Research article

Traveling wave reductions and adaptive moving mesh computations for the improved Boussinesq equation

  • Published: 03 December 2025
  • MSC : 35A25, 35B35, 35Q51, 35Q92, 65M06, 65M12, 65M50

  • This paper is concerned with the analytical and numerical study of the improved Boussinesq (IB) equation, a nonlinear dispersive model for applications in fluid dynamics, elasticity, geophysics, and nonlinear optics. Two systematic symbolic algorithms, i.e., the generalized tanh method and the $ (1/\Theta') $-expansion method, are used for the recovery of analytical traveling-wave solutions of the IB equation. These solutions reveal a vast taxonomy of nonlinear waveforms corresponding to solitary, rational, and periodic profiles, governed by parameter combinations that regulate dispersion, wave amplitude, and phase. As a complement to the analytical study, we use an $ r $-adaptive numerical method built from the Parabolic Monge-Ampère (PMA) moving mesh method and discretized by central differences in space and BDF2 in time. An adaptive algorithm automatically relocates the mesh nodes toward locations where sharp gradients are present, thereby ensuring accuracy and efficiency and preventing unnecessary computational cost. Numerical experiments evidence second-order convergence and stability and demonstrate the ability of the method to resolve sharp wave interaction without spurious oscillations. In total, the combination of exact benchmarks and adaptive simulation provides a practical framework for simulating nonlinear dispersive waves with impact in applications such as tsunami simulation, earthquake wave propagation, and optical signal pulse transmission.

    Citation: Amer Ahmed, Taghread Ghannam Alharbi, A. R. Alharbi, Ishak Hashim. Traveling wave reductions and adaptive moving mesh computations for the improved Boussinesq equation[J]. AIMS Mathematics, 2025, 10(12): 28374-28395. doi: 10.3934/math.20251248

    Related Papers:

  • This paper is concerned with the analytical and numerical study of the improved Boussinesq (IB) equation, a nonlinear dispersive model for applications in fluid dynamics, elasticity, geophysics, and nonlinear optics. Two systematic symbolic algorithms, i.e., the generalized tanh method and the $ (1/\Theta') $-expansion method, are used for the recovery of analytical traveling-wave solutions of the IB equation. These solutions reveal a vast taxonomy of nonlinear waveforms corresponding to solitary, rational, and periodic profiles, governed by parameter combinations that regulate dispersion, wave amplitude, and phase. As a complement to the analytical study, we use an $ r $-adaptive numerical method built from the Parabolic Monge-Ampère (PMA) moving mesh method and discretized by central differences in space and BDF2 in time. An adaptive algorithm automatically relocates the mesh nodes toward locations where sharp gradients are present, thereby ensuring accuracy and efficiency and preventing unnecessary computational cost. Numerical experiments evidence second-order convergence and stability and demonstrate the ability of the method to resolve sharp wave interaction without spurious oscillations. In total, the combination of exact benchmarks and adaptive simulation provides a practical framework for simulating nonlinear dispersive waves with impact in applications such as tsunami simulation, earthquake wave propagation, and optical signal pulse transmission.



    加载中


    [1] I. L. Bogolubsky, Some examples of inelastic soliton interaction, Comput. Phys. Commun., 13 (1977), 149–155. https://doi.org/10.1016/0010-4655(77)90009-1 doi: 10.1016/0010-4655(77)90009-1
    [2] V. S. Manoranjan, A. R. Mitchell, J. Ll. Morris, Numerical solutions of the good Boussinesq equation, SIAM J. Sci. Stat. Comput., 5 (1984), 946–957. https://doi.org/10.1137/0905065 doi: 10.1137/0905065
    [3] L. Debnath, Nonlinear diffusion-reaction phenomena, In: Nonlinear partial differential equations for scientists and engineers, Birkhäuser Boston, 2012. https://doi.org/10.1007/978-0-8176-8265-1_8
    [4] Z. Yang, B. Y. C. Hon, An improved modified extended tanh-function method, Z. Naturforsch., 61a (2006), 103–115. https://doi.org/10.1515/zna-2006-3-401 doi: 10.1515/zna-2006-3-401
    [5] Y. Li, Trial equation method for solving the improved Boussinesq equation, Adv. Pure Math., 4 (2014), 47–52. https://doi.org/10.4236/apm.2014.42007 doi: 10.4236/apm.2014.42007
    [6] B. Wongsaijai, C. Oonariya, K. Poochinapan, Compact structure-preserving algorithm with high accuracy extended to the improved Boussinesq equation, Math. Comput. Simul., 178 (2020), 125–150. https://doi.org/10.1016/j.matcom.2020.05.002 doi: 10.1016/j.matcom.2020.05.002
    [7] M. A. Kawser, M. A. Akbar, M. A. Khan, H. A. Ghazwani, Exact soliton solutions and the significance of time-dependent coefficients in the Boussinesq equation: Theory and application in mathematical physics, Sci. Rep., 14 (2024), 762. https://doi.org/10.1038/s41598-023-50782-1 doi: 10.1038/s41598-023-50782-1
    [8] Chapter 2 properties of the 2-D system of Shallow-Water Equations (2-D SSWE), In: Elsevier oceanography series, 55 (1992), 60–106. https://doi.org/10.1016/S0422-9894(08)70156-9
    [9] R. B. Hetnarski, J. Ignaczak, The mathematical theory of elasticity, Boca Raton: CRC Press, 2011. https://doi.org/10.1201/9781439828892
    [10] O. Darrigol, Joseph Boussinesq's legacy in fluid mechanics, C. R. Mécanique, 345 (2017), 427–445. https://doi.org/10.1016/j.crme.2017.05.008 doi: 10.1016/j.crme.2017.05.008
    [11] S. Ibrahim, T. A. Sulaiman, A. Yusuf, D. U. Ozsahin, D. Baleanu, Wave propagation to the doubly dispersive equation and the improved Boussinesq equation, Opt. Quant. Electron., 56 (2024), 20. https://doi.org/10.1007/s11082-023-05571-5 doi: 10.1007/s11082-023-05571-5
    [12] M. Iqbal, W. A. Faridi, M. Alammari, F. A. H. Alomari, N. E. Alsubaie, S. Ibrahim, et al., Dynamical analysis of optical soliton structures for wave propagation in nonlinear low-pass electrical transmission lines under effective approach, Opt. Quant. Electron., 56 (2024), 1036. https://doi.org/10.1007/s11082-024-06664-5 doi: 10.1007/s11082-024-06664-5
    [13] B. Karaagac, Y. Ucar, A. Esen, Dynamics of modified improved Boussinesq equation via Galerkin finite element method, Math. Method. Appl. Sci., 43 (2020), 10204–10220. https://doi.org/10.1002/mma.6687 doi: 10.1002/mma.6687
    [14] M. Bilal, J. Ren, A. S. A. Alsubaie, K. H. Mahmoud, M. Inc, Dynamics of nonlinear diverse wave propagation to Improved Boussinesq model in weakly dispersive medium of shallow waters or ion acoustic waves using efficient technique, Opt. Quant. Electron., 56 (2024), 21. https://doi.org/10.1007/s11082-023-05587-x doi: 10.1007/s11082-023-05587-x
    [15] W. L. Lee, Z. Tan, Moving mesh methods for Boussinesq equation, Int. J. Numer. Meth. Fl., 61 (2009), 1161–1178. https://doi.org/10.1002/fld.2008 doi: 10.1002/fld.2008
    [16] M. A. E. Abdelrahman, M. B. Almatrafi, A. Alharbi, Fundamental solutions for the coupled KdV system and its stability, Symmetry, 12 (2020), 429. https://doi.org/10.3390/sym12030429 doi: 10.3390/sym12030429
    [17] S. A. Khuri, A complex tanh-function method applied to nonlinear equations of Schrödinger type, Chaos Soliton. Fract., 20 (2004), 1037–1040. https://doi.org/10.1016/j.chaos.2003.09.042 doi: 10.1016/j.chaos.2003.09.042
    [18] A. M. Wazwaz, The extended tanh method for abundant solitary wave solutions of nonlinear wave equations, Appl. Math. Comput., 187 (2007), 1131–1142. https://doi.org/10.1016/j.amc.2006.09.013 doi: 10.1016/j.amc.2006.09.013
    [19] J. Manafian, J. Jalali, A. Alizadehdiz, Some new analytical solutions of the variant Boussinesq equations, Opt. Quant. Electron., 50 (2018), 80. https://doi.org/10.1007/s11082-018-1345-z doi: 10.1007/s11082-018-1345-z
    [20] M. Ozisik, A. Secer, M. Bayram, A. Yusuf, T. A. Sulaiman, Soliton solutions of the Boussinesq equation via an efficient analytical technique, Mod. Phys. Lett. B, 36 (2022), 2250149. https://doi.org/10.1142/S0217984922501494 doi: 10.1142/S0217984922501494
    [21] A. Aasaraai, The application of modified F-expansion method solving the Maccari's system, J. Adv. Math. Comput. Sci., 11 (2015), 1–14. https://doi.org/10.9734/BJMCS/2015/19938 doi: 10.9734/BJMCS/2015/19938
    [22] S. K. Mohanty, O. V. Kravchenko, A. N. Dev, Exact traveling wave solutions of the Schamel Burgers' equation by using generalized-improved and generalized G$'$/G expansion methods, Results Phys., 33 (2022), 105124. https://doi.org/10.1016/j.rinp.2021.105124 doi: 10.1016/j.rinp.2021.105124
    [23] M. A. E. Abdelrahman, A. Alharbi, Analytical and numerical investigations of the modified Camassa-Holm equation, Pramana J. Phys., 95 (2021), 117. https://doi.org/10.1007/s12043-021-02153-6 doi: 10.1007/s12043-021-02153-6
    [24] A. G. Bratsos, A second order numerical scheme for the improved Boussinesq equation, Phys. Lett. A, 370 (2007), 145–147. https://doi.org/10.1016/j.physleta.2007.05.050 doi: 10.1016/j.physleta.2007.05.050
    [25] Z. Zhang, F. Lu, Quadratic finite volume element method for the improved Boussinesq equation, J. Math. Phys., 53 (2012), 013505. https://doi.org/10.1063/1.3672197 doi: 10.1063/1.3672197
    [26] Z. Ming, B. Teng, S. X. Liu, Numerical simulation of improved Boussinesq equations by a finite element method, J. Hydrodyn., 15 (2003), 31–40.
    [27] C. Zhang, J. Huang, C. Wang, X. Yue, On the operator splitting and integral equation preconditioned deferred correction methods for the "good" Boussinesq equation, J. Sci. Comput., 75 (2018), 687–712. https://doi.org/10.1007/s10915-017-0552-2 doi: 10.1007/s10915-017-0552-2
    [28] A. Ahmed, A. R. Alharbi, H. S. Alayachi, I. Hashim, Exact and numerical approaches for solitary and periodic waves in a (2+1)-dimensional breaking soliton system with adaptive moving mesh, AIMS Math., 10 (2025), 8252–8276. https://doi.org/10.3934/math.2025380 doi: 10.3934/math.2025380
    [29] A. Ahmed, A. R. Alharbi, I. Hashim, Exact and numerical solutions of the generalized breaking soliton system: Insights into non-linear wave dynamics, AIMS Math., 10 (2025), 5124–5142. https://doi.org/10.3934/math.2025235 doi: 10.3934/math.2025235
    [30] C. J. Budd, J. F. Williams, Moving mesh generation using the parabolic Monge-Ampère equation, SIAM J. Sci. Comput., 31 (2009), 3438–3465. https://doi.org/10.1137/080716773 doi: 10.1137/080716773
    [31] A. R. Alharbi, Numerical solutions to two-dimensional fourth order parabolic thin film equations using the Parabolic Monge-Ampère method, AIMS Math., 8 (2023), 16463–16478. https://doi.org/10.3934/math.2023841 doi: 10.3934/math.2023841
    [32] M. H. M. Sulman, T. B. Nguyen, R. D. Haynes, W. Huang, Domain decomposition parabolic Monge-Ampère approach for fast generation of adaptive moving meshes, Comput. Math. Appl., 84 (2021), 97–111. https://doi.org/10.1016/j.camwa.2020.12.007 doi: 10.1016/j.camwa.2020.12.007
    [33] C. J. Budd, W. Huang, R. D. Russell, Adaptivity with moving grids, Acta Numer., 18 (2009), 111–241. https://doi.org/10.1017/S0962492906400015 doi: 10.1017/S0962492906400015
    [34] A.-M. Wazwaz, The tanh method for traveling wave solutions of nonlinear equations, Appl. Math. Comput., 154 (2004), 713–723. https://doi.org/10.1016/S0096-3003(03)00745-8 doi: 10.1016/S0096-3003(03)00745-8
    [35] H. Q. Sun, A. H. Chen, Exact solutions of the classical Boussinesq system, Arab J. Basic Appl. Sci., 25 (2018), 85–91. https://doi.org/10.1080/25765299.2018.1449416 doi: 10.1080/25765299.2018.1449416
    [36] A. R. Seadawy, D. Lu, C. Yue, Travelling wave solutions of the generalized nonlinear fifth-order KdV water wave equations and its stability, J. Taibah Univ. Sci., 11 (2017), 623–633. https://doi.org/10.1016/j.jtusci.2016.06.002 doi: 10.1016/j.jtusci.2016.06.002
    [37] W. O. Apeanti, D. Lu, H. Zhang, D. Yaro, S. W. Akuamoah, Traveling wave solutions for complex nonlinear space-time fractional order (2+1)-dimensional Maccari dynamical system and Schrödinger equation with dual power law nonlinearity, SN Appl. Sci., 1 (2019), 530. https://doi.org/10.1007/s42452-019-0537-x doi: 10.1007/s42452-019-0537-x
    [38] L. Li, E. Li, M. Wang, The (G'/G, 1/G)-expansion method and its application to travelling wave solutions of the Zakharov equations, Appl. Math. J. Chin. Univ., 25 (2010), 454–462. https://doi.org/10.1007/s11766-010-2128-x doi: 10.1007/s11766-010-2128-x
    [39] M. A. E. Abdelrahman, E. H. M. Zahran, M. M. A. Khater, The $\exp(-\phi(\xi))$-expansion method and its application for solving nonlinear evolution equations, Int. J. Mod. Nonlinear Theor. Appl., 4 (2015), 37–47. https://doi.org/10.4236/ijmnta.2015.41004 doi: 10.4236/ijmnta.2015.41004
    [40] A. R. Alharbi, Numerical solution of thin-film flow equations using adaptive moving mesh methods, 2016. Available from: https://keele-repository.worktribe.com/output/407075.
    [41] A. R. Alharbi, Numerical investigation for the GRLW equation using Parabolic Monge Ampere equation, Int. J. Math. Comput. Sci., 15 (2020), 443–462.
    [42] A. R. Alharbi, A Study of traveling wave structures and numerical investigation of two-dimensional Riemann problems with their stability and accuracy, CMES-Comp. Model. Eng., 134 (2023), 2193–2209. https://doi.org/10.32604/cmes.2022.018445 doi: 10.32604/cmes.2022.018445
    [43] M. B. Almatrafi, A. R. Alharbi, A. R. Seadawy, Structure of analytical and numerical wave solutions for the Ito integro-differential equation arising in shallow water waves, J. King Saud Univ. Sci., 33 (2021), 101375. https://doi.org/10.1016/j.jksus.2021.101375 doi: 10.1016/j.jksus.2021.101375
    [44] E. Fan, Y. C. Hona, Generalized tanh method extended to special types of nonlinear equations, Z. Naturforsch. A, 57 (2002), 692–700. https://doi.org/10.1515/zna-2002-0809 doi: 10.1515/zna-2002-0809
    [45] T. G. Alharbi, A. Alharbi, A study of traveling wave structures and numerical investigations into the coupled nonlinear Schrödinger equation using advanced mathematical techniques, Mathematics, 11 (2023), 4597. https://doi.org/10.3390/math11224597 doi: 10.3390/math11224597
    [46] K. K. Ali, R. Yilmazer, A. Yokus, H. Bulut, Analytical solutions for the (3+1)-dimensional nonlinear extended quantum Zakharov-Kuznetsov equation in plasma physics, Physica A, 548 (2020), 124327. https://doi.org/10.1016/j.physa.2020.124327 doi: 10.1016/j.physa.2020.124327
    [47] L. F. Diachin, R. Hornung, P. Plassmann, A. Wissink, Parallel adaptive mesh refinement, In: Parallel processing for scientific computing, 2006,143–162. https://doi.org/10.1137/1.9780898718133.ch8
    [48] P. A. Browne, C. J. Budd, C. Piccolo, M. Cullen, Fast three dimensional r-adaptive mesh redistribution, J. Comput. Phys., 275 (2014), 174–196. https://doi.org/10.1016/j.jcp.2014.06.009 doi: 10.1016/j.jcp.2014.06.009
    [49] C. J. Budd, J. F. Williams, Parabolic Monge-Ampère methods for blow-up problems in several spatial dimensions, J. Phys. A Math. Gen., 39 (2006), 5425–5449. https://doi.org/10.1088/0305-4470/39/19/S06 doi: 10.1088/0305-4470/39/19/S06
    [50] L. F. Shampine, Solving $0 = F(t, y(t), y'(t))$ in matlab, J. Numer. Math., 10 (2002), 291–310. https://doi.org/10.1515/JNMA.2002.291
    [51] A. Alharbi, S. Naire, An adaptive moving mesh method for thin film flow equations with surface tension, J. Comput. Appl. Math., 319 (2017), 365–384. https://doi.org/10.1016/j.cam.2017.01.019 doi: 10.1016/j.cam.2017.01.019
    [52] T. Tang, Moving mesh methods for computational fluid dynamics, Contemp. Math., 383 (2005), 141–173.
    [53] W. Huang, R. D. Russell, Variational mesh adaptation methods, In: Adaptive moving mesh methods, New York: Springer, 2011. https://doi.org/10.1007/978-1-4419-7916-2_6
    [54] C. Lu, W. Huang, J. Qiu, An adaptive moving mesh finite element solution of the regularized long wave equation, J. Sci. Comput., 74 (2018), 122–144. https://doi.org/10.1007/s10915-017-0427-6 doi: 10.1007/s10915-017-0427-6
    [55] E. Hairer, G. Wanner, Solving ordinary differential equations II: Stiff and differential-algebraic problems, Berlin: Springer, 1996. https://doi.org/10.1007/978-3-642-05221-7
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(415) PDF downloads(13) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog