It is a well-known fact that $ {\mathcal{L}}^{p} $-spaces provide a robust and flexible framework for analyzing functions with different types of behavior, uncertainty, and regularity. They are widely applicable in many areas of mathematics, science, and engineering. In this study, we introduced a novel generalization that combines interval intuitionistic fuzzy sets ($ IFS $s), as proposed by Atanassov [
Citation: Muhammad Bilal Khan, Adrian Marius Deaconu, Javad Tayyebi, Ahmad Aziz Al Ahmadi, Nurnadiah Zamri, Loredana Ciurdariu. Artificial intelligence powered agricultural field robots selection problem in spatial planning: applications of $ {\mathcal{L}}^{\mathit{p}} $-intuitionistic fuzzy sets[J]. AIMS Mathematics, 2025, 10(12): 28308-28346. doi: 10.3934/math.20251246
It is a well-known fact that $ {\mathcal{L}}^{p} $-spaces provide a robust and flexible framework for analyzing functions with different types of behavior, uncertainty, and regularity. They are widely applicable in many areas of mathematics, science, and engineering. In this study, we introduced a novel generalization that combines interval intuitionistic fuzzy sets ($ IFS $s), as proposed by Atanassov [
| [1] |
M. Akram, S. Shahzad, A. Butt, A. Khaliq, Intuitionistic fuzzy logic control for heater fans, Math. Comput. Sci., 7 (2013), 367–378. https://doi.org/10.1007/s11786-013-0161-x doi: 10.1007/s11786-013-0161-x
|
| [2] | A. Alinezhad, J. Khalili, New methods and applications in multiple attribute decision making (MADM), Vol. 277, Springer, Cham, 2019.https://doi.org/10.1007/978-3-030-15009-9 |
| [3] |
N. Alkan, C. Kahraman, Circular intuitionistic fuzzy topsis method: pandemic hospital location selection, J. Intell. Fuzzy Syst., 42 (2022), 295–316. https://doi.org/10.3233/JIFS-219193 doi: 10.3233/JIFS-219193
|
| [4] |
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
|
| [5] |
K. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets Syst., 31 (1989), 343–349. https://doi.org/10.1016/0165-0114(89)90205-4 doi: 10.1016/0165-0114(89)90205-4
|
| [6] |
K. T. Atanassov, Circular intuitionistic fuzzy sets, J. Intell. Fuzzy Syst., 39 (2020), 5981–5986. https://doi.org/10.3233/JIFS-189072 doi: 10.3233/JIFS-189072
|
| [7] |
K. Atanassov, E. Marinov, Four distances for circular intuitionistic fuzzy sets, Mathematics, 9 (2021), 1121. https://doi.org/10.3390/math9101121 doi: 10.3390/math9101121
|
| [8] |
D. Bhandari, N. R. Pal, D. D. Majumder, Fuzzy divergence, probability measure of fuzzy events and image thresholding, Pattern Recognit. Lett., 13 (1992), 857–867. https://doi.org/10.1016/0167-8655(92)90085-E doi: 10.1016/0167-8655(92)90085-E
|
| [9] |
E. Boltürk, C. Kahraman, Interval-valued and circular intuitionistic fuzzy present worth analyses, Informatica, 33 (2022), 693–711. https://doi.org/10.15388/22-INFOR478 doi: 10.15388/22-INFOR478
|
| [10] |
S. Biswas, S. Bhattacharjee, B. Biswas, K. Mitra, N. Khawas, An expert opinion-based soft computing framework for comparing nanotechnologies used in agriculture, Spectrum Oper. Res., 4 (2025), 1–39. https://doi.org/10.31181/sor4156 doi: 10.31181/sor4156
|
| [11] |
M. P. Borujeni, A. Behzadipour, H. Gitinavard, A dynamic intuitionistic fuzzy group decision analysis for sustainability risk assessment in surface mining operation projects, J. Sustainable Min., 24 (2025), 15–31. https://doi.org/10.46873/2300-3960.1435 doi: 10.46873/2300-3960.1435
|
| [12] |
F. E. Boran, S. Genç, M. Kurt, D. Akay, A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method, Expert Syst. Appl., 36 (2009), 11363–11368. https://doi.org/10.1016/j.eswa.2009.03.039 doi: 10.1016/j.eswa.2009.03.039
|
| [13] |
M. Deveci, S. C. Oner, F. Canıtez, M. Oner, Evaluation of service quality in public bus transportation using interval-valued intuitionistic fuzzy QFD methodology, Res. Transp. Bus. Manag., 33 (2019), 100387. https://doi.org/10.1016/j.rtbm.2019.100387 doi: 10.1016/j.rtbm.2019.100387
|
| [14] |
O. Dalkılıç, A novel mathematical approach to uncertainty problems: VFPIFS-set, Gümüşhane Univ. J. Sci., 12 (2022), 614–623. https://doi.org/10.17714/gumusfenbil.870783 doi: 10.17714/gumusfenbil.870783
|
| [15] |
O. Dalkılıç, A generalization of neutrosophic parametrized hypersoft sets for decision makers, Afyon Kocatepe Univ. -J. Sci. Eng., 25 (2025), 81–88. https://doi.org/10.35414/akufemubid.1364511 doi: 10.35414/akufemubid.1364511
|
| [16] |
O. Dalkılıç, Innovative decision-making with VFP-soft sets: a comparative analysis, Turk. J. Sci. Technol., 20 (2025), 109–119. https://doi.org/10.55525/tjst.1375167 doi: 10.55525/tjst.1375167
|
| [17] |
O. Dalkılıç, Decision-making approaches focusing on best parameter-object pair for soft set, Neural Comput. Appl., 37 (2025), 14521–14539. https://doi.org/10.1007/s00521-025-11211-8 doi: 10.1007/s00521-025-11211-8
|
| [18] |
O. Dalkılıç, I. N. Cangul, Determining interactions between objects from different universes: (inverse) object interaction set for binary soft sets, Soft Comput., 28 (2024), 12869–12877. https://doi.org/10.1007/s00500-024-10318-9 doi: 10.1007/s00500-024-10318-9
|
| [19] |
H. Garg, D. Rani, An efficient intuitionistic fuzzy MULTIMOORA approach based on novel aggregation operators for the assessment of solid waste management techniques, Appl. Intell., 52 (2022), 4330–4363. https://doi.org/10.1007/s10489-021-02541-w doi: 10.1007/s10489-021-02541-w
|
| [20] | H. Gitinavard, M. Akbarpour Shirazi, An extended intuitionistic fuzzy modified group complex proportional assessment approach, J. Ind. Syst. Eng., 11 (2018), 229–246. |
| [21] |
H. Gitinavard, H. Ghaderi, M. S. Pishvaee, Green supplier evaluation in manufacturing systems: a novel interval-valued hesitant fuzzy group outranking approach, Soft Comput., 22 (2018), 6441–6460. https://doi.org/10.1007/s00500-017-2697-1 doi: 10.1007/s00500-017-2697-1
|
| [22] |
H. Chu, J. Gai, W. Chen, J. Ma, CBRFormer: rendering technology-based transformer for refinement segmentation of bridge crack images, Adv. Eng. Inform., 69 (2026), 103868. https://doi.org/10.1016/j.aei.2025.103868 doi: 10.1016/j.aei.2025.103868
|
| [23] |
H. Chu, W. Chen, L. Deng, Refined segmentation of high‐resolution bridge crack images via probability map‐guided point rendering technique, Comput. Aided Civ. Infrastruct. Eng., 40 (2025), 4946–4969. https://doi.org/10.1111/mice.70088 doi: 10.1111/mice.70088
|
| [24] |
I. Otay, C. Kahraman, A novel circular intuitionistic fuzzy AHP & VIKOR methodology: an application to a multi-expert supplier evaluation problem, Pamukkale Üniv. Müh. Bilim. Derg., 28 (2022), 194–207. https://doi.org/10.5505/pajes.2021.90023 doi: 10.5505/pajes.2021.90023
|
| [25] |
C. Kahraman, N. Alkan, Circular intuitionistic fuzzy TOPSIS method with vague membership functions: supplier selection application context, Notes on Intuitionistic Fuzzy Set, 27 (2021), 24–52. https://doi.org/10.7546/nifs.2021.27.1.24-52 doi: 10.7546/nifs.2021.27.1.24-52
|
| [26] |
M. J. Khan, J. C. R. Alcantud, P. Kumam, W. Kumam, A. N. Al-Kenani, An axiomatically supported divergence measure for q-rung orthopair fuzzy sets, Int. J. Intell. Syst., 36 (2021), 6133–6155. https://doi.org/10.1002/int.22545 doi: 10.1002/int.22545
|
| [27] |
M. J. Khan, J. C. R. Alcantud, P. Kumam, W. Kumam, A. N. Al-Kenani, Intuitionistic fuzzy divergences: critical analysis and an application in figure skating, Neural Comput. Appl., 34 (2022), 9123–9146. https://doi.org/10.1007/s00521-022-06933-y doi: 10.1007/s00521-022-06933-y
|
| [28] |
M. J. Khan, P. Kumam, N. A. Alreshidi, N. Shaheen, W. Kumam, Z. Shah, et al., The renewable energy source selection by remoteness index-based VIKOR method for generalized intuitionistic fuzzy soft sets, Symmetry, 12 (2020), 977. https://doi.org/10.3390/sym12060977 doi: 10.3390/sym12060977
|
| [29] |
M. J. Khan, P. Kumam, W. Kumam, Theoretical justifications for the empirically successful VIKOR approach to multi-criteria decision making, Soft Comput., 25 (2021), 7761–7767. https://doi.org/10.1007/s00500-020-05548-6 doi: 10.1007/s00500-020-05548-6
|
| [30] |
M. B. Khan, A. M. Deaconu, J. Tayyebi, D. E. Spridon, Diamond intuitionistic fuzzy sets and their applications, IEEE Access, 12 (2024), 176171–176183. https://doi.org/10.1109/ACCESS.2024.3502202 doi: 10.1109/ACCESS.2024.3502202
|
| [31] |
M. R. Khan, K. Ullah, W. Ahmad, F. Pervaiz, Prioritizing ventilator machines in emergency scenarios using multi-criteria decision-making with circular intuitionistic fuzzy set and Dombi operations, Spectrum Decis. Making Appl., 4 (2025), 1–19. https://doi.org/10.31181/sdmap41202762 doi: 10.31181/sdmap41202762
|
| [32] | G. J. Klir, B. Yuan, Fuzzy sets and fuzzy logic: theory and applications, Prentice-Hall, Inc., 1995. |
| [33] |
E. P. Klement, R. Mesiar, E. Pap, Triangular norms. Position paper Ⅰ: basic analytical and algebraic properties, Fuzzy Sets Syst., 143 (2004), 5–26. https://doi.org/10.1016/j.fss.2003.06.007 doi: 10.1016/j.fss.2003.06.007
|
| [34] |
E. P. Klement, R. Mesiar, E. Pap, Triangular norms. Position paper Ⅲ: continuous t-norms, Fuzzy Sets Syst., 145 (2004), 439–454. https://doi.org/10.1016/S0165-0114(03)00304-X doi: 10.1016/S0165-0114(03)00304-X
|
| [35] |
P. Liu, T. Mahmood, Q. Khan, Multi-attribute decision-making based on prioritized aggregation operator under hesitant intuitionistic fuzzy linguistic environment, Symmetry, 9 (2017), 270. https://doi.org/10.3390/sym9110270 doi: 10.3390/sym9110270
|
| [36] |
X. Luo, X. Wang, Extended VIKOR method for intuitionistic fuzzy multiattribute decision-making based on a new distance measure, Math. Probl. Eng., 2017 (2017), 4072486. https://doi.org/10.1155/2017/4072486 doi: 10.1155/2017/4072486
|
| [37] |
A. R. Mishra, A. K. Garg, H. Purwar, P. Rana, H. Liao, A. Mardani, An extended intuitionistic fuzzy multi-attributive border approximation area comparison approach for smartphone selection using discrimination measures, Informatica, 32 (2021), 119–143. https://doi.org/10.15388/20-INFOR430 doi: 10.15388/20-INFOR430
|
| [38] |
S. M. Mousavi, H. Gitinavard, B. Vahdani, Evaluating construction projects by a new group decision-making model based on intuitionistic fuzzy logic concepts, Int. J. Eng., 28 (2015), 1312–1321. https://doi.org/10.5829/idosi.ije.2015.28.09c.08 doi: 10.5829/idosi.ije.2015.28.09c.08
|
| [39] |
S. Montes, I. Couso, P. Gil, C. Bertoluzza, Divergence measure between fuzzy sets, Int. J. Approx. Reason., 30 (2002), 91–105. https://doi.org/10.1016/S0888-613X(02)00063-4 doi: 10.1016/S0888-613X(02)00063-4
|
| [40] |
I. Montes, N. R. Pal, V. Janiš, S. Montes, Divergence measures for intuitionistic fuzzy sets, IEEE Trans. Fuzzy Syst., 23 (2014), 444–456. https://doi.org/10.1109/TFUZZ.2014.2315654 doi: 10.1109/TFUZZ.2014.2315654
|
| [41] |
P. Rani, A. R. Mishra, K. R. Pardasani, A. Mardani, H. Liao, D. Streimikiene, A novel VIKOR approach based on entropy and divergence measures of pythagorean fuzzy sets to evaluate renewable energy technologies in India, J. Cleaner Prod., 238 (2019), 117936. https://doi.org/10.1016/j.jclepro.2019.117936 doi: 10.1016/j.jclepro.2019.117936
|
| [42] |
M. Riaz, A. Habib, M. J. Khan, P. Kumam, Correlation coefficients for cubic bipolar fuzzy sets with applications to pattern recognition and clustering analysis, IEEE Access, 9 (2021), 109053–109066. https://doi.org/10.1109/ACCESS.2021.3098504 doi: 10.1109/ACCESS.2021.3098504
|
| [43] | B. Schweizer, A. Sklar, Probabilistic metric spaces, New York: North-Holland, 1983. |
| [44] |
Z. Xu, Intuitionistic fuzzy aggregation operators, IEEE Trans. Fuzzy Syst., 15 (2007), 1179–1187. https://doi.org/10.1109/TFUZZ.2006.890678 doi: 10.1109/TFUZZ.2006.890678
|
| [45] | Z. Xu, Intuitionistic fuzzy aggregation and clustering, Vol. 279, Springer, 2013. https://doi.org/10.1007/978-3-642-28406-9 |
| [46] |
Z. Xu, X. Gou, An overview of interval-valued intuitionistic fuzzy information aggregations and applications, Granul. Comput., 2 (2017), 13–39. https://doi.org/10.1007/s41066-016-0023-4 doi: 10.1007/s41066-016-0023-4
|
| [47] | R. R. Yager, Pythagorean fuzzy subsets, 2013 Joint IFSA World Congress and NAFIPS An nual Meeting (IFSA/NAFIPS), 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375 |
| [48] |
Y. Yang, K. S. Chin, H. Ding, H. X. Lv, Y. L. Li, Pythagorean fuzzy Bonferroni means based on T-norm and its dual T-conorm, Int. J. Intell. Syst., 34 (2019), 1303–1336. https://doi.org/10.1002/int.22097 doi: 10.1002/int.22097
|
| [49] |
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
|
| [50] |
Q. Zhou, H. Mo, Y. Deng, A new divergence measure of pythagorean fuzzy sets based on belief function and its application in medical diagnosis, Mathematics, 8 (2020), 142. https://doi.org/10.3390/math8010142 doi: 10.3390/math8010142
|