However, this approach can be insufficient for
complex systems where uncertainty arises from multiple, independent factors simultaneously.
For example, a final medical diagnosis may depend not only on ambiguous symptoms but also
on the reliability of lab test results, the contradictory nature of patient history, and the severity
of the symptoms. Each of these factors represents an independent dimension of uncertainty that
can be modeled by a component of our g-parameter vector. The ¢-NFMS framework developed
here [2], where ¢ € {1, 2,3, ...}, provides a more flexible and realistic mechanism to model this
multi-dimensional uncertainty structure. This is the primary motivation for our generalization.
The multi-parameter approach can also be seen as a contribution parallel to the motivation
presented for x-IFMS in [10], which motivates the concept of an ¢-NFMS (¢ € {1,2,3,...}),
where the distance between elements is defined in terms of truth, indeterminacy, and falsity
components relative to a parameter ©.

The following is a summary of this paper’s structure: We outline some essential features
and basic ideas of neutrosophic fuzzy sets and neutrosophic metric spaces in Section 2.
After introducing the idea of ¢-NFMS, Section 3 provides examples that show how to use
it. The topological characteristics of the generalized metric space are also illustrated in this
part, emphasizing significant findings such as nowhere denseness, the Hausdorff property,
compactness, and completeness. We will now examine these findings in more depth as we
proceed to the paper’s primary findings. The paper’s conclusion, Section 4, establishes a fixed-
point theorem that expands and generalizes earlier findings on ¢-NFMSs.

2. Preliminaries

The key terms that provide the basis for determining the primary findings are introduced in
this section. The non-standard finite numbers are defined as follows: 17 = 1 + 7, where “1”
is its standard part and 7 is its non-standard part; and 0 = 1 + 7, where “0” is its standard
part and 7 is its non-standard part. In this case, ]07, 1*[ denotes a non-standard unit interval.
The non-standard unit interval ]0~, 1*[ contains the non-standard integers 0 and 1, which are
infinitesimally tiny but less than 0 and infinitesimally small but higher than 1, respectively.

Triangular norms (t-norms) were introduced by Menger [21] in the context of measuring
distances between elements in a space. Menger suggested using probability distributions rather
than numbers to express distances. t-norms extend the concept of the triangle inequality
to probabilistic metric spaces. Their dual counterparts, triangular conorms (t-conorms), are
similarly important. Both t-norms and t-conorms play a critical role in fuzzy operations,
particularly in modeling intersections and unions.

Definition 2.1. Consider an operation @ : [0, 1] X [0, 1] — [0, 1]. The operation & is referred
to as a continuous t-norm if it fulfills the following properties for all s,t,u,v € [0, 1]:
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ii. When s <uandt <v, then s®t <u®v.

iii. The operation & is continuous.

iv. The operation & satisfies both commutativity and associativity.

Definition 2.2. Consider an operation [0, 1] X [0, 1] — [0, 1]. The operation ® is referred to
as a continuous t-conorm if it fulfills the following properties for all s,t,u,v € [0, 1]:

() s®0 =s.

(ii) When s <uandt <v,then s®@t < u®v.

(iit) The operation ® is continuous.

(iv) The operation @ satisfies both commutativity and associativity.

Definition 2.3. A 6-tuple (Y, v, @, A, ®,®) is called a neutrosophic metric space (NMS) if ¥
is a non-empty set, ® and ® are continuous t-norm and t-conorm operations, respectively, and
v, @, and A are fuzzy sets defined on P? x (0, o0), satisfying specific conditions for all u,v,w € P
and y,z > 0,
LO0<vuv,2)<1,0<wuv,2)<1,0<Au,v,2) <1,
ii. v(u,v,2) + w(u,v,z) + A(u,v,z) <3,
iii. v(u,v,z) = lifu=yv,
. v(u,v,2) =vv,u,z),
v. v(u,v,2) ®v(v,w,y) < v(u,w,z+y),
vi. v(u,v,.) : [0,00) — [0, 1] is continuous,
vii. lim_ v(u,v,2) =1,
viii. w(u,v,z) =0ifu=yv,
ix. w(u,v,z) = w,u,z),
x. w(u,v,2) @ w(v,w,y) > ow(u,w,z+y),
xi. w(u,v,.):[0,00) — [0, 1] is continuous,
xii. lim,_,. @w(u,v,z) =0,
xiii. A(u,v,z2) =0ifu=yv,
xiv. Au,v,z) = A(v,u, 2),
xv. Au,v,z) @ A(v,w,y) > Au,w,z+y),
xvi. Au,v,.) : [0,00) = [0, 1] is continuous,
xvii. lim,_,. A(u,v,z) =0,
xviii. if 7 < 0, then v(u,v,z) =0, w(u,v,z) = 1 and A(u,v,z) = 1.
The degrees of nearness, neutralness, and non-nearness between u and v with regard to z
are represented by v(u, v, z), w(u, v, z), and A(u, v, z), respectively, in this context.

Now, we transition to the section that covers the key results derived from this study, offering
a deeper exploration of the significant properties of ¢-NFMSs.

3. Main results

The creation of ¢-NFMSs is the main topic of this section, which also examines other aspects
that help the framework operate.
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Definition 3.1. ¢-NFMS: Consider Y as a non-empty set equipped with a continuous t-norm ®
and a continuous t-conorm ®. Let v, @, A, and T represent fuzzy sets (FSs) defined on W* x
(0,00)5. An ordered 7-tuple (Y, v,w, A, 7,®,®) satisfies the conditions of a ¢-NFMS if the
following properties hold for all B, y € ¥ and for all ©; |[_,= ©,,0,,...,0, > 0:
(ch)
0<v(B,v,0,,0,...,0,) <1,
OS/l(ﬂ,‘Y,@l,@Q,.. )<

0<@B,7,01,0,,...,0,) <1,
S (ﬁ )’,@1,@2,...,®§) < 1,
(s2)
v(B,7,01,0,,...,0,) + @(B,y,0,0,,...,0,
+/1(,8,)/,®1,®2,...,®g)+T(B,’y,®1,®2,...,®g 34,

(3)v(B,v,0,,0,,...,0,) = v(y,5,0,,0,,...,0,),
) v(B,y,0,0,,...,0,) =1 L=y,

(¢5) lime,o v(B, 7, @1,(92, 0,00 =1,

(¢6) foranyh € {1,2,--- ,¢}, we have

U(ﬁ, ’y,@l, @2, cee @b_l, O+ o, ®b+1’ cees ®§'

3.1

> v(3,6,01,0,,...,0,1,0,0,,....0) 8 v,7,0,,0,,...,0,,0,0,..,0,), (3.1)
(s v(B,7,.) : (0,00)5 — [0, 1] is continuous,
(g8) w(ﬁ’y’ ®1,®2’ MR ®§) = w(y’ﬁ’ ®1’ 62’ A ®§))
(9) w(B,7,01,0,,...,0,) =1 < =1,
(glo) limg—)OO w(ﬁ Y, ®l’ ®29 e g‘) = 1’
(¢c11) foranyh € {1,2,--- ¢}, we have

w(ﬂ”y,@l’@Z’-’®b—l’®+95®b+l’-’®§) (3 2)

= w(ﬂa S, ®]7 ®2, L] ®b—]7 ®’ ®I)+1, () ®§') S w(ga Y ®1, ®27 RN ®I)—1,Q’ ®I)+]7 ceey ®g‘)7

(c12) w(B,y,.) : (0,00) — (0, 1] is continuous,
(c13) 1(B,7,01,0,,...,0,) = Ay,B,0,,0,,...,0,),
(s14) 1B,7,01,0,,...,0,) =0 fz’ﬁ =7,

(¢15) lim_,, A(B, y,®1,®2, ,0,) =

(516) forany h € {1,2,- } we have

/l(ﬁ’ y’ ®1, ®27 ceey ®I)—1’ @ + Q’ ®I)+17 EEEE) ®g‘)
< ﬁ(ﬁ’ S, ®1’ 625 ey ®[)—17 ®’ ®I)+la seesy ®§) ® /l(ga Y, ®19 ®25 ey ®b—1’Q7 ®I)+17 ceesy ®§)a

(c17) AB,v,.) : (0,00) — (0, 1] is continuous,

(c18) 7(B,7,0,0,,...,0,) = 17(y,5,0,0,,...,0,),
(619 1(8,7,0,,0,,...,0,) =0 <:,8 =,

(620) limg_,, (B, v, Oy, @z, 0, =

(¢21) forany h e {1,2,--- } we have

T(ﬂa Y ®1’ ®27 ey ®f)—l’ @ + O, ®f)+19 eeey ®§)
< T(ﬁ’ S, ®19 ®2’ DRI ®b—l9 ®9 ®b+l’ seey ®§) @ T(gs Y, ®la ®23 DRI ®b—l5g9 ®b+l’ seey ®§)3
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(622) (B, y,.) : (0,00) — (0, 1] is continuous,
(623) for ®; <0,

v(B,7,0,0,,...,0,) =0, w(B,7,0,,0,,...,0,) =0,
AB,v,01,0,,...,0,) =1, 7(8,7,0,,0,,...,0,) = 1.

In this framework, v(B,y,0;,0,,...,0.) represents the certainty that the distance
between B and vy is less than ®;. Similarly, @w(B,y,0,,0,,...,0,) indicates the degree of
nearness, A(B,y,01,0,,...,0,) indicates the degree of neutralness, and T(8,y,0,0,,...,0,)
stands for the degree of non-nearness between 8 and vy with regard to ®,, respectively.

Remark 3.1. The primary motivation for extending the single parameter ® € (0, 00) of classical
NFMSs to the multi-dimensional vector ® = (0y,...,0,) € (0,00)5 is to model complex
systems where uncertainty is influenced by multiple, independent factors. As discussed in the
introduction, a single parameter ® may not be sufficient to capture the distinct roles of, for
example, symptom ambiguity, test result reliability, and patient history in a medical diagnosis.
The g-dimensional parameter space allows each of these factors to be represented by its own
component (®;), providing a more flexible and granular framework for modeling multi-faceted
uncertainty.

When ¢ = 1, the ¢-NFMS reduces to the NFMS, introduced by Ghosh et al. [35].

Example 3.1. (Induced ¢-NFMS) Let (W, d) denote a metric space, where ¥ = (—o0, 00) and
d(B,y) = |8 —y|. Define the t-norm and t-conorm, @ and ® as &y = min{B,y}and f®y =
max {8, y}. Let the FS v, @, A, 7 on ¥? X (0, c0) be defined as

_ ©i+dBy)
U(,B,')’, ®17®29'~'5®§‘) - 0,;+2d(By)’
@.

W(Ba’y’®la®2""’®g) = @)iT(Iﬂs'y)’

d(B,y)
/1 (ﬁa Y ®1’ 62’ ey ®§) = @,-:5(2;,7)’

T(B7Y9®19®27' . ’®g) = d(g?I)9

forall B,y € ¥, and ©; [;_,> 0.
Notice that:
cH0<v(B,7,0,,0,,...,0,) <1,
(¢2) since d(B,y) = d(y,), we have v (B,7,0,0,,...,0.) = v (y,5,01,0,,...,0,),
(63)v(B,7,0,,0,,...,0,) = 1if g =,

Eg‘g lim; o, g0 = 1, for all B,y € ¥ and O [, = (04,0, ...,0,) > 0.
S

U(ﬁ3)’9®15®23 oee $®b—la® +Q$®b+la seey ®§)
> U(ﬁ, S‘,®1,®2,---,®b—1,®, ®b+1,---,®g) @U(g‘,%@l,@z,---,®I)—1,Q, ®b+1»---,®g)s

forall B,y,¢ € ¥, and ®,0 > 0.
Similarly, all the conditions for @, A, T are satisfied. Let us briefly verify why these functions
satisfy the core conditions. For instance, consider condition (g5). Since the standard metric d

satisfies the triangle inequality d(B,y) < d(B,¢) + d(s,7y), and the function f(x) = (g’:z’; is
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monotonically decreasing with respect to x, the structural compatibility between the metric d
and the fuzzy set v ensures the triangle inequality in the fuzzy setting is preserved. Similarly,
the boundary conditions are satisfied as limg_, gg‘; = 1 and limg_,o S)T% = % (for d # 0),
consistent with the properties of ¢-NFMSs. Hence, (Y, v, @, 4, 7,®,®) forms an ¢-NFMS

induced by a metric d, referred to as the standard ¢-NFMS.

Remark 3.2. The 7-tuple (Y, v, @, A, T, ®, ®) defined in above Example 3.1 would not constitute
as a NFMS if the t-norm @ is defined as &y = max {0, + y — 1} and the t-conorm ® is defined
asp@y=p+y-py.

Example 3.2. Let ¥ be the set of natural numbers. Consider the operations @ and @ defined
as follows: the t-norm 8 @ y = max{0,58 + vy — 1} and t-conorm S &y = 8 + v — By. For all
B,y €Y, 0;[_ € (0,),

1B -l

0,0,,...,0.)=1- ——
U(ﬁvYa 15 2s ’ 5’) 2®l ]
®; - 18-l
w(ﬁa’y,®l’®25'-'a®g): ®3 )

B .
-, g <y,
/l(ﬁ’79®1’®2,...,®§):{ %‘*‘_?/z ]

7(8,7,01,0,,...

Note that:
(1)0 S U(ﬁ’y,(al’@l’--'a@g) S 1’
(2) since |8 —y| = |y — B, we have

v(ﬁa’y,®l’®2a--~a®§) = U(yaﬁa@l’®29~~~9®g)’

(3) U(ﬂ’y’®3l?®2""’®§) = 1’
@) lim o, 25 = 1, forall B,y € ¥, ©; [, > 0;

5) "

U(ﬂ,)’,@l,@z, cee »®b—l’® +Q,®b+1, ---’®§)
Z U(ﬂa ga ®1’®2, e ,®b—1’®7 ®I)+1, ceey ®§') ®U(§,7’ ®17®27 e ,®b—1’Q7 ®b+17 ceey ®§) s

for all B,y,¢ € ¥, and ®,0 > 0.
Similarly, all the conditions for @,A,7 are satisfied. Under these conditions,

Y, v, w, 1,®,®) forms a ¢-NFMS.
For simplicity, we use v (,8, Y, @j) in place of v(B,7,0;,0,,...,0,), w(,B, v, @j) instead

of w(B,7,0,0,,...,0,), 1 (ﬁ, v, @j) for 1(B,7,0,,0,,...,0,), and T(ﬁ, Y, @j) to represent
7(8,7,01,0,,...,0,), where j = 1,2, ...,5.
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Lemma 3.1. Let (Y, v, w, A, 7,®,®) be a s-NFMS with ©,0,,--- ,0, > 0. If Oy < O for some
he({l,2,3,---,¢} such that ®y < O, then the following inequalities supply:

U(,B,% ®§) <v(B,7,01,0,, - 041,00y, ,0,),
W(ﬂ»?’,@j) <@(B,7,01,0,, - ,0y_1,0y, 0, - ,0,),
A(B.7.65) 2 1(8.7.01,0s, -+ ,0y_1, Oy, O,y . Q) , and
7(8.7.05) 2 7(8.7.0,,0y, -+ .0y, 0;, Oy, -, Q).

Proof. By applying the properties of t-norms along with condition (¢6), we can establish that
for any § and v in the set 'V, the following holds:

U(ﬁ,% 85) = U(B,')’, ®§) ®©1= U(,B,% ®§)$U(7’Ya ®19®2’ e a®b—1’ ®I)’ ®I)+la' v ’®§)
< U(ﬁ’y’®la®2"" 781)—17®[)7®[)+17“' 5®§)'

Utilizing the properties of t-norms and condition (¢11), we deduce that for every 5,y in ', the
following result holds:

w(ﬁay’Qj) = w(ﬁ377®§)®1 = w(ﬁ,'}’,®§)@w('y,'y,®l,®2,'" 7®I)—19®b,®b+]7“' 7®§)
< w(ﬁ’)/7®17®2"" ,®b—]7®1)’®l)+1"" 7®§)-

Using the properties of t-conorms and condition (¢16),

ﬂ(ﬁ,y,@j) = A(B”Y’ Gj) ®0 = /l(ﬂ’y’ ®§) ®/1(')’,7, ®l’®29' o 9®I)—19®[)’®b+1’ e s®§)
> /l(ﬁ”)/9®l,®2"" ’®[)—l’®b’®b+l9”' ’®§)-

Finally, by utilizing the properties of t-conorms and condition (¢23), we can derive the
following:

T(ﬁ377®§) ZT(ﬁa/}/7®1’®27H' 7®I)—la®f),®f)+]"” ,®§)'

Remark 3.3. Let (V,v, @, A, 7,6,®) be a ¢-NFMS. If v (8.7.05) > 1 - 8, 1(8.7.05) > 1 - ¥,

@ (B.7.05) < 0 and 7(B,7.05) < O for all By € ¥, ©; °_ = 0,,0,,---,0, > 0, and
€ (0, 1), then for each ) € {1,2,3,--- , ¢}, there exists ® € (0,0y) such that the following
conditions hold:

V(B,7.01,0,,- -+ ,0y_1,0y, Oy, ,0,) > 11,
@ (B,7,01,0,,- - , 01,04, Oy, ,0.) > 1 -1,
/l(,B,’)’,@],@z,"‘ ,@1)_],61),®1)+1,"' ,®g) < 19, and
T(ﬁ,7,®1,®2,"' ,@1)_1,@b,®b+1,"' ,®§) <.

Definition 3.2. Let 8 be a point in a ¢-NFMS (Y, v, @, A, 7,®,®). For any real number ¥ €
0, 1), the set

B(6,9,01,0,,....0) =y e ¥:v(87.05)>1-1,
@ (B.7,05) > 1 -9, A(B.,7.65) < & and 7 (B.7,05) < 9}

is called an open ball centered at B € Y with radius ¢ € (0, 1), and is defined with respect to
the parameters ©; [5_,> .
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Definition 3.3. Let (Y, v, @, A, 7,®,®) be a ¢-NFMS. A set O is said to be open in ¥ if and only
if, for every open ball D, it holds that © C D.

Definition 3.4. Let (Y, v, @, A, 7,8, ®) be a ¢-NFMS. A set O is considered open if and only if
its complement, Y\.O, is a closed set.

Theorem 3.1. Let (Y, v, @, A, 7,®,®) be a ¢-NFMS. Every open ball is an open set.
Proof. Let (Y,v,w,A,7,®,®) be a ¢-NFMS, and consider g € ¥, ©,,0,,--- ,0. > 0 and
¢ € (0, 1). Assume thaty € B(B,9,0,,0,,...,0.). This implies
v(8.7.65) > 1-0. @ (8.7.05) > 1 - 9, (B.7.05) < 9 and 7 (8,7, 05) < .
Then, there existh € {1,2,3,--- ,¢} and ® € (0, ®,,) such that
Bo=v(B,7,01,0,,- ,0_1,04, Oy, -+ ,0,).

Since ¥ > 1 — 19, there exists ' € (0,1) such that ¥y > 1 — ¢ > 1 — . Given ¥, and ¥ with
Py > 1 =¥, there exist ¥y, 1, #3,94 € (0, 1), satistying g @ > 1 -, dgd P > 1 -,
(I-9p@(—-103) <¢,and (1 — 3y & (1 —34) < ¥. Define ¥s = max {1}, , V5, ¥4}. Our
goal is to show that the original ball B(g, . ..) contains a smaller open ball centered at y. To do
this, we construct the new ball using ¥}s as a radius and (® — ®y) as the parameter. We will now
show that the new ball is fully contained within the original. Let

B(y,1 —95,01,0,,- - ,04_1,0 — Oy, Oy, ,0,)
be an open ball. We claim that
B(7,1-19501,0y, 01,0 - 0,0y, ,0,) C B(B,8,05).
To verify this, suppose w € B(y, 1 —=95,01,0,,--- ,0y_1,0 — Oy, Oy, -+ ,0O,). Then,

U('}’,CU,®1,®2,"' ’®b—19®_®ba@b+1"" 7®§)>ﬂ5’
w(yaa)»®l9®2"" »®b—l,®_®f)9®b+l"" 9®§)>ﬂ5’
/1(’)/7&)’®1’®23"' ’®b—l,®_®b’®b+1"”’®§)<ﬁ5’

and
T(79w’ ®l’®29' o ’®b—19® - ®b’ ®b+l" o ’®§') < ﬁS'

Next, combining these inequalities with the properties of the ¢-NFMS and the triangle
inequality under v, @, and 7, it follows that:

v(ﬁawa ®j) = U(ﬁa’y,®l9®29”' 9®b—19®f)9 ®f)+l"” 9®§)
®U(79w9®17®29“' a®])—la®_®b7®f)+la"' 7®g‘)
Zﬁo@ﬁ5 Zﬁo@ﬁ] 21—19'>1—19,

w(ﬁ’wa®j) = w(ﬁ’75®1’®2"" ’®I)—17®I)7®f)+17”' ,®§)
®w(7,w’®l,®2,"' 7®f)—l’®_®[)7®l)+17"' ’®§)
>V @I >FgdHh>1-9F >1-19,
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/l(ﬁ’(")’@j) Z /?'(ﬂ’,y’ ®1’®2’.” ’®b—1’®1)9®[)+1" o 9®§)
®/l(’)/9w’®l7®29”' ’®I)—17®_®b’®b+1"” 7®§)
S(l—190)@(1—195)S(1—190)®(1—193)Zl9,<19,

and
T(ﬁ9wa®§) < w(ﬂ975®1$®29"' a®b—19®f)9®b+l’.” 9®§)
®W(Y9w9®la®29"' 9®f)—l7®_®b’®b+l9“' a®§)
S(l—ﬁo)@(l—195)S(1—190)®(1—194)S19’ <.

Thus, w € B (ﬁ, Y, G)j) confirms
B(y,1- 104,05 - 0) C B(B,9,05).

The following consequence is derived from the previous theorem:

Corollary 3.1. Let (Y, v, @, A, 7,®,®) be a ¢-NFMS. Let

Twoar = (AC Y : VB e Y, there exist ©1,0,,...,0, > 0and 9 € (0, 1)
such that B (3,9 : ©1,0,,...,0,) C A}.

Then, T, o a7 defines a topology on 'P.

From Theorem 3.1 and Corollary 3.1, for any ¢-NFMS (v, @, 4, 7) on ¥, where 7(, .11 1S
the induced topology on Y. This topology consists of the open sets

(B(B,9:0,,0,,...,0):B€¥, 9 € (0,1),0 > 0}.

For Bg = {23(,8,& : @1,62,...,®g) : ozeN}, where ®; =0, =03 =--- =0, = i,formsa
local base at a point 5. The topology 7(,.z.11) 1S a first countable.

Theorem 3.2. Every ¢-NFMS is Hausdorf}.

Proof. Let (Y,v,w,A,7,8,®) be a ¢-NFMS. Let 8 and y denote two different points in V.
For any given ©y,0,,...,0, > 0, it follows that 0 < v(,7,05) < 1,0 < @ (8.,7.05) < 1,
0<A(8.7.05) < 1,and 0 < 7(B,7.05) < 1. Let & = v(8,7.05) € (0, 1), ¥, = = (B.7.©5) €

(0.1), %5 = 1(8.7.05) € (0.1), 04 = 7(B.7.05) € (0, 1), and & = max (¥, %, 1 — 05,1 — ).
For each ¥, € (¢, 1), there exist 5, ¥, 7, and g such that ¥s & 5 > ¥, F¢ & I > Dy,
(1-97)®(1 —17) <1 =1, and (1 —Fg) @ (1 —Ig) < 1 —y. Put J9 = max {s, Jg, ¥, s} and
consider the open balls,

B(B,1-1:01,0,,...,0y,-,0)

and
B(y,1-19:01,0,,...,0y,---,0).
Then, clearly
Bsy =B(B,1-1:0,,0,,...,0y,-,0,)
NB(y, 1= :01,0,,...,0y,---,0,) = 0.
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Assume that Bg,, # 0, i.e., there exists w € Bg,, then we have

9 =v(8.7.0) 20(8,0,0,,0,,...,0,,-+,0,)0v(w,7,0,,0,,...,0
> @y =I5 ® s >0y > Iy,

NI
-
v.
©)
n
SN—

9= (8,7.05) 2 @ (8,0,0,0,,...,0y,--- ,0,) 0 T (w,7,01,0,,...,0y,--- ,0)
> PPy = g ®Fg = Iy > Do,

= 1(8,7.0%) < A(B.,01,0,,...,0y,--- ,0,)®1(w,7,01,0,...,0y,--- ,0)
<(I-td)@(1-t) <(1 =)@ (1 —87) < 1 - < s,

and

94 =7(8,7,05) <7(8,0,01,0s,...,04,- ,0) ®7(w,7,01,0s,...,0, -, 0)
<(I-9)@ (- < (1 - ®(1—d) <1 - <y

Hence, it is contradiction. Therefore, (‘\¥, v, @, A, 7, ®, ®) is a Hausdorff space.

Definition 3.5. Let (Y, v, @, A, 7,®, ®) be a c-NFMS. Suppose that there exist ®,,0,,...,0, >
0 and 0 <& < 1 such that for all B,y € A, the following circumstances are true:

v(8.7.05) > 1 - 0.7 (B.7.05) > 1 — 9, 2(8.7.05) < & and 7 (.. ©5) < 0,

where A is a subset of Y. In this case, A is referred to as neutrosophic fuzzy bounded (NF-
bounded).

Remark 3.4. Let a ¢-NFMS (Y, v, @, A, 7,®,®) be induced by a metric space d on Y. The
subset A C ¥ is neutrosophic fuzzy bounded (NF-bounded) if it is bounded.

Theorem 3.3. Let (Y, v, w, A, 7,8, ®) be a ¢-NFMS. Every compact subset ‘A is NF-bounded.

Proof. A compact subset of a ¢-NFMS is denoted by A. Let ©,,0,,...,0, > 0and ¥ € (0, 1).
Consider the open cover

{%(ﬂ,ﬁ:@l,Gz,...,G)]),"' ,@;)Z,BE..?{}

of A. Since A is compact, then there exist B1,5,,83,---,B, € A such that A C
Ule B (B;,1,0). For any B, y € A, it follows that

ﬁe %(ﬁbﬁ’@la@Z"'-’@b"“ 9®g)’
Ye€B (B, 3,01,0,,...,0,---,0,)

for some i, k. Then, we have v(,B,,Bi, @j) > 1-9, w(ﬁ,ﬂ,-,@?) > 1-19, /l(,B,ﬁ,-, ®§) < 9,
7(8.8.0%) < 0, v (7. ©5) > 1-8, @ (7., 05) > 1 -8, A(B. 5, ©5) < 9, and 7 (. 1. ©F) <

9. Let
a = mm{ (,,ﬁk, ) 1Si,kS7},
{ = min{@ (l,/sk,®§)-1s',ksw},
® = max (ﬁl,ﬁk,(@g) 1§',k§)f},
Y = max T( B B®) 1 <i kgy}.
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Then a, , @, > 0. Now we have

v(8.7.305) = v (8.8, 05) ® v (Bi. B ©5) @ v (Br 7. ©5)
>(1-He(l-NH&a>1-9), forsome0 < <1,

@ (8.7.365) 2 @ (8.5, ©5) © @ (5. i ©5) © @ (B, 7. ©5)
>(1-He(d-Hel>1-19, forsome0 <P, <1,

A(8.7,365) < A (8.5, O5) © (B, pr. ©5) © 4 (B v, ©)
<vede®d <Y, forsome 0 <9 <1,

7(8.7.305) < 7 (8.5 ©) @ 7 (8.1, ) @ 7 (B, 7, ©%)
<vedey <), forsome 0 <) < 1.

If we take © = max{9;,9,0;.9,} and @ = 30, then we have v(8,7.0) > 1 - ¥,
@ (B,y,0) <, and ¢ (B,y,0") < ¥, VB, vy € A. Hence, A is NF-bounded.

Remark 3.5. According to the aforementioned Theorem 3.3 and Remark 3.4, any compact set
in a ¢-NFMS is closed and bounded.

Theorem 3.4. Let (Y, v, w, A, 7,®,®) be a ¢-NFMS. Let T, .21 be the topology on ¥ induced
by the ¢-NFMS. For a sequence {,8 j} e Y, we have

Bi—B o v(B.p.05) > Lw (8,505 - 1,
/l(@,,@,@?)—>0and7’(,8j,ﬂ,®§)—>Oasj—>oo.

Proof. Let ©1,0,,...,0,---,0, > 0. Let (,Bj) be a real sequence. For any given ¥ € (0, 1),
there exists jy € N such that

BieBB,r:0,,0,,...,0,, --,0,)
for all j > j, with the following conditions satisfied:
1-v(B..05) < 9, 1 —w (B;.5.05) < 9, A(B;.5.05) < ¥ and 7 (8,. 8,05 < 0.
Then, we can express the following limits:
v(8;.8.0%) > 1@ (8..05) > 1,4(B;,5.05) - 0 and 7 (8,,5,05) - O as j — o.

Conversely, if for every 0,,0,,...,0y,---,0. > 0, v(ﬁj,ﬁ,(*)j) - 1, w(ﬁj,ﬁ, @;) - 1,
/l([g’j,ﬁ, ®§) — 0 and T(,Bj,ﬁ, @f) — 0 as j — oo. For any # € (0, 1), there exists j, € N such
that 1 - v(8,.8.05) < 9, 1 - @ (B;.5.05) < 9, 1(8,.5.05) < ¥ and 7(B;.8,05) < @ for all
j = jo. This implies that v (8,,8,0%) > 1 -9, @ (8,,8.0%) > 1 -0, 1(8;,8.05) < 0 and
T(,Bj,ﬁ, @j) <, forall j > jo. Thus B; € B(B,r:01,0,,...,0y,---,0,), forall j > jy, and
Bj— B

AIMS Mathematics Volume 10, Issue 12, 28347-28373.



28360

Definition 3.6. Consider (W, v, w, A, 7,®,®) as a ¢-NFMS. Let ( j) € V¥ be said to converge to
B €Y, if, for every real number ¥ € (0, 1), there exists a natural number j, such that for all
J > Jo, the following conditions hold:

v(8.5.05) > 1 -9, @(B;.8.05) > 1 -0, A(8;.5.05) < ¥ and 7 (B,.5.65) < ¥,
where ©1,0,,...,0. > 0.
Lemma 3.2. Let (¥Y,v, @, A, 7,8,®) be a ¢-NFMS. A sequence B; € ¥ is said to converge to
Bewif
lim v (8),7.05) = 1, lim@ (B;,,05) = 1, lim 2(8;,7.05) = 0 and lim 7 (8;,7,05) = 0,
J—00 ] J—ooo J—oo

forall ®,,0,,...,0, >0, and B,y € VY.

Definition 3.7. Let (Y,v, @, A, 7,8,®) be a ¢-NFMS, then a sequence ( j) € YW is said to
be Cauchy if for 9 > 0 and each ©,,0,,...,0. > 0, and there exists a jo € N such that
V(BB 05) > 1 =8, @ (B, ©5) > 1 =9, (8,8, 05) < 9, and 7 (B}, i ©5) < ¥, for all
J k= Jjo.

Definition 3.8. Suppose that (Y, v, w, A, 7,®,®) is a ¢-NFMS. Given the topology T, w.r), if all
Cauchy sequences are convergent, then (Y, v, @, 1,®,®) is a complete ¢-NFMS.

Example 3.3. LetY¥ = {% Cj€ N} U{0} and @ be the continuous t-norm and ® be the continuous

t-conorm defined by r @ s = rs, r ® s = min {1, r + s}, for all r, s € [0, 1], respectively. For any
®§ € (0,1)¢ and for any 3,y € ¥. Define FS v, @, 4,7 on P2 X (0, )¢ by

05+ d(ﬁy)

v(p.7.05) = m’®g>0 L@ (8.7.05) = { ®§>0}
A(B.7.05) = { LD 0% >0 ,T(ﬁ,'y’@?):{d(ﬁﬁ ®g>0}

O +dBy) G

then (¥, v, @, 4, 7,®, ®) is a complete ¢-NFMS.
Theorem 3.5. Let (Y,v, @, A, 7,®,®) be a ¢-NFMS. A convergent subsequence for each
Cauchy sequence in ¥ indicates that the ¢-NFMS (¥, v, @, A, T, ®, ®) is complete.

Proof. Given a Cauchy sequence (5;) € P, let (B jk) be a subsequence of (8;) and let 8, — .
Suppose that @, 0,,...,0, > 0and J € (0, 1). Choose ¥, € (0, 1) such that (1-9,)®&(1-79;) >
1 — ¢ and % @ ¥ < . Therefore, (B;) is a Cauchy sequence, there is ky € N such that

V(BB 01,05, Oy, ,O) > 1 =,

@ (BB 01,0, Oy, ,O) > 1 =1,

A(BiB©1, 0,0, ,0) <,

7(8:01,0s,...,0y, - ,O;) < B,

for all i,k > ko. Since B, — B, there is a positive integer j, such that j, > ko,

V() B.01,0s,.... Oy, ,O;) > 1 =B,

2

(ﬁjaﬁ 01,0,,... @1),---,®§)>1—191,
(18] ’,8 0,,0,,..., ®§) ®§)<191,
7(8),:3.01,0y,...,0y,-++ ,0,) < .
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So, if k > jj,

v(BB ) = (BB 01,0s,...,0y, - ,0) SV (B),.01,0,...,04,- - ,0)
>(1-dped-d)=1-19,

@ (8186 0) =@ (BB 01,050y, ,O) @ T (B),.,01,0,...,0y,--- ,0)
>(1-9)@(l-9)=1-19,

A(BiBe©) < A(BeBi©1,0n,.... 04, ,0) @ A(B),.5,01,0,,...,0,- - ,0)
< 191 @ﬁ] < 19,

7(8B 0f) <T(BeBi 01,0204, ,0) D7 (B),,8,.01,0s,...,0, - ,0)
<% @ <.

As aresult, we get 8 — B. This represents the intended outcome.

Theorem 3.6. Let (Y, v, w, A, 7,®,®) be a ¢-NFMS, and let U be a subset of Y with subspace
¢-NFMS

W, @, s Tar) = (U lux.1)5 @ lux.1)5s A luxo.055 T laixo.1)) -

Then, (U, vy, @y, Ay, Te, ®, ®) is completes U is closed subset of V.

Proof. Let U be a closed subset of ¥, and let (8;) be a Cauchy sequence in
(U, vy, Ty, Ay, Ty, D, ®). Since (By) is also a Cauchy sequence in W, it follows that (8;) —
B € Y. Given that U is closed, we have 8 € U. Thus, (B;) converges in U. Therefore, the
completeness of (U, vy, Wy, Ay, Ty, D, ®) is established.

Conversely, suppose that (U, vy, @y, Ay, Ty, B, ®) is complete, but U is not a closed subset
of ¥. Let 8 € UN\TU. Then, there exists a sequence (8,) in ¥ that converges to 3, implying that
(Br) 1s a Cauchy sequence. Thus, for any ¢ € (0, 1) and all ® > 0, there exists a j, € N such
that v (B, B ©5) > 1 = &, @ (B B @) > 1 = 8, A (B, B ©5) < 0, and 7 (Br. B, O5) < 0,
for all k,m > j,. By leveraging the completeness of (U, vy, @, Ay, Tes, B, @), there exists

v € U such that (B;) converges to y. This convergence is characterized by conditions similar
to those for B, given by v (7.5 ®%) > 1 -9, @(y.r. ) > 1 =, 1(y.5.0%) < 0,

and T (y, Brs @j) < 99, for all k > jj,. Since (B;) is a sequence in U and y € U, it
follows that v (y,,b’k, G)j) = vy (y,,Bk, @j) w ()/,,Bk, @j) = wy (y,,Bk, ®§), pl (y,ﬁk, G)j) =
Ay (y, B, @j), and T(y, Br, @j) = Ty (y, B, @j) As a result, (8;) converges to both 8 and y
in (U, vy, @y, Ay, Ty, D, ®). However, this leads to a contradiction since S ¢ U and y € U,
with 8 # v, violating the initial assumptions.

Lemma 3.3. Let (Y, v, @, 7,®,®) be a ¢-NFMS. If ©,,0,,...,0, > 0 and 9,9, € (0, 1) such
that (1 —=9)® (1 =19,) > 1 =9 and 9, ® 9, < Oy, then %(ﬁ,ﬁz,(al,@z,...,@g,--. .0,) c
B (8.1, 65).

Theorem 3.7. In a ¢-NFMS (Y, v, @, 7,®,®), a subset M is said to be nowhere dense if each
nonempty open set in ¥ contains an open ball whose closure does not intersect Y.
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Proof. Suppose that Z is a nonempty open subset of . So, there exists a nonempty open subset
P C Z such that PN Y # 0. For any g € P, there exist J; € (0,1) and ©,0,,...,0. > 0 such
that B (8,91,0;,0,,...,0.) € P. Choose ¢, € (0,1) such that (1 =) @ (1 -F,) > 1 -
and ¥, ® ¥, < ;. By Lemma 3.3,

B(8,92,01,0,...,0y,---,0.) C B(B,,05).

Therefore,
B(B,92,01,0,...,0,--,0,) C Z

and

B(B.1,,01,0,,...,0y,-,0,)NY =0.

Now, suppose Y is not nowhere dense. Hence, int(Y) # (), meaning there exists a
nonempty open subset Z C Y. Let B (B,91,01,0,,...,0,) denote an open ball such that
B(B,91,0,0,,...,0.) € Z. This implies, B(B8,9,0,,0,,...,0,) N Y # 0, leading to a
contradiction.

4. Fixed-point theorems on ¢-NFMSs

We present several fixed-point results within a ¢-NFMS. For simplicity, in any ¢-NFMS,
where b € {1,2,..6}. 0 > 0, B,y € ¥, and ©,0,,...,0, > 0, the notations v% (8,7, 05),

wﬁ(ﬁ, Y, ®§), /lg (,8, Y, @j) and Tg(ﬁ, Y, G);) are used as shorthand for the more detailed
expressions

v(8.7.01.0,,...,0y_1, O, Oy, -+, O ),

@ (B.7.01.0s.....0y 1, Oy, Oy, . Q).

A(B.7.01,0s,...,0,1, 0, Opss, -, Q).
and

7(8.7.01.0s,....0 1,0y, Oy, Q).

respectively.

Theorem 4.1. Consider a complete ¢-NFMS, denoted by (¥, v, w,1,®,®), and a mapping
2 : ¥ — Y that satisfies the following conditions:

v, (26.2y.05) 2 v(8.7.©5), (4.1)
wé/% (E,B, =y, @j) > w (,8, v, @j) , 4.2)
A, (E8.57.05) < A(B.7.65), (4.3)
7, (28.2y.05) < 7(B.7.95), (4.4)

for all B,y € ¥, 0,,0,,...,0. > 0, h € {1,2,..,¢} and » € (0,1). Assuming that
Y, v, @, 1,®,®) is a h-natural ¢-NFMS, it follows that the mapping = possesses a unique fixed
point.
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Proof. Assume that there is just one fixed point in the mapping =. Let r and t be fixed points
of Z. By using the conditions provided in (4.1)—(4.4), the following holds:

v(r,,05) =v(ErEL0%) 2 v(1.1,01,0,.....0,1,0y,,0, . 0,)

= v (r1.09).
o (1.1,05) =@ (ErEL0%) 2 7 (1.1,0,,0,,...,0,1,0y,, 0., ,O,)
= r,t,@j),
A(r.t,0%) = A(Er, B 05) < A(1,1,01,0s,....0 1, Oy, Oy, -+, O)
=4 (r.1,09).
and
T(r, t, @j) =

(2 8,0%) < 7(11,01,0,....041, 0y, Opey, -+, O,)
1 S
=Ty (r, t, @J.).
By iteratively applying the given inequalities (4.1)—(4.4), we get the following outcomes for all
£eN:
i ¢
v(0t,05) 2 v (1.1,05), @ (1.1,0%) 2 & (r.1,05),

T (r, t, @j) <7 (r, t, @j) and T (r, t, @j) < Tgf (r, t, @j) )

b

4.5)

It (qf) is a sequence with g, > 0 and lim;_,, g = 0, then h-natural property of (¥, v, @, 7,®,®)
ensures the following:

lim vy’ (6.7.5) = 1. lim @’ (6.7.65) = 1. lim 47 (5.7.5) = 0.

E—o00
: q¢ Y —
and ;1_210 T (,8, v, G)J.) =0,
for all ©,0,,...,0; > 0. Using this in (4.5), we have v(r,t,05) = 1, @ (r,1,0%) = 1,

A (r, t, @j) = 0, and T(r, t, @j) = 0, for all ®,0,,...,0. > 0. These conditions imply r = t,
confirming the uniqueness of the fixed point of =.
Now, let By € ¥ and define the iterative sequence (ﬁg) by setting 5; = Ef;_;, for all £ € N.

The unique fixed point of = is reached by this sequence (ﬁf). Assume that 8 # B, for all
& € N. For any given ¢ € Nand ©,,0,,...,0, > 0, we deduce that

v (ﬁf’ﬁ§+l s ®j) =v (Eﬁf—l . Eﬁf, @j)
2 v (Be-1.Ber O Oy, O, O+, O) = 0 (Be-1.r. ©).

@ (Be.Bet. ©) = w (SBe-1. 5B, ©)

> w ﬁf—laﬁf, ®b’ ceey ®b—]7 627 ®I)+17 ) ®§) wg (ﬁf—laﬂf? ®j) s

A (ﬁfaﬁfﬂ ; ®§) =4 (Eﬁg—l s EBes @j)
A OO0 01 B0 1 0).
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T (ﬁf,ﬁf.,.], @j) =T Eﬂf_l, Eﬂf, @j)
<T ﬁg_l,ﬁg, @[), ey @1)_1, @2, ®b+1’ e, @;) = Tg (ﬁf_l,ﬁg, @j) .

By applying the iterative technique repeatedly, we obtain the following inequality for all £ € N:

v (ﬁgaﬁgﬂ, ®§) > Uff (ﬁo,ﬁl, ®f) -

Foreaché €N, ©,,0,,...,0, > 0 and u > 0, we have

U(ﬁfaﬁ‘fﬂd’@j) > U(ﬁf’ﬂ§+l’®b9' .. ,@[)_1,(9%,@[)_1’ . ’®g>
@U(ﬁ§+1,ﬁ§+u,®b,. "’®b—1’®2’®h"” ,@;)

> 02, (BB ) 0 (Bes1 Beens O .01, 04,0y -+, 0 )
®v (ﬁ§+2’ﬁ§-‘+u’ ®b9 ) ®b—19 ®2L)25 ®f)5 R ®§)

> U% (ﬁf’ﬂfﬂ , @3) @ U%z (ﬂg_,_] ,Bg.,.z, @j) D, ...,
@ Uguil (ﬁ§+u—29ﬁ§+u—la ®j) @ U%“*l (ﬁ§+u—laﬁ§+u, @S/’) )

w(ﬂf’ﬁ§+u’®§) > w(ﬁf’ﬂfﬂ’@b’---’@)b—l’@g’@b—l,"' ’®g)
(&) W(,B§+1,ﬁ§+u,®b, e ,@b_l, @I%, ®I)’ cee ,@;)

> w,%, (ﬁf,ﬁgﬂ, @j) 7] W(ﬁg+1,ﬁg+z, Oy, ..., O, @2%, Oy, , @g)

> @y (ﬁf’ﬁfﬂ’ 65) ® wgz (ﬁ§+1,,3§+2, ®§) o, ...,
® wgu_l (18§+u—2»:3§+u—1, ®§) ©® w%”_l (ﬁ&u—l,ﬁgw, ®§) ,

A(Be: Bevar O5) < A(Be. Benr, O, @y 1, 05,0y 4, -+, O)
® A (Best Beows On, -, 0y 1,0y,0y, -, O,)

< 2, (BBt 0) © 4 (Bev1 Beeas Oy, .0y 1,01, 0y -+ .0 )
®ﬂ(ﬁg+z,ﬁg+m®b, 811,040y, ,®g)

<4 (ﬁf’ﬁfﬂ,@j) ® /152 (ﬁfﬂ,lgm’ @3) ® ..
® ﬂﬁuil (ﬁ€+u—2aﬁf+u—1, (95) ® /lf)ufl (ﬁf+u—l,ﬁ§+u, @j) ’

7 (Ber Ber ) < 7(BerBerts O, 0y 1, 01,0y, , )
@T(,B§+1aﬁ§+u,®b, ce ,@b_l, ®%’®b’ tee ,G)g)

< T% (ﬁf’ﬁf"'l’ ®§) ® T(ﬁf+l’ﬁf+2a ®b7 ey ®b—19 ®2L)27 ®I)—17 R ®g)
® T(ﬁ§+27ﬁf+u’ ®[)’ ORI ®[)—1’ ®2%7 ®[)9 ) ®§)

<7, (Be.Ben, ©5) @ T (Bevr, Bear, ©5) ©, ..
® Tgu_l (18§+u—2’,3§+u—1 , ®§) ® Tgu_l (ﬁ§+u_1 ’ﬁ§+u, ®§) ‘
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By applying the result from inequality (4.5) and the iterative process described, we get

Du+ 1 %fﬂk 1

v (Be, Beru O5) = v (B, 1, ©5) @, .., 00> (B0, B1, ©5) @ (Bo-81.©5).
@ (B Bewur ©5) = @ (Bo, /31,@?)@ @ (B0, 1, ©5) @ @ (Bo, 1, ©5),
A(Ber Beru 05) < 2% (Bo, 1, ©5) @, ..., @47 (Bo, 81, 05) @ 227%™ (B0, By, ,)
7 (Bes Bewus © )<12” (Bo- 1, ©5) @, ... @7 By, B1, ©F ) @ T (By, B, ©F

Given that (¥, v, @, 4, 7,®, ®) is h-natural, the inequalities derived earlier imply the following
limits:

lim v (B, e, ©5) = 1, lim @ (Be, B O5) = 1,
lim /l(ﬁg Besus (~)§) 0 and é_!l_)n;loT(ﬁf,ﬁgw, j) =0,

E—o00

for all ©,0,,...,0, > 0. Consequently, the sequence (ﬁg) is Cauchy. Because
(Y, v, @, A, ®,®) is complete, there exists 3 € W such that

lim v(f.3.05) = 1, lim @ (Be.5.05) = 1. (4.6)
. &\ ) N
;1_210/1<,B§, 3, Q,-) =0, and ;1_2107(,85, 3 @3) =0.
Then, 3 is a fixed point of =. For each ©;,0,,...,0, > 0, we have

v(3:85.0]) 2 v (3.8 05) @3 (6 %3,0)
(o8 07012 (20
> vy (3 Be, @g) ® vg" (,3,571, 3, ®§) )

w(s, Eg,@jf) > wﬁ 2,5 0%) ® @y (ﬁf’ 3, ®§)
= w 2, Bes @g @ w% (Eﬁg—l , 23, ®§)

2 @y (Z B¢, O ) ® @y (,35—1, 3 ®§),

3, Be> ®§ ® /12 Ber =3, g-)

© & (Be-1.5.05).
&1 (Be. 5.05)

® 72 (Zpe-1. 53, ©5)
7 (Be1:3.05).

3.8¢,©
(3. B¢ ®g)

Utilizing (4.6) in the preceding inequality, we derive

(

(

(3.8 ©5)

T(Z, =z, @9) T% (3 B, © )
{

=Ty
ST

v(3.53.0%) = 1, @ (5.53,05) = 1, 4(3.53.05) = 0, and 7 (3, 53,05) = 0,
for all ®,0,,...,0, > 0, that is, =3 = 3, implying that = possesses a fixed point of its own.
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Example 4.1. Let (W, d) be the complete metric space ¥ = [0, 1] with the standard metric
d(B,y) = |B — y|. Define the t-norm S ® y = min{8, y} and t-conorm 8 ® y = max{S, y}.

Let ¢ = 1 (the single-parameter case for simplicity) and define the ¢-NFMS’s functions for
®>0as

) )
vEr O e agy TP T vy
__dB.y) __dBy)
/l(ﬂ’Ya@) - ®+d(ﬁ,'y)’ T(ﬁ,%®)— ®+d(ﬁ,'y)

This structure (¥, v, @, 4, 7, ®, ®) forms a complete ¢-NFMS and is h-natural (since limg_,, v =
1 and limg_,., 4 = 0).

Now, define a mapping Z : ¥ — ¥ by E(B) = g. Let us choose x = 1/4 € (0,1). We must
check the conditions of Theorem 4.1. For the v condition (Eq (4.1)):

v\*(3p,Ey,0) = v(é 14 @/(1/4)) (é ¥ 4@)

4’ 4’ 4’ 4’
40 40
4®+d(4,4) 4®+§L3—y|
B 160
"~ 160 +d(B,y)
We must check if 16@139(/3 = > v(B,7,.0) = gz d(ﬂ . Let d = d(B,y). The inequality —: 16@ = > @G: -

implies 160(0 +d) > O(160 + d), which simplifies to 150d > 0. This is true for all ® > 0 and
d>0.
Similarly, for the A condition (Eq (4.3)):
M
40 + d(& 1 4)
40 +1d 160 + d

1/4(5p,2y,0) = 1 (ﬁ74®)—
vzpzy0)=(5.2,

We must check if ﬁ < AB,y,0) = @ o+ This inequality d(® +d) < d(160 +d) simplifies to
0 < 150d, which is also true. The conditions for @w and 7 (Eqs (4.2) and (4.4)) are satisfied by
a similar calculation. Since all conditions of Theorem 4.1 are met, = must have a unique fixed
point. Indeed, the mapping Z(5) = /4 has a unique fixed point at 3 = 0 in ¥ = [0, 1].

Remark 4.1. In Theorem 4.1, we assume that the ¢-NFMS is Y)-natural. It is important to
note that this condition is essential for the uniqueness of the fixed point. The condition of b-
naturalness cannot be replaced by m-naturalness, where m # 1), nor can it be removed. The
following example demonstrates that without this specific condition, the uniqueness of the fixed
point is not guaranteed.

Example 4.2. Let ¥ = [0, 1]. Define the t-norm a @ b = ab and t-conorm a ® b = max{a, b}.
Let ¢ = 2. Define the functions v, @, A, 7 on ¥? X (0, 0)? as follows:

@2 ®2

0,0,)= ——— 0,0,))= ———
U(ﬁ77/a 1s 2) ®2+IB—‘)/|’ w(ﬂ,)’, 1s 2) ®2+IB—’)/|’
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1B -7l 1B -7l
&y O e
This space is a complete 2-NFMS. Notice that limg, .., v = 1, so the space is 2-natural.
However, it is not 1-natural because the functions are independent of ®,, so limg, o v # 1
(unless 8 = y).
Now, define the mapping E : ¥ — ¥ by E(8) = B (the identity map). Let us test the
contraction conditions of Theorem 4.1 for ) = 1 (where the space is NOT natural). For any
x € (0,1):

/l(ﬁ’ 79 ®la ®2) =

v, (5. 2y, 01, 02) = v(B,y,0:/%,0,) = ®2+®—|ﬁ2_y| = v(B,7,01,0).
Thus, the condition vfl)/ *(EB,Ey, ®) > v(B,7,0) is satisfied (with equality). Similarly, all other
conditions (4.2)—(4.4) are satisfied for ) = 1. However, despite satisfying the contraction
inequalities, = does not have a unique fixed point; in fact, every point in [0, 1] is a fixed
point. This failure occurs because the space is not 1-natural. This proves that the h-naturalness
condition assumed in Theorem 4.1 cannot be weakened.

Corollary 4.1. Assume that (¥, v, @, A, 7,®,®) is a complete ¢-NFMS. A function 2 : ¥ — ¥
is defined if there exists & € (0, 1) such that

v(EB,Ey,0) > v(B,v,0), w (56,Z8y,0) > @(,y,0),

A(EB,Ey, ) < A(B,7,0) and T (5B, Ey, ©) < 7(8,7,0), B,y € ¥. (4.7)

In this case, Z has a unique solution.

Lemma 4.1. For any m € {1,2,---,¢}, for all ©,,0,,...,0. > 0 and ¢ € (0,0),
if limg_,o Be = B and limg_,o y: = 7, then

v(B,7,0,,0,,- ,0, 1,0 +6,0., - ,0,)

< limgoo inf v (Be, Y6, 01,02, -+, 01,0 + 6,0y, -+, O,),
@ (,7,01,0,, - ,0y 1,0+, 0,1, ,0,)

< limg_o inf @ (Be, 72, ©1,0n, -+, @1, 0 + ¢, Oy, -+, O,
1(8,7,0,0,,---,0y 1,0 +¢,0;,,---,0,)

> limg e SUP A (B, 72, 01, O, -+, Oy, O + ¢, O, -+, O)
7(8,7,01,0,,- -+ ,0y_1,0 + ¢, O, ,0,)

> limg_oo SUP T (B, 76, ©1,0n, -+, @1, 0 + ¢, Oy, -+, O,
v(3,7,0,,0,,--,0; 1,0 +¢,0,,,---,0,)

< limg_oo SUP (B, Ve, 01,0, -+, Oy 1, @ + 6, O, -+, O)
@ (8,7,01,0,,- 01,0+ $,0,1,-- ,0,)

< limg e SUP @ (B Y, 01, O, -+, @1, @ + 6, Oy, -+, ),
1(8,7,0,,0,,---,0y 1,0+ ¢,0;,,---,0,)

> limg_oo inf A (Bz, ¥e. 01, 0p, -+, @1, 0 + 6, Oy, -+, O,
7(8,7,01,0,, - ,0 1,0 + $, 0,1, ,0,)

> limg oo inf 7 (B, ¥, 01,03, -+, Oy 1, @ + ¢, Oy, -+, O ).
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Definition 4.1. Let (Y, v, @, 7,®,®) be a ¢-NFMS. A mapping Z : ¥ — VY is called a ¢-
neutrosphic fuzzy contraction mapping (¢-NFCM) if 0 < » < 1 such that, for every B,y € ¥
and ©,0,,...,0. > 0, the following circumstances are true:

L 1 3 I D
T R [—um@i) 1] e S [w@s%@?) 1] ’
/I(Eﬁ, E’)/7 Gj) < %/l (18’ 77 65) Cll’ld T(Eﬁ’ Ey’ FZ) SaT (ﬁ’ y, ®j) ’

where x is the contractive factor of E.

Theorem 4.2. Let (Y, v, w, A, 7,8,®) be a ¢-NFMS and E : ¥ — Y be a ¢-NFCM. Then, =
has a unique fixed point.

Proof. Let By € ¥, and let {,85} be defined as By = E6;_;, for all £ € N. For every & € N,

1 1 1
—1 = -1 |— -1
o(BeBer1,05) v(2Be-1.5P¢.05) =% [U(ﬂs‘lﬁg,@}) ]

1 2 1
— - 1| < — -1
% |:U(Eﬂ§—275ﬁ§—l,®§) ] =% |:U(,B.f—2ﬁ_$—1’®§) ]

Sl——1L
<x [v(ﬂoﬂn@j) 1].

Then, we obtain

1 1
——IS%‘E[——II. (4.8)
v (ﬁg,ﬁgu, ®§) v (,BO,ﬁl, @j)
For each € € N, and for all 0 < % < 1, we can deduce from Eq (4.8) that
. 1
lim [— - 1] <0,
£—o0 v (ﬁ{-‘sﬁf‘*’l’ @j)
. . 1 _
1.C. hmg_m v(ﬁ—f,ﬁg+1,®§) = 1, (49)

for all ®§ > 0.
For each ¢ € N, u > 0 and @j > 0, we have

1% (ﬁg,ﬁgm, @j) 2 UFZ) (ﬁg,ﬁgﬂ, (”)j) @ Ufz)z(ﬁ§+l’ﬁf+u’ @j)
> 2 (e Bert. ©5) @ U (Bevr fera ) @+ (4.10)
® Uéuil (ﬁ§+u—2,ﬁ§+u—l s ®§) ® Ufz)uil (B§+u—l ’ﬁ§+u7 ®j) .

From Eq (4.9), we have lim;_., v} (Bg, Bes, @j) = 1, for every ©5 > 0 and 3 > 0. This suggests

that
lim v (Be Bt O5) 2 1010 @1 =1,
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as does inequality (4.10). Given any positive real numbers 0, ©,, ..., 0. and u, let {:36} be a
Cauchy sequence in . The sequence is considered complete if it converges to a limit, that is,
there exists q € ¥ such that {,85} - q.

To put it differently,

lim v(Be0.05) = 1, for every © > 0. 4.11)

Also, we get
lim @ (B:.0.05) = 1, forall @ > 0.

This definition similarly implies that

A(Be.Ben1. ©F) = A(EBe-1. 5P, ©F) < A (Be-1. B, ©F)
=xA (Eﬁ{f—Z, Eﬁf—l, ®§) < %2/1 (ﬁf—bﬁf—l, @j)

(4.12)
= %71 A (21, 562, ©5) < #4A (Bo. 51, ©5).
Since 0 < % < 1, we conclude from Eq (4.12) that
lim A(Be 1, ©5) =0, forall © > 0. (4.13)

ForfeN,u>0and®§ > 0, we have

/l(ﬁgaﬁfw ®3) <A (,35’,3&1’@?) ® 4 (ﬂ vt e ®j)
< B (B e 0) 0 15 (Bev. e ) 0+
® /1514_1 (ﬁ§+u—2aﬁ§+u—l > ®§) ® /lgu_l (ﬁf"'”_l ,ﬂ§+ua ®j) ’

From Eq (4.13), we have lim,_,, /lg (ﬁg, Be+1s G)j) = 0, for all G)j > 0 and 3 > 0. This, combined
with inequality (4.12), implies
s Sy —

For any positive real numbers ©,,0,, ..., 0, and u, let {,B,f} be a Cauchy sequence in Y. The
sequence is said to be complete if it converges to itself, i.e., there exists g € ¥ such that
el o
Alternatively,
lim A (e 0.©5) =0, forall © > 0. (4.14)

Similar operations also hold for another FS 7.
We will show that q is a fixed point for Y. For all ¢ € N and (95 > (0, we write that

1 1
-l=— 1<%

v (,3§+1 , B4, ®§) v (Eﬁf, =q, @;) B

1
—_— - 1].
v (Be. 0. 65) ]
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lim [ ! - 1] =0, using (4.10),
‘f—mo v (ﬁf+] R EQa ®g)
. — S\
ie., S;Lrgv(ﬁfﬂ,_q, ®)=1. (4.15)

For any ¢ € N and for all ®§ > 0, we have
v (q, =q, ®§) > v; (q,,8§+1, ®§) v, (,B§+1, =q, ®j) .
Taking the limit as £ — oo in the above inequality and using Eqs (4.11) and (4.15), leads to
v(9.20,05) = 1, forall @ > 0.
In a comparable way, we have
@ (0.29,05) = 1, for all © > 0.

Now, we can write

A(Be. B0, ©5) = (2B, Eq, ©5) < (B 0. 95).
lim A (Be.1.20,0%) = 0, by using (4.13). (4.16)
7]—>OO N
For any ¢ € N and for all ©,0,,...,0, > 0, we have
/1 (Q7 Eq’ ®§) S /lfz) (q7ﬁ§+1 B ®§) @ /lé (B§+1 ’ Eq’ ®j) B
which, together with (4.13) and (4.16), yields
A(0,Z0,05) =0, forall @ > 0.
Additionally, in a similar manner, we have
7(a,29,0%) = 0, for all © > 0.

This signifies that q serves as a fixed point for 'V, p is another fixed point of ¥, distinct from a.
Therefore, there exist positive values 1,1, - ,t;. such that v(q, p, tf) <1, w(q, D, tf) < 1,

/l(q, D, tf) > 0, T(q, , t?) > 0. Now, we have

=1
v(q p.f5) - 1= v(Ea,Zp.f) I<x [v(q Y ) 1] >
1 1
@(a,p.6) -1 @ (0,8, -l<w u(q p.t5) 1] >

Pl (q, p, tf) =1 (Eq, =p, tf) <xd (q, », tf) < /l(q, p, tf),
T(q, D, tf) = T(Eq, Ep, tf) <t (q, P, tlg) < T(q, D, tf) :

Since % is less than 1, the aforementioned inequality leads to a contradiction. Therefore, it must
be the case that ¢ = p. As a result, a unique fixed point of ¥ is established.

AIMS Mathematics Volume 10, Issue 12, 28347-28373.



28371

5. Conclusions

This study introduced the concept of ¢-NFMSs, a significant generalization of NFMSs. By
incorporating multiple parameters ¢ into neutrosophic fuzzy sets, the proposed framework
offers greater flexibility and applicability in analyzing mathematical structures. The
fundamental properties of ¢-NFMSs were explored, demonstrating that their topology is
first-countable and that the corresponding metric space satisfies the Hausdorff condition.
Additionally, a fixed-point theorem was established, which expanded and improved on previous
findings in the setting of NFMSs. New research directions and real-world applications in
mathematical analysis and related domains are made possible by these results. As an avenue for
future research, it would be valuable to investigate whether the fixed-point theorems established
in this work can be extended to proximal point results within the ¢-NFMS framework,
potentially drawing parallels to recent findings in related spaces [37].
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