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Abstract: This paper is concerned with the analytical and numerical study of the improved
Boussinesq (IB) equation, a nonlinear dispersive model for applications in fluid dynamics, elasticity,
geophysics, and nonlinear optics. Two systematic symbolic algorithms, i.e., the generalized tanh
method and the (1/Θ′)-expansion method, are used for the recovery of analytical traveling-wave
solutions of the IB equation. These solutions reveal a vast taxonomy of nonlinear waveforms
corresponding to solitary, rational, and periodic profiles, governed by parameter combinations that
regulate dispersion, wave amplitude, and phase. As a complement to the analytical study, we use an
r-adaptive numerical method built from the Parabolic Monge-Ampère (PMA) moving mesh method
and discretized by central differences in space and BDF2 in time. An adaptive algorithm automatically
relocates the mesh nodes toward locations where sharp gradients are present, thereby ensuring accuracy
and efficiency and preventing unnecessary computational cost. Numerical experiments evidence
second-order convergence and stability and demonstrate the ability of the method to resolve sharp
wave interaction without spurious oscillations. In total, the combination of exact benchmarks and
adaptive simulation provides a practical framework for simulating nonlinear dispersive waves with
impact in applications such as tsunami simulation, earthquake wave propagation, and optical signal
pulse transmission.
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1. Introduction

Nonlinear wave propagation is a mathematical physics classic, with applications to liquid dynamics
and plasma physics, elasticity, and nonlinear optics, to name just a few. In particular, these processes
are normally modeled by nonlinear partial differential equations (NPDEs), which showcase a subtle
balance between dispersion and nonlinearity. Among such models, the Boussinesq equation has
had a pioneering role in describing shallow water dynamics ever since it was first postulated by
Joseph Boussinesq in the nineteenth century [1–3]. Nevertheless, its classical version was cursed
with instability for short wavelengths and was therefore commonly referred to as the “bad Boussinesq”
equation. As a result, these unbounded growths of short-wave modes caused the model to fail in
producing reliable simulations. Consequently, to overcome these shortcomings, modified versions
were proposed, most notably its so-called “good” or improved version, which incorporates dispersive
corrections to eliminate spurious short-wave growths [4–6].

In these analyses, our improved version of the Boussinesq equation of interest takes the version

ψtt − µψxxtt − κ
2ψxx − ψψxx − (ψx)2 = 0, (1.1)

with dispersive parameter µ > 0 and constant coefficient κ. The improved Boussinesq (IB) equation
admits conserved quantities (e.g., energy and momentum); their explicit forms will be recalled in
Section 2, which makes it a convenient setting for the analysis of nonlinear dispersive waves.

The IB model has found broad applicability in applied science and engineering. For instance, it
can be applied in coastal hydrodynamics to model wave propagation of long surface wave motions
over variable bathymetry with appropriate representation of such essential properties as shoaling,
dispersion, and solitary wave interactions [7]. In addition, it has also found applications in modeling
tsunami dynamics, wherein appropriate prediction of wave shape and wave velocity is of critical
importance for the prediction of hazards [8]. In elasticity theory, its versions provide wave motions in
elastic rods [9], while in geophysics, it provides a model of wave motions of seismic waves in layered
media [10].

Beyond solid and fluid mechanics, the IB model is also found in nonlinear optics and transmission
lines, where it serves to regulate the balance between dispersive and nonlinear forces that sustain
soliton-like pulses [11, 12]. Notably, it plays a central role in designing light communication systems
and artificial media, whose primary goal is to transmit signals with minimal distortion. Moreover, the
diverse applications of the IB equation to these different problems highlight its importance and, as a
result, continue to stimulate investigations on both exact analytical solutions and efficient schemes for
its accurate simulation [13, 14].

An important feature of Eq (1.1) is its ability to accommodate solitonic solutions, brief waveforms
forming out of a subtle interplay between nonlinearity and dispersion. Indeed, such solitons are of
great importance because of their stability and robustness over significant distances. Consequently,
emulating such dynamics is of qualitative importance to simulate real-world processes like propagation
of tsunami waves and signal transmission in optical fibers [15, 16].

Several analytical approaches have been established over the past decades for finding highly
accurate solutions of Boussinesq-type equations, including the tanh-function technique, the Jacobi
elliptic expansions, the expansion scheme of (1/Θ′), and the extended trial equation approach [17–20].
These approaches aid in understanding the shape and development of nonlinear waves but rely on
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simplifying assumptions or idealized conditions and may diminish the range of application [21–23].
The IB equation, when numerically solved, poses considerable difficulties, necessitating accurate and
stable numerical schemes. Classical schemes like finite difference [24], finite volume [25], and finite
element schemes [26] have been thoroughly utiliszed with varying degrees of success.

In addition, more advanced schemes include meshless radial basis function collocation, operator
splitting schemes [27], and adaptive moving mesh techniques [28, 29], such as the Parabolic Monge-
Ampère (PMA) method, which dynamically relocates grid points to areas of sharp wave interactions
or steep gradients [30, 31].

Within this context, the literature reports the following computational and convergence properties
for r-adaptive PMA. Specifically, Domain Decomposition PMA shows a reduction in wall time with
increasing resolutions, especially in three dimensions, where the Alternating DDPMA algorithm
is faster than single-domain PMA as measured by timings [32]. In addition, spatial second-order
convergence and temporal first-order convergence factors have been observed, and the Domain
Decomposition solution converges towards the single-domain solution as a result of increasing
iterations in the pseudo-time integration [32]. Furthermore, r-adaptive techniques are considered
promising tools towards optimal redistribution; PMA schemes are simple to implement as a single
scalar equation in any number of spatial dimensions [33].

Despite these developments, several challenges remain. On the one hand, analytic methods are
typically restricted to smaller geometries or certain boundary conditions. Analytic methods provide
closed-form travelling waves in specific settings; however, these methods are generally not applicable
across all boundary types or parameter regimes [34, 35]. A common step in such reductions is the
balancing principle, where the highest derivative term is balanced against the leading-order nonlinearity
to determine the appropriate order of the ansatz [36,37]. Since different regimes are often distinguished
by parameter features such as signs or discriminants, it is valuable to employ complementary solution
templates. For instance, Riccati or tanh-type constructions are effective in certain parameter ranges,
while linear-auxiliary expansions, such as the (G′/G) method or exponential forms like exp(−Φ),
capture different profiles and behaviors [38, 39].

On the other hand, schemes of a numerical sort often do not remain stable and precise for large-
time simulations. In particular, for robust modeling of nonlinear wave interactions and stable solitary
structures, schemes must not only converge and be stable but also adapt to characteristics of the
evolving solution [40, 41]. Therefore, the present work addresses these challenges by amalgamating
mutually reinforcing analytical and numerical approaches. Specifically, analytically, we combine the
generalized tanh method and the (1/Θ′)-expansion technique to derive new classes of exact traveling-
wave solutions of the IB equation. Moreover, numerically, we implement an implicit finite difference
method with the adaptive PMA moving mesh algorithm. Finally, the analytical solutions serve to verify
the stability, convergence, and reliability of the proposed schemes [42, 43].

The method of generalized tanh gives closed forms through a finite polynomial in some Riccati
variable, coefficients arise from a linear algebraic system, and the organizer sign(m) separates solitary,
rational, and periodic branches [44–46]. By contrast, the (1/Θ′) expansion leverages a linear auxiliary
ODE; regimes are organized by ∆ = ϑ2 − 4ν, which cleanly splits non-oscillatory vs. oscillatory
behavior, while the coefficients (A0, A1, A2) directly control offset, steepening, and phase [46].

In this work, we provide a unified parameter-space classification of seven travelling-wave families
for the improved Boussinesq equation. The generalized-tanh branch is organized by sign(m) (solitary
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for m < 0, rational at m = 0, periodic for m > 0), while the 1/Θ′ branch is organized by ∆ = ϑ2 − 4ν
(non-oscillatory for ∆ > 0, oscillatory for ∆ < 0). The coupled reduction is admissible when 1−µϑ2 >

0, yielding c = κ/
√

1 − µϑ2. Table 1 summarizes the regimes and the connecting limits; these closed
forms are then used as manufactured benchmarks for the numerical validation.

Table 1. Summary of travelling-wave families and admissible sets.

Family Defining constraint(s) Qualitative type
ψ1 m < 0 solitary (tanh2-type)
ψ2 m < 0 solitary with poles (coth2-type)
ψ3 m = 0 rational profile
ψ4 m > 0, ∆ < 0 periodic, oscillatory (tan2-type)
ψ5 m > 0, ∆ > 0 periodic, non-oscillatory (cot2-type)
ψ6 ∆ = ϑ2 − 4ν 1/Θ′ branch; split by ∆ ≷ 0
ψ7 1 − µϑ2 > 0, c = κ/

√
1 − µϑ2 coupled admissible set

The overall paper structure is organized as follows. To begin with, Section 2 details the
calculation of the IB equation’s analytical traveling-wave solutions by systematic symbolic procedures.
Subsequently, Section 3 outlines the numerical approach based on the Parabolic Monge-Ampère
moving mesh method and also provides a detailed accuracy analysis together with an examination of
the proposed scheme’s stability characteristics. Finally, Section 4 includes a summary of the principal
points and, in addition, highlights potential directions for the development of future research work,
while Appendix A presents the explicit definition of the mesh-dependent operators appearing in the
discretization.

2. Analytical solutions via traveling wave reductions

In this part, we utilize both the generalized tanh method and the (1/Θ′)-expansion method in order
to find explicit traveling wave solutions of the IB equation. To begin with, we consider the nonlinear
evolution equation

N
(
ψ, ψt, ψx, ψxx, ψtt, ψxxx, ψxxxx, . . .

)
= 0, (2.1)

where ψ = ψ(x, t) is the dependent variable, x represents the space coordinate, t is time, and N(·)
represents a nonlinear differential operator.

Next, to find traveling wave solutions, we assume the transformation

ψ(x, t) = U(ξ), ξ = x − ct, (2.2)

with c being the wave speed. Consequently, the above substitution reduces the governing system to the
ordinary differential form

M
(
U,Uξ,Uξξ,Uξξξ,Uξξξξ, . . .

)
= 0, (2.3)

whereM(·) is the transformed nonlinear operator. As a model case, we therefore take the IB Eq (1.1)
in its traveling wave form:

c2U′′ − µc2U′′′′ − κ2U′′ − UU′′ − (U′)2 = 0, (2.4)
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where the prime denotes differentiation with respect to ξ.
Next, by integrating (2.4) once with respect to ξ, and setting the integration constant to zero so as

to remain consistent with vanishing-at-infinity boundary conditions, we obtain

c2U′ − µc2U′′′ − κ2U′ − 1
2 (U2)′ = 0. (2.5)

In (2.5), U′′′ constitutes the highest derivative term, whereas (U2)′ represents the leading nonlinearity.
To balance the degrees, we therefore assume U ∼ ΘN and Θ′ ∼ Θ2, as suggested by the Riccati
equation. Consequently, it follows that U′ ∼ ΘN+1, U′′′ ∼ ΘN+3, and (U2)′ ∼ Θ2N+1. By equating
N + 3 = 2N + 1, we obtain N = 2. Hence, the solution is proposed in the form

U(ξ) = A0 + A1Θ(ξ) + A2Θ
2(ξ), (2.6)

where Θ(ξ) satisfies the Riccati equation

Θ′ = m + Θ2, (2.7)

with m a constant parameter. The Riccati Eq (2.7) admits the solutions

Θ(ξ) =



−
√
−m tanh

(√
−m (ξ − ξ0)

)
, or −

√
−m coth

(√
−m (ξ − ξ0)

)
, m < 0,

−
1

ξ − ξ0
, m = 0,

√
m tan

(√
m (ξ − ξ0)

)
, or −

√
m cot

(√
m (ξ − ξ0)

)
, m > 0.

(2.8)

where ξ0 represents a phase shift.
Substituting expressions (2.6) and (2.7) into the reduced Eq (2.5), and collecting coefficients of Θk

for k = 0, 1, 2, 3, 4, results in a system of algebraic equations. Solving this system yields

A0 =
A2(8µm − 1)

12µ
− κ2, A1 = 0, c =

√
−A2

2
√

3µ
. (2.9)

To ensure a real wave speed c, the coefficient A2 must have the opposite sign of µ. In particular, if
µ > 0, as in our model (1.1), then A2 must be negative. As a final result, the solutions are classified by
the sign of m as

ψ1(x, t) = −κ2 − A2

[
m tanh2

(√
−m

(
x − ct − ξ0

))
+

1
12µ
−

2m
3

]
, m < 0,

ψ2(x, t) = −κ2 − A2

[
m coth2

(√
−m

(
x − ct − ξ0

))
+

1
12µ
−

2m
3

]
, m < 0,

ψ3(x, t) = −κ2 − A2

 1
12µ
−

1(
x − ct − ξ0

)2

 , m = 0,

ψ4(x, t) = −κ2 − A2

[
−m tan2

(√
m

(
x − ct − ξ0

))
+

1
12µ
−

2m
3

]
, m > 0,

ψ5(x, t) = −κ2 − A2

[
−m cot2

(√
m

(
x − ct − ξ0

))
+

1
12µ
−

2m
3

]
, m > 0.

(2.10)

AIMS Mathematics Volume 10, Issue 12, 28374–28395.



28379

Direct substitution, in fact, confirms that all ψ j satisfy (2.4) under the specified parameter relationships.
Furthermore, the free parameters (A2, κ, µ,m, ξ0) determine key features of the solutions, namely
amplitude, offset, dispersion, wave type, and phase positioning. Taken together, these closed-form
solutions highlight the richness of wave structures admitted by Eq (1.1).

Figures 1 and 2 illustrate the hyperbolic solutions in (2.10). For m < 0, the solution ψ1 represents
a localized solitary pulse that translates rigidly with speed c from (2.9); here (A2, µ) jointly determine
the amplitude-dispersion balance, while κ fixes the baseline. In all cases considered, µ is positive,
thereby ensuring a well-posed dispersive contribution. In addition, its companion ψ2 exhibits the same
translational invariance but with a sharper crest and near-pole steepening. Moreover, this solution
possesses singularities at

x = ct + ξ0 +
nπi
√
−m

, n ∈ Z,

which arise from the poles of the coth function. In order to avoid plotting through these poles, the phase
shift ξ0 is used to control the visualization window. Both cases, therefore, anchor the m < 0 regime.
Furthermore, in the limit m → 0±, the hyperbolic waves connect smoothly to the rational branch
ψ3 (m = 0), which propagates without intrinsic periodicity and with algebraic tails. This limit, in turn,
provides a natural link between solitary-like and periodic dynamics and thus serves as a convenient
reference for comparison with numerical simulations. For m > 0, the trigonometric branches ψ4

and ψ5 produces periodic traveling wave trains with wave number
√

m and period π/
√

m. The ψ4

profile behaves like a lattice of peaks, whereas ψ5 is phase-shifted with poles that can be eliminated
by adjusting ξ0. In these periodic cases, (A2, κ) control offset and amplitude, while m governs spatial
frequency.

-10 -5 0 5 10 15
-2

-1.5
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-0.5

0

0.5

1

Figure 1. Analytical solution ψ1(x, t) obtained via the generalized tanh method with
parameters κ = 1.3, µ = 0.5, m = −0.7, ξ0 = 0, and A2 = −3.5. The left panel
shows successive 2D profiles at t = 0, 2, 4, 6, 8, 10, while the right panel depicts the
corresponding 3D surface.
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Figure 2. Analytical solution ψ2(x, t) with parameters κ = 1.3, µ = 0.5, m = −0.7, ξ0 = 0,
and A2 = −3.5. The left panel displays temporal slices from t = 0 to t = 10, while the right
shows the full 3D surface.

Altogether, the set of functions ψ1-ψ5 therefore provides a continuous transition: Solitary-like for
m < 0, rational for m = 0, and periodic for m > 0. Parameters regulate morphology and phase, while c
consistently enforces rigid translation across all situations.

In place of the generalized tanh method, we now turn to the (1/Θ′)-expansion technique [46] in
order to derive exact traveling-wave solutions. To this end, the proposed ansatz takes the form

U(ξ) = A0 + A1

(
1
Θ′(ξ)

)
+ A2

(
1
Θ′(ξ)

)2

, (2.11)

where A0, A1, and A2 are constants to be determined.
Furthermore, the auxiliary function Θ(ξ) is required to satisfy the second-order linear differential

equation
Θ′′(ξ) + ϑΘ′(ξ) + ν = 0, (2.12)

with ϑ and ν taken as constant parameters. Consequently, the general solution to (2.12) reveals that
Θ′(ξ) may exhibit exponential, hyperbolic, or trigonometric behavior, depending on the sign of ϑ2−4ν.

In particular, one admissible form of the solution is

Θ′(ξ) = b e−ϑ ξ −
ν

ϑ
, (2.13)

where b denotes an integration constant.
By substituting the ansatz (2.11) together with its derivatives into the reduced Eq (2.5) and then

collecting terms according to powers of (1/Θ′(ξ)), we arrive at a system of algebraic equations. Solving
this system in a straightforward manner consequently yields the following coefficient values:

A0 = −κ
2 +

(
1 − µϑ2

)
c2, A1 = −12 µ ν c2 ϑ, A2 = −12 µ ν2 c2. (2.14)

Therefore, a traveling wave solution to (2.5) can be expressed explicitly as

ψ6(x, t) = −κ2 +
(
1 − µϑ2

)
c2 −

12 µ ν c2

b e−ϑ ξ −
ν

ϑ

ϑ + ν

b e−ϑ ξ −
ν

ϑ

 , ξ = x − ct. (2.15)
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Figure 3 shows the traveling wave obtained through the (1/Θ′)-expansion method. In contrast to
ψ1–ψ5, which arise from the generalized tanh method based on Riccati balance, this approach instead
expands in powers of 1/Θ′, where Θ satisfies Θ′′ + ϑΘ′ + ν = 0 with integration constant b. For the
parameters used in the plots (κ = 1.3, µ = 0.5, ν = −0.7, ϑ = 0.8, b = 1, c = 1.5) and time slices
t = 0:2:10, the discriminant ∆ = ϑ2 − 4ν > 0 accordingly places ψ6 in the non-oscillatory branch.
As a result, both panels display a single-peaked, shape-preserving pulse that propagates rigidly to the
right with speed c. Moreover, the shape is dictated primarily by (ϑ, ν, b) rather than by the sign of m.
Specifically, increasing ϑ steepens the leading edge, whereas changing ν sets the asymptotic level via
the coefficients A0, A1, A2, and the phase shift is instead governed by b. Furthermore, as ∆ → 0+, the
profile approaches a critical exponential front; in contrast, for ∆ < 0, it bifurcates into oscillatory or
periodic patterns that are qualitatively connected to the trigonometric wave trains ψ4-ψ5. In this way,
ψ6 completes the taxonomy of ψ1-ψ5: solitary-like for m < 0, rational for m = 0, and periodic for
m > 0. Consequently, the (1/Θ′)-expansion provides an alternative reduction in which dispersion and
phase are controlled by (ϑ, ν, b), while the rigid translation enforced by the traveling-wave ansatz is
consistently retained, as evidenced by the aligned 2D sections and 3D surface.

-10 0 10 20 30

0

0.5

1

1.5

2

Figure 3. Analytical solution ψ6(x, t) obtained via the (1/Θ′)-expansion method (2.11)–
(2.15). The left panel shows 2D time slices at t = 0, 2, 4, 6, 8, 10, and the right panel displays
the corresponding 3D surface. For ∆ = ϑ2−4ν > 0 (e.g., κ = 1.3, µ = 0.5, ϑ = 0.8, ν = −0.7,
b = 1, c = 1.5).

We now reformulate Eq (1.1) as a coupled system to lower the effective differential order and expose
an auxiliary potential. In particular, the highest mixed term ψxxtt in ψtt−µψxxtt−κ

2ψxx−ψψxx−(ψx)2 = 0
is rewritten via ψt = ϕxx as ψxxtt = ∂xx(ψtt) = ∂xx(ϕxxt), i.e., the time order drops from second to first
while spatial operators remain. This yields a first integral in the travelling frame and makes the (1/Θ′)
ansatz algebraic and local. Numerically, the first-order in time form fits a BDF2 update, and the spatial
operators stay centered and symmetric on the moving (PMA) mesh. Thus, the equivalent coupled
system reads

ψt = ϕxx,

ϕxxt − µ ϕxxxxt − κ
2 ψxx − ψψxx − (ψx)2 = 0,

(2.16)

and we accordingly introduce the travelling variables

ψ(x, t) = U(ξ), ϕ(x, t) = V(ξ), ξ = x − ct.
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Applying the (1/Θ′)-expansion to (2.16), together with the assumption V(ξ) = A0 + A1/Θ
′(ξ) and the

auxiliary condition Θ′′ + ϑΘ′ + ν = 0, consequently yields

A1 = ±
12 κ3µν

(1 − µϑ2)3/2 , c = ±
κ√

1 − µϑ2
.

These relations, in turn, determine the coefficient A1 and the wave speed c, and thus lead directly to
explicit closed-form expressions for ψ and ϕ given below.

ψ7(x, t) = −
12 κ2µν ϑ3 b exp

(
ϑ [ x ∓ c t ]

)
(1 − µϑ2)

(
ϑ b − ν exp

(
ϑ [ x ∓ c t ]

))2 , c =
κ√

1 − µϑ2
,

ϕ(x, t) = A0 ±
12 κ3µν

(1 − µϑ2)3/2
(

b e−ϑ [ x∓c t ] −
ν

ϑ

) , (2.17)

where A0, b are integration constants.
Figures 4 and 5 display the coupled traveling pair obtained from the reformulation (2.16).

Specifically, the component ψ7 appears as a single-peaked pulse that travels rigidly with speed
c = κ/

√
1 − µϑ2, as validated by the alignment of time slices. In this case, κ sets the base level,

whereas the parameters (µ, ϑ, ν) govern the dispersion and steepening effects, and b defines the
phase shift. Moreover, the companion potential ϕ is both monotonic and co-propagating, owing
to the relation ψt = ϕxx, which enforces identical propagation speed and synchronized level sets.
Consequently, the pair (ψ7, ϕ) embodies the order-reducing reformulation and uncovers a first-integral
structure fully consistent with the (1/Θ′) ansatz. These solution profiles, therefore, not only serve as
analytical benchmarks but also provide naturally suited initial conditions for the subsequent numerical
investigations. Finally, as the limit 1 − µϑ2 → 0+ is approached, the wavefront steepens considerably.
At the same time, variations in ν translate into shifts in the asymptotic level, thereby affording precise
control over waveform morphology and phase. The parameter–space structure of these regimes is
concisely organized in Figure 6, which highlights how the travelling-wave families are partitioned
according to the signs of m and ∆ under the global admissibility condition 1 − µϑ2 > 0.

-20 0 20 40 60

0

0.2

0.4

0.6

0.8

1

Figure 4. ψ7(x, t) from the coupled system (2.16) with (κ, µ, ϑ, ν, b, A0, ξ0) =

(2, 1.7, −0.2, 1.0, 0.1, 0, 0). Left panel is 2D time slices at t = 0:2:10, and Right panel
is a 3D surface.
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Figure 5. Associated potential ϕ(x, t) corresponding to ψ7 in Figure 4 under the same
parameters. Left panel is 2D time slices at t = 0:2:10, and Right panel is a 3D surface.

−1 1

−1

1

∆ > 0 (non-osc.)

∆ < 0 (osc.)

Coupled admissibility (global): 1 − µϑ2 > 0

m < 0 (solitary) m > 0 (periodic)

ψ1, ψ6

ψ2

ψ3

ψ4, ψ6

ψ5

m → 0

∆ → 0±

m

∆ = ϑ2 − 4ν

Figure 6. Parameter-space map for IBE travelling-wave families ψ1–ψ7. Shaded bands
indicate m < 0, m = 0, and m > 0; the bold line ∆ = 0 separates oscillatory vs. non-
oscillatory regimes. Family ψ6 lies above/below according to ∆ ≷ 0; ψ7 satisfies the global
condition 1 − µϑ2 > 0.

In conclusion, we highlight a structural aspect. We observe the conservative form of the IB Eq (1.1).

∂tt
(
ψ − µψxx

)
− ∂xx

(
κ2ψ + 1

2 ψ
2
)
= 0, (2.18)

since ∂xx(1
2ψ

2) = ψ2
x + ψψxx. Define A = ψ − µψxx and B = κ2ψ + 1

2ψ
2; then Att = Bxx by (2.18). Under

periodic boundaries or vanishing to a constant background, the functionals

E[ψ] = 1
2

∫
Ω

(
(ψt − µψxxt)2 + (κ2ψx + ψψx)2

)
dx, P[ψ] =

∫
Ω

(ψt − µψxxt)(κ2ψx + ψψx) dx

are conserved, since
d
dt
E =

∫
(AtAtt + BxBxt)dx = [AtBx]∂Ω = 0 and

d
dt
P =

∫
(AttBx + AtBxt)dx =[ 1

2 (B2
x + A2

t )
]
∂Ω = 0. Also, for travelling waves ψ(x, t) = U(ξ), ξ = x − ct, we obtain

c2(U − µU′′
)′′
−

(
κ2U + 1

2U2
)′′
= 0 ⇒ c2(U − µU′′

)
−

(
κ2U + 1

2U2
)
= A1 ξ + B1.
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Imposing vanishing far field (or periodic mean) yields A1 = B1 = 0. Thus, all travelling families ψ1−ψ7

given above are compatible with the conservative structure and possess all the invariants stated above
under the same boundary setting.

3. Numerical framework via the parabolic Monge-Ampère method

Partial differential equations with sharp gradients or localized fine-scale features often require
adaptive discretization in order to achieve both efficiency and accuracy [47]. Among the available
adaptive strategies, the r-adaptive moving mesh approach is particularly effective because it
redistributes existing grid points dynamically according to the evolving solution profile, without
altering the total number of degrees of freedom. As a result, this relocation of mesh nodes concentrates
resolution where it is most needed, thereby enabling accurate capture of steep gradients and localized
structures at a significantly lower computational cost than uniform refinement.

Within the class of r-adaptive approaches, the Parabolic Monge-Ampère (PMA) method has proven
especially effective [48]. In particular, it redistributes mesh nodes dynamically in time based on the
evolving solution and thus can resolve multiple steep fronts or complex interfacial dynamics that would
otherwise be prohibitively expensive on a fixed grid [49]. Moreover, in this framework, the mesh is
constructed as the gradient of a scalar potential function, whose evolution is governed by a parabolic
Monge-Ampère-type equation.

Hence, in this section, we detail the numerical framework of the PMA approach, introducing the
mathematical formulation, methods of discretization, and realizations for practical use. We aim to
show in detail how such a strategy provides an efficient and robust instrument for modeling wave
phenomena in the models described above. Building on the general PMA framework described above,
we now focus on its application to the IB equation, which features sharp traveling fronts and localized
interactions on a smooth background. To effectively resolve these features, we implement r-adaptivity
through PMA, where mesh nodes are drawn toward regions of high |ψx| while preserving smoothness
and quasi-uniformity of the map. This adaptivity improves phase accuracy and long-time fidelity and
reduces dispersive overshoot relative to uniform meshes at the same DOF.

We solve the nonlinear ODE in Eq (2.5) in the travelling coordinate ξ = x − ct. We impose crest
symmetry U′(0) = 0 and U(0) = A, where A is an amplitude parameter. We integrate the ODE with
ode45 on [0, b] and adjust A with fzero so that the far-field condition at ξ = b is met:∣∣∣U(b) − u∞

∣∣∣ < ε,
where u∞ is the constant background of the chosen travelling-wave family in (2.10). In zero-
background cases, u∞ = 0; otherwise, u∞ equals the parameter-dependent level specified by that family.
This ensures that the numerical profile matches the analytic travelling wave and decays smoothly
toward its background. The resulting stationary profile U(ξ) is then used as the initial condition for the
time-dependent computation. In practice, we take b as the right boundary of the computational domain,
use a small tolerance (e.g., ε = 10−8), and advance in time with a BDF2 integrator (implemented
via ode15i) with standard relative/absolute tolerances. Thus, all simulations start from data consistent
with the steady solution of Eq (2.5).
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To apply the PMA method to the IB system, the physical domain [α, β] is first mapped onto the
fixed computational domain [0, 1] via the time-dependent transformation

x = x(η, t) : [0, 1]→ [α, β], t ≥ 0,

where η ∈ [0, 1] is the computational coordinate. Consequently, the dependent variables transform
accordingly as

ψ̃(η, t) = ψ(x(η, t), t), ϕ̃(η, t) = ϕ(x(η, t), t). (3.1)

Within the PMA framework, the mesh is subsequently generated from a scalar potential P(η, t) through
the relation

x(η, t) = P(η, t)η,

subject to the boundary conditions

P(0, t) = α, P(1, t) = β, (3.2)

which ensures that the computational domain [0, 1] is consistently mapped onto the physical
domain [α, β]. The time evolution of this potential is then governed by the one-dimensional PMA
equation

τ
(
I − ρ ∂ηη

)
Ṗ = ω(Pη, t) Pηη, (3.3)

where τ > 0 is a relaxation parameter controlling the rate of mesh adaptation, and ρ ≥ 0 is a
smoothing coefficient. Finally, the right-hand side involves the monitor function ω, which determines
how strongly mesh points concentrate in different regions of the solution.

In this work, we adopt a gradient-based monitor function that depends on the variations of both
dependent variables:

ω(ψ, ϕ) =

√√
1 +

1
P2
ηη

(
ψη

Pηη

)2

η

+
1

P2
ηη

(
ϕη

Pηη

)2

η

. (3.4)

Consequently, this form ensures that grid points cluster adaptively in regions where ψ or ϕ undergo
rapid spatial variation, thereby enhancing the resolution of sharp gradients and localized structures.

However, to suppress oscillatory mesh movement and at the same time improve smoothness, the
raw monitor (3.4) is subsequently replaced by a locally averaged version [52, 53]:

ω̂ j =


1
3

(
2ω1 + ω2

)
, j = 1,

1
4

(
ω j−1 + 2ω j + ω j+1

)
, j = 2, . . . ,Nx,

1
3

(
ωNx + 2ωNx+1

)
, j = Nx + 1.

(3.5)

This smoothing step, therefore, prevents sudden mesh clustering near steep gradients and enhances the
overall stability of the moving mesh algorithm.

Next, by applying the chain rule, spatial and temporal derivatives with respect to the physical
coordinate x can be expressed in terms of the computational variable η and the mesh potential P(η, t).
Here, the notation ˙( · ) denotes the partial derivative with respect to time t at fixed η. In particular, we
obtain

ψx =
ψη

Pηη

, ψt = ψ̇ −
ψη

Pηη

Ṗη, ϕx =
ϕη

Pηη

, ϕt = ϕ̇ −
ϕη

Pηη

Ṗη. (3.6)
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Subsequently, substituting these relations into the coupled IB system (2.16) introduced in Section 2,

ψt = ϕxx,

φxxt = κ
2ψxx + ψψxx + ψ

2
x,

ϕ = φ + µ ϕxx,

(3.7)

and simplifying yields the transformed formulation in computational coordinates:

ψ̇ =
ψη

Pηη

Ṗη +
1

Pηη

(
ϕη

Pηη

)
η

,

φ̇ =
φη

Pηη

Ṗη + κ
2ψ + 1

2ψ
2,

ϕ = φ + µ
1

Pηη

(
ϕη

Pηη

)
η

.

(3.8)

Here, the auxiliary variable φ is finally introduced to reduce the highest-order mixed derivative, in line
with the analytical formulation of Section 2.

The discrete mesh locations in physical space are obtained from the mesh potential as

x j =
P j+1 − P j−1

2∆η
, j = 2, . . . ,Nx,

together with the boundary conditions x1 = α and xNx+1 = β. For initialization, the configuration is
chosen as

P(η j, 0) = 1
2η

2
j , j = 1, . . . ,Nx + 1.

Subsequently, after applying central finite differences in the computational coordinate η, the semi-
discrete form of (3.8) can be written compactly as

ψ̇ j − A j(ψ, P)
(
Ṗ j+1 − Ṗ j−1

)
= B j(ϕ, P),

φ̇ j − C j(φ, P)
(
Ṗ j+1 − Ṗ j−1

)
= κ2ψ j +

1
2 (ψ2) j,

φ j = ϕ j − B j(ϕ, P),

(3.9)

where the mesh-dependent operatorsA j, B j, and C j are given explicitly in Appendix A.
Starting from (3.9), time is advanced by a BDF2 formula. For any grid quantity un ≈ u(tn) we use

Dtu n+1 =
3u n+1 − 4u n + u n−1

2∆t
, Ṗ n+1 ≈

P n+1 − P n

∆t
.

Hence, for j = 2, . . . ,Nx the fully-discrete update reads (with the mesh fixed at the new time level and
the operators assembled on P n+1):

Dtψ
n+1
j − A j(ψ n+1, P n+1)

(
Ṗ n+1

j+1 − Ṗ n+1
j−1

)
= B j(ϕ n+1, P n+1),

Dtφ
n+1
j − C j(φ n+1, P n+1)

(
Ṗ n+1

j+1 − Ṗ n+1
j−1

)
= κ2ψ n+1

j + 1
2

(
ψ n+1)2

j ,
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φ n+1
j = ϕ n+1

j − B j(ϕ n+1, P n+1),

while the mesh potential is advanced implicitly from (3.3) using the smoothed monitor (3.5):

τ (I − ρ δηη)
P n+1 − P n

∆t
= ω̂ n+1 δηηP n+1.

To validate the proposed numerical scheme, we present its implementation and the corresponding
simulations. All computations were performed in Matlab, which provides a convenient environment
for scripting, visualization, and post-processing of the PMA moving-mesh algorithm [50, 51]. The
implementation follows the semi-discrete formulation (3.9), coupled with the mesh evolution Eq (3.3)
and the smoothed monitor (3.5). Unless stated otherwise, we use a BDF2 time integrator; in Matlab,
this is consistent with the implicit BDF family implemented in ode15i. Physical and numerical
parameters are stated explicitly (domain, relaxation and smoothing coefficients, and initial mesh). This
setup resolves steep gradients and localized structures reliably, forming the basis for the results reported
below.

The 2D time slices of the solution variables for the parameter combination κ = µ = 1 and
relaxation parameter τ = 1 are shown in Figure 7. Unless otherwise stated, the spatial domain
is [α, β] = [−20, 70] with Nx = 2001 nodes, and time marching uses Matlab stiff integrators suitable
for the dispersive, weakly stiff regime of IB-type systems. The left panel shows a translating pulse
of ψ(x, t) moving without noticeable deformation along t = 0:5:30, and the right panel shows the
corresponding monotone front of ϕ(x, t). The profiles are smooth and free of spurious oscillations over
the simulation window, which indicates that the PMA discretization with τ = 1 resolves the solution
features at the chosen resolution.

-20 0 20 40 60

-0.2

0

0.2

0.4

0.6

0.8

1

-20 0 20 40 60

0

2

4

6

8

10

Figure 7. Numerical solutions of the IB system obtained using the PMA moving mesh
method with parameters κ = µ = 1 and relaxation parameter τ = 1. The mesh consists
of Nx = 2001 nodes over the spatial domain [α, β] = [−20, 70]. The left panel shows the
evolution of ψ(x, t) at successive times t = 0 : 5 : 30, while the right panel displays the
corresponding profiles of ϕ(x, t).

To study the grid motion, Figure 8 plots the mapping x(η, t) of the computational coordinate η from
the interval [0, 1] into the physical coordinate x. As t increases, nodes cluster around sharp gradients
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and spread in smooth regions, and the total number of degrees of freedom remains fixed. This r-
adaptive property agrees with PMA theory [53] and prior observations for related PDEs, and it helps
explain the absence of spurious dissipation in the baseline run.

0 0.2 0.4 0.6 0.8 1

-20

0

20

40

60

Figure 8. Mesh trajectory plot illustrating the mapping between the computational
coordinate η and the physical coordinate x(η, t). Simulation parameters are the same as in
Figure 7. The trajectories illustrate how the adaptive mesh evolves in time to capture the
solution dynamics.
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Figure 9. Effect of the relaxation parameter τ in the PMA moving-mesh method. Shown are
snapshots of ψ(x, t) for τ ∈ {10−3, 10−2, 10−1, 1} using the same spatial resolution and domain
as in Figure 7. Runs with τ = 10−3 and τ = 10−2 develop oscillations and terminate early (at
t ≈ 5 and t ≈ 6), while τ = 10−1 remains stable until t ≈ 16. The choice τ = 1 sustains a
smooth, stable evolution over the full-time interval. Insets magnify oscillatory windows for
clarity.
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We now examine the effect of τ on the stability and responsiveness of the mesh (Figure 9). As τ
decreases, the mesh becomes more responsive under the monitor; however, it also increases the stiffness
of the mesh PDE. In our problem, τ = 10−3 and τ = 10−2 cause ψ and the simulation to terminate early
at t ≈ 5 and t ≈ 6 because the PDE is too stiff, respectively. A small τ = 10−1 enlarges the stable region,
but the simulation still exits early at t ≈ 16. By contrast, τ = 1 is stable over the entire horizon. Thus,
for the current IB configuration and monitor selection (3.5), a larger relaxation parameter provides a
more stable balance between adaptivity and stability. We emphasize that this choice depends on the
problem and should be adjusted together with the monitor smoothing and the time-step control.

Overall, the Matlab PMA concentrates resolution around evolving features with a predetermined
number of nodes and solves the IB dynamics automatically. Stable long-term integration holds for the
default setting (τ = 1), and for small τ the meshes are more reactive at the cost of stiffness and visible
oscillations. These results align with recommendations tested in the moving-mesh literature [53, 54]
and offer practical defaults for future parameter studies.

3.1. Accuracy and stability of the PMA scheme

The semi-discrete formulation obtained from the PMA transformation preserves the second-order
spatial accuracy of central finite differences in the computational variable η. Time integration is carried
out with the two-step backward differentiation formula (BDF2), yielding a second-order scheme in both
space and time under mesh regularity.

Let ∆η = 1/Nx and ∆t denote the spatial and temporal step sizes, with the Jacobian J(η, t) = Pηη. A
Taylor expansion gives the local truncation error

T = O(∆η2) + O(∆t2) + O
(
∆η2 ∥Jη∥∞

)
+ O

(
∆t2 ∥J̇∥∞

)
,

showing that additional terms are proportional to mesh variations. Provided that J remains bounded
and smooth, the fully discrete solution satisfies

∥ψ − ψh∥ + ∥ϕ − ϕh∥ = O(∆η2 + ∆t2).

Convergence is verified numerically by refining ∆η and ∆t with proportional scaling and monitoring
errors in L2 norms, together with mesh-quality indicators such as ∥Jη∥∞ and Jmin. Thus, the numerical
scheme achieves the same nominal order as fixed-mesh discretizations while concentrating resolution
adaptively in regions of interest.

Table 2 reports the relative L2 error at t = 30 on the fixed domain [α, β] = [−20, 70] while taking
Nx as the only variable; to avoid an interpolation bias, the exact traveling profile is evaluated on the
adaptive nodes. Clearly, the error monotonically decreases while Nx increases. The corresponding log-
log trend is displayed in Figure 10. The fitted slope is about 1.95 and fairly close to the reference
slope of 2. Hence, the expected second-order spatial accuracy is achieved by the adaptive PMA
discretization. Moreover, fewer degrees of freedom than those required on a uniform mesh are
sufficient to attain a given target accuracy.
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Table 2. Adaptive mesh errors at t = 30 on the fixed domain [α, β] = [−20, 70].

Nx Relative L2

200 1.85 × 10−2

400 5.12 × 10−3

800 1.01 × 10−3

1600 2.6 × 10−4

3200 7.73 × 10−5

10
-1

10
-4

10
-3

10
-2

Figure 10. Log-log plot of the relative L2 error vs. spatial step hx at t = 30 on
[α, β] = [−20, 70]. Exact data are sampled on the adaptive nodes. Markers correspond to
Nx ∈ {200, 400, 800, 1600, and 3200}. The observed slope ≈ 1.95 confirms second-order
accuracy.

The stability of the proposed scheme is governed by both the time discretization and the mesh
dynamics. Since the temporal integration is carried out with BDF2, the method is A-stable for all
eigenvalues with negative real parts for the linearized problem on a fixed mesh. When the mesh evolves
according to the parabolic Monge-Ampère Eq (3.3), additional coefficients depending on Ṗη appear, but
they do not compromise the A-stability of BDF2 as long as the mesh remains sufficiently smooth [55].

A von Neumann analysis on a frozen mesh (J = Pηη = const.) yields an amplification factor G(ξ)
with |G(ξ)| ≤ 1 for all Fourier modes ξ, confirming linear stability on fixed meshes. For a moving
mesh, stability reduces to mesh regularity, i.e.,

0 < Jmin ≤ J(η, t) ≤ Jmax < ∞, with ∥J̇∥∞ < ∞,

so that the coupled PMA-BDF2 scheme inherits the stability of the underlying fixed-mesh
discretization. In practice, long-time experiments confirm the absence of spurious oscillations provided
the smoothing procedure (3.5) is applied and the relaxation parameter τ in (3.3) is chosen moderately.

Overall, the combined effect of accuracy and stability guarantees convergence of the PMA-based
discretization, since consistency bounds the local truncation error while stability prevents its growth in
time, thereby enforcing

∥eh∥ → 0 as ∆η, ∆t → 0.
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4. Conclusions

In the present work, we explored the Improved Boussinesq model through both analytical reductions
the adaptive numerical solutions. Upon applying the generalized tanh method and the (1/Θ′)-
expansion method, an enriched family of closed-form traveling-wave solutions ensued, encompassing
solitary, rational, and periodic configurations. These solutions were employed as strict benchmarks
for the verification of the adaptive moving mesh discretization. In the numerical arena, implicit
finite differences coupled with the Parabolic Monge-Ampère method accurately captured solitary
interactions and steep gradients with second-order accuracy and long-time stability. The results reflect
the effectiveness of adaptive redistributions of the mesh for the minimization of the computational
cost at the expense of an overall preservation of accuracy. Beyond yielding numerical reliability
and analytical insight, the paper showcases the increased accessibility of adaptive strategies for the
more general category of nonlinear dispersive PDEs within the fields of hydrodynamics, elasticity,
and optics. Future applications can expand the framework presented herein toward multidimensional
spaces, more rigorous-looking boundary conditions, and coupled nonlinear sets to further promote the
description of nonlinear wave phenomena through the numerical simulation of PDE models.
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445. https://doi.org/10.1016/j.crme.2017.05.008

11. S. Ibrahim, T. A. Sulaiman, A. Yusuf, D. U. Ozsahin, D. Baleanu, Wave propagation to the doubly
dispersive equation and the improved Boussinesq equation, Opt. Quant. Electron., 56 (2024), 20.
https://doi.org/10.1007/s11082-023-05571-5

12. M. Iqbal, W. A. Faridi, M. Alammari, F. A. H. Alomari, N. E. Alsubaie, S. Ibrahim, et al.,
Dynamical analysis of optical soliton structures for wave propagation in nonlinear low-pass
electrical transmission lines under effective approach, Opt. Quant. Electron., 56 (2024), 1036.
https://doi.org/10.1007/s11082-024-06664-5

13. B. Karaagac, Y. Ucar, A. Esen, Dynamics of modified improved Boussinesq equation
via Galerkin finite element method, Math. Method. Appl. Sci., 43 (2020), 10204–10220.
https://doi.org/10.1002/mma.6687

14. M. Bilal, J. Ren, A. S. A. Alsubaie, K. H. Mahmoud, M. Inc, Dynamics of nonlinear diverse
wave propagation to Improved Boussinesq model in weakly dispersive medium of shallow
waters or ion acoustic waves using efficient technique, Opt. Quant. Electron., 56 (2024), 21.
https://doi.org/10.1007/s11082-023-05587-x

15. W. L. Lee, Z. Tan, Moving mesh methods for Boussinesq equation, Int. J. Numer. Meth. Fl., 61
(2009), 1161–1178. https://doi.org/10.1002/fld.2008

16. M. A. E. Abdelrahman, M. B. Almatrafi, A. Alharbi, Fundamental solutions for the coupled KdV
system and its stability, Symmetry, 12 (2020), 429. https://doi.org/10.3390/sym12030429

17. S. A. Khuri, A complex tanh-function method applied to nonlinear equations of Schrödinger type,
Chaos Soliton. Fract., 20 (2004), 1037–1040. https://doi.org/10.1016/j.chaos.2003.09.042

AIMS Mathematics Volume 10, Issue 12, 28374–28395.

https://dx.doi.org/https://doi.org/10.1007/978-0-8176-8265-1_8
https://dx.doi.org/https://doi.org/10.1007/978-0-8176-8265-1_8
https://dx.doi.org/https://doi.org/10.1515/zna-2006-3-401
https://dx.doi.org/https://doi.org/10.4236/apm.2014.42007
https://dx.doi.org/https://doi.org/10.1016/j.matcom.2020.05.002
https://dx.doi.org/https://doi.org/10.1038/s41598-023-50782-1
https://dx.doi.org/https://doi.org/10.1016/S0422-9894(08)70156-9
https://dx.doi.org/https://doi.org/10.1201/9781439828892
https://dx.doi.org/https://doi.org/10.1016/j.crme.2017.05.008
https://dx.doi.org/https://doi.org/10.1007/s11082-023-05571-5
https://dx.doi.org/https://doi.org/10.1007/s11082-024-06664-5
https://dx.doi.org/https://doi.org/10.1002/mma.6687
https://dx.doi.org/https://doi.org/10.1007/s11082-023-05587-x
https://dx.doi.org/https://doi.org/10.1002/fld.2008
https://dx.doi.org/https://doi.org/10.3390/sym12030429
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2003.09.042


28393

18. A. M. Wazwaz, The extended tanh method for abundant solitary wave solutions
of nonlinear wave equations, Appl. Math. Comput., 187 (2007), 1131–1142.
https://doi.org/10.1016/j.amc.2006.09.013

19. J. Manafian, J. Jalali, A. Alizadehdiz, Some new analytical solutions of the variant Boussinesq
equations, Opt. Quant. Electron., 50 (2018), 80. https://doi.org/10.1007/s11082-018-1345-z

20. M. Ozisik, A. Secer, M. Bayram, A. Yusuf, T. A. Sulaiman, Soliton solutions of the Boussinesq
equation via an efficient analytical technique, Mod. Phys. Lett. B, 36 (2022), 2250149.
https://doi.org/10.1142/S0217984922501494

21. A. Aasaraai, The application of modified F-expansion method solving the Maccari’s system, J. Adv.
Math. Comput. Sci., 11 (2015), 1–14. https://doi.org/10.9734/BJMCS/2015/19938

22. S. K. Mohanty, O. V. Kravchenko, A. N. Dev, Exact traveling wave solutions of the Schamel
Burgers’ equation by using generalized-improved and generalized G′/G expansion methods,
Results Phys., 33 (2022), 105124. https://doi.org/10.1016/j.rinp.2021.105124

23. M. A. E. Abdelrahman, A. Alharbi, Analytical and numerical investigations of the modified
Camassa-Holm equation, Pramana J. Phys., 95 (2021), 117. https://doi.org/10.1007/s12043-021-
02153-6

24. A. G. Bratsos, A second order numerical scheme for the improved Boussinesq equation, Phys. Lett.
A, 370 (2007), 145–147. https://doi.org/10.1016/j.physleta.2007.05.050

25. Z. Zhang, F. Lu, Quadratic finite volume element method for the improved Boussinesq equation, J.
Math. Phys., 53 (2012), 013505. https://doi.org/10.1063/1.3672197

26. Z. Ming, B. Teng, S. X. Liu, Numerical simulation of improved Boussinesq equations by a finite
element method, J. Hydrodyn., 15 (2003), 31–40.

27. C. Zhang, J. Huang, C. Wang, X. Yue, On the operator splitting and integral equation
preconditioned deferred correction methods for the “good” Boussinesq equation, J. Sci. Comput.,
75 (2018), 687–712. https://doi.org/10.1007/s10915-017-0552-2

28. A. Ahmed, A. R. Alharbi, H. S. Alayachi, I. Hashim, Exact and numerical approaches for solitary
and periodic waves in a (2+1)-dimensional breaking soliton system with adaptive moving mesh,
AIMS Math., 10 (2025), 8252–8276. https://doi.org/10.3934/math.2025380

29. A. Ahmed, A. R. Alharbi, I. Hashim, Exact and numerical solutions of the generalized breaking
soliton system: Insights into non-linear wave dynamics, AIMS Math., 10 (2025), 5124–5142.
https://doi.org/10.3934/math.2025235

30. C. J. Budd, J. F. Williams, Moving mesh generation using the parabolic Monge-Ampère equation,
SIAM J. Sci. Comput., 31 (2009), 3438–3465. https://doi.org/10.1137/080716773

31. A. R. Alharbi, Numerical solutions to two-dimensional fourth order parabolic thin film
equations using the Parabolic Monge-Ampère method, AIMS Math., 8 (2023), 16463–16478.
https://doi.org/10.3934/math.2023841

32. M. H. M. Sulman, T. B. Nguyen, R. D. Haynes, W. Huang, Domain decomposition parabolic
Monge-Ampère approach for fast generation of adaptive moving meshes, Comput. Math. Appl., 84
(2021), 97–111. https://doi.org/10.1016/j.camwa.2020.12.007

AIMS Mathematics Volume 10, Issue 12, 28374–28395.

https://dx.doi.org/https://doi.org/10.1016/j.amc.2006.09.013
https://dx.doi.org/https://doi.org/10.1007/s11082-018-1345-z
https://dx.doi.org/https://doi.org/10.1142/S0217984922501494
https://dx.doi.org/https://doi.org/10.9734/BJMCS/2015/19938
https://dx.doi.org/https://doi.org/10.1016/j.rinp.2021.105124
https://dx.doi.org/https://doi.org/10.1007/s12043-021-02153-6
https://dx.doi.org/https://doi.org/10.1007/s12043-021-02153-6
https://dx.doi.org/https://doi.org/10.1016/j.physleta.2007.05.050
https://dx.doi.org/https://doi.org/10.1063/1.3672197
https://dx.doi.org/https://doi.org/10.1007/s10915-017-0552-2
https://dx.doi.org/https://doi.org/10.3934/math.2025380
https://dx.doi.org/https://doi.org/10.3934/math.2025235
https://dx.doi.org/https://doi.org/10.1137/080716773
https://dx.doi.org/https://doi.org/10.3934/math.2023841
https://dx.doi.org/https://doi.org/10.1016/j.camwa.2020.12.007


28394

33. C. J. Budd, W. Huang, R. D. Russell, Adaptivity with moving grids, Acta Numer., 18 (2009), 111–
241. https://doi.org/10.1017/S0962492906400015

34. A.-M. Wazwaz, The tanh method for traveling wave solutions of nonlinear equations, Appl. Math.
Comput., 154 (2004), 713–723. https://doi.org/10.1016/S0096-3003(03)00745-8

35. H. Q. Sun, A. H. Chen, Exact solutions of the classical Boussinesq system, Arab J. Basic Appl.
Sci., 25 (2018), 85–91. https://doi.org/10.1080/25765299.2018.1449416

36. A. R. Seadawy, D. Lu, C. Yue, Travelling wave solutions of the generalized nonlinear fifth-
order KdV water wave equations and its stability, J. Taibah Univ. Sci., 11 (2017), 623–633.
https://doi.org/10.1016/j.jtusci.2016.06.002

37. W. O. Apeanti, D. Lu, H. Zhang, D. Yaro, S. W. Akuamoah, Traveling wave solutions for
complex nonlinear space-time fractional order (2+1)-dimensional Maccari dynamical system
and Schrödinger equation with dual power law nonlinearity, SN Appl. Sci., 1 (2019), 530.
https://doi.org/10.1007/s42452-019-0537-x

38. L. Li, E. Li, M. Wang, The (G’/G, 1/G)-expansion method and its application to travelling
wave solutions of the Zakharov equations, Appl. Math. J. Chin. Univ., 25 (2010), 454–462.
https://doi.org/10.1007/s11766-010-2128-x

39. M. A. E. Abdelrahman, E. H. M. Zahran, M. M. A. Khater, The exp(-ϕ(ξ))-expansion method and
its application for solving nonlinear evolution equations, Int. J. Mod. Nonlinear Theor. Appl., 4
(2015), 37–47. https://doi.org/10.4236/ijmnta.2015.41004

40. A. R. Alharbi, Numerical solution of thin-film flow equations using adaptive moving mesh methods,
2016. Available from: https://keele-repository.worktribe.com/output/407075.

41. A. R. Alharbi, Numerical investigation for the GRLW equation using Parabolic Monge Ampere
equation, Int. J. Math. Comput. Sci., 15 (2020), 443–462.

42. A. R. Alharbi, A Study of traveling wave structures and numerical investigation of two-dimensional
Riemann problems with their stability and accuracy, CMES-Comp. Model. Eng., 134 (2023), 2193–
2209. https://doi.org/10.32604/cmes.2022.018445

43. M. B. Almatrafi, A. R. Alharbi, A. R. Seadawy, Structure of analytical and numerical wave
solutions for the Ito integro-differential equation arising in shallow water waves, J. King Saud
Univ. Sci., 33 (2021), 101375. https://doi.org/10.1016/j.jksus.2021.101375

44. E. Fan, Y. C. Hona, Generalized tanh method extended to special types of nonlinear equations, Z.
Naturforsch. A, 57 (2002), 692–700. https://doi.org/10.1515/zna-2002-0809

45. T. G. Alharbi, A. Alharbi, A study of traveling wave structures and numerical investigations into the
coupled nonlinear Schrödinger equation using advanced mathematical techniques, Mathematics,
11 (2023), 4597. https://doi.org/10.3390/math11224597

46. K. K. Ali, R. Yilmazer, A. Yokus, H. Bulut, Analytical solutions for the (3+1)-dimensional
nonlinear extended quantum Zakharov-Kuznetsov equation in plasma physics, Physica A, 548
(2020), 124327. https://doi.org/10.1016/j.physa.2020.124327

47. L. F. Diachin, R. Hornung, P. Plassmann, A. Wissink, Parallel adaptive mesh
refinement, In: Parallel processing for scientific computing, 2006, 143–162.
https://doi.org/10.1137/1.9780898718133.ch8

AIMS Mathematics Volume 10, Issue 12, 28374–28395.

https://dx.doi.org/https://doi.org/10.1017/S0962492906400015
https://dx.doi.org/https://doi.org/10.1016/S0096-3003(03)00745-8
https://dx.doi.org/https://doi.org/10.1080/25765299.2018.1449416
https://dx.doi.org/https://doi.org/10.1016/j.jtusci.2016.06.002
https://dx.doi.org/https://doi.org/10.1007/s42452-019-0537-x
https://dx.doi.org/https://doi.org/10.1007/s11766-010-2128-x
https://dx.doi.org/https://doi.org/10.4236/ijmnta.2015.41004
https://keele-repository.worktribe.com/output/407075
https://dx.doi.org/https://doi.org/10.32604/cmes.2022.018445
https://dx.doi.org/https://doi.org/10.1016/j.jksus.2021.101375
https://dx.doi.org/https://doi.org/10.1515/zna-2002-0809
https://dx.doi.org/https://doi.org/10.3390/math11224597
https://dx.doi.org/https://doi.org/10.1016/j.physa.2020.124327
https://dx.doi.org/https://doi.org/10.1137/1.9780898718133.ch8


28395

48. P. A. Browne, C. J. Budd, C. Piccolo, M. Cullen, Fast three dimensional r-adaptive mesh
redistribution, J. Comput. Phys., 275 (2014), 174–196. https://doi.org/10.1016/j.jcp.2014.06.009

49. C. J. Budd, J. F. Williams, Parabolic Monge-Ampère methods for blow-up problems in several
spatial dimensions, J. Phys. A Math. Gen., 39 (2006), 5425–5449. https://doi.org/10.1088/0305-
4470/39/19/S06

50. L. F. Shampine, Solving 0 = F(t, y(t), y′(t)) in matlab, J. Numer. Math., 10 (2002), 291–310.
https://doi.org/10.1515/JNMA.2002.291

51. A. Alharbi, S. Naire, An adaptive moving mesh method for thin film flow equations with surface
tension, J. Comput. Appl. Math., 319 (2017), 365–384. https://doi.org/10.1016/j.cam.2017.01.019

52. T. Tang, Moving mesh methods for computational fluid dynamics, Contemp. Math., 383 (2005),
141–173.

53. W. Huang, R. D. Russell, Variational mesh adaptation methods, In: Adaptive moving mesh methods,
New York: Springer, 2011. https://doi.org/10.1007/978-1-4419-7916-2 6

54. C. Lu, W. Huang, J. Qiu, An adaptive moving mesh finite element solution of the regularized long
wave equation, J. Sci. Comput., 74 (2018), 122–144. https://doi.org/10.1007/s10915-017-0427-6

55. E. Hairer, G. Wanner, Solving ordinary differential equations II: Stiff and differential-algebraic
problems, Berlin: Springer, 1996. https://doi.org/10.1007/978-3-642-05221-7

Appendix

A. Definitions of the mesh-dependent operators

This appendix provides the explicit forms of the operators introduced in (3.9). They depend
nonlinearly on the mesh potential P(η, t) and its discrete derivatives. For interior indices m, we define

Am(ψ, P) =
ψm+1 − ψm−1

Pm+2 − 2Pm + Pm−2
,

Dm(ϕ, P) =
ϕm+1 − ϕm

Pm+2 − Pm+1 − Pm + Pm−1
,

Bm(ϕ, P) =
8∆2

η

Pm+2 − 2Pm + Pm−2

(
Dm − Dm−1

)
,

Cm(φ, P) =
φm+1 − φm−1

Pm+2 − 2Pm + Pm−2
.

(A.1)

These definitions make the semi-discrete scheme in (3.9) fully reproducible while keeping the main
text concise. They follow directly from the coordinate transformation and the application of central
finite difference stencils in the computational coordinate.
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