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Abstract: It is a well-known fact that LP -spaces provide a robust and flexible framework for
analyzing functions with different types of behavior, uncertainty, and regularity. They are widely
applicable in many areas of mathematics, science, and engineering. In this study, we introduced a novel
generalization that combines interval intuitionistic fuzzy sets (IFSs), as proposed by Atanassov [8],
with circular intuitionistic fuzzy sets (C-IFS), introduced by Atanassov [9], because these classical sets
restrict us. This new concept is known as the LP-intuitionistic fuzzy set (value) (LP-IFS(V)). The
degrees of membership and non-membership in a LP-IFS are depicted by a diamond shape, circle,
star shape, and square with its center defined by non-negative real numbers "k" and "8", ensuring
that k¥ + .8 < 1. The structure ofa LP-IFS facilitates the representation of information through points
on different shapes with respect to pth-norm with a designated center and norm "X", thereby enabling
a more precise characterization of the fuzziness inherent in uncertain data. As a result, a LP-IFS
empowers decision-makers to evaluate options within a broader and more flexible framework, leading
to the possibility of making more nuanced decisions. After establishing the concept of LP-IFS, some
fundamental operations involving LP-IFSs were outlined. To establish a novel scoring function and
an accuracy function that incorporates the decision-makers' attitude (4), the set's optimistic and
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pessimistic points were defined. When the decision-maker's viewpoint (A1) approached 1, the
defuzzification of LP-IFS occurred near its optimistic point, while it occurred near its pessimistic
point as (1) approached 0. Moreover, a technique for converting a collection of intuitionistic fuzzy
values into a LP-intuitionistic fuzzy values (LP-IFVs) was formulated. Additionally, several algebraic
operations between LP-IFV using general triangular £ -norms and triangular % -conorms were
proposed. To transform input values represented by LP-IFVs into a single output value, specific
weighted aggregation operators based on these algebraic methods were introduced. The proposed
methodology was applied to a problem concerning the selection of the optimal artificial intelligence
(Al) agricultural field robots multi-attribute decision-making ( MADM ) framework. Finally, a
framework was also presented for addressing MADM challenges within a LP-intuitionistic fuzzy
context. It is interesting to note that the time complexity of the proposed method and a comparative
analysis were evaluated.

Keywords: LP -intuitionistic fuzzy sets; LP -intuitionistic fuzzy score function; LP -intuitionistic
fuzzy aggregation operators; LP -intuitionistic fuzzy multi-attribute decision making problem;
artificial intelligence powered agricultural field robots’ selection
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1. Introduction

There are clear and well-defined boundaries between members and non-members of a collection.
However, many classification concepts that we commonly use in everyday conversations involve sets
that lack this characteristic, such as groups of tall people, expensive cars, highly contagious diseases,
short driving distances, modest benefits, numbers close to a specific value, or sunny days. In these
cases, there are subtle distinctions that enable gradual transitions between membership and non-
membership. Zadeh's fuzzy set theory [49] effectively captures such ambiguous concepts in natural
language. Real-world situations often require the inclusion of negative information, which cannot be
easily inferred from positive aspects alone. For instance, while antibiotics are effective in treating
certain illnesses, they may also have adverse side effects on the body. The positive aspect of this
information can be considered the membership degree, whereas the negative aspect represents the non-
membership degree, which is separate from the membership. In particular, Atanassov [4] introduced
the concept of incorporating both membership and non-membership degrees, known as the IFS.
Figure 1 offers a geometrical representation of an [FS, depicted as an ordered pair within a triangular
region. In Figure 1, the points (1,0) and (0,1) represent total agreement and complete disagreement,
respectively, while (0,0) signifies a lack of knowledge or uncertainty about the situation. Within the
triangular region, the ordered pair (k7 (), 87(©)), referred to as the intuitionistic fuzzy value IFV),
reflects that an individual agrees with situation © by k; and disagrees by &r.

Intuitionistic fuzzy sets (IFS) have been applied across fields due to their strong capacity to handle
uncertainty. In decision-making (DM), two main approaches stand out. One involves multi-criteria
decision-making ( MCDM ) techniques that rely on information measures such as distance,
similarity/dissimilarity, divergence, knowledge, and entropy. For Pythagorean fuzzy set and related
concepts, see [47,48] and the references therein.

The other approach uses aggregation operators (AOs), which combine multiple pieces of
information into a single value. Xu [44] introduced average aggregation operators for IFS, while Liu
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et al. [35] expanded prioritized AOs for IFS applications. Several researchers subsequently focused
on developing aggregation operators for [FSs [45]. Boran et al. [12] explored the TOPSIS method for
IFSs and applied it to solve supplier selection problems. Khan et al. [28] examined the VIKOR
method for [FSs, applying it to the selection of renewable energy sources. Khan and colleagues [29]
provided theoretical foundations for the empirically effective VIKOR method. For more details on
MCDM techniques, refer to Alinezhad and Khalili [2]. Additionally, Akram et al. [1] introduced an
intuitionistic fuzzy logic controller for a heater fan system.

Divergence measures were initially introduced to quantify the difference between two probability
distributions in classical probability theory. Bhandari et al. [8] extended this concept to fuzzy sets,
defining a formula to measure how distinct two fuzzy sets are from each other. Their approach
proposed a non-negative, symmetric measure that satisfies the identity of indiscernible. Later, Montes
et al. [39] developed an axiomatic framework for fuzzy divergence. These measures have become
essential tools in various fields, such as figure skating scoring [27], decision-making [10], and image
thresholding and processing. Divergence measures play a crucial role in various scientific domains,
such as pattern recognition, decision-making, market forecasting, image processing, and machine
learning. Mishra et al. [37] applied a divergence-based MABAC method for smartphone selection.
Luo and Wang [36] extended the VIKOR approach to IFS. Zhou et al. [50] introduced differentiation
measures for Pythagorean fuzzy sets using belief functions, applying them in medical diagnostics. Rani
et al. [41] employed a divergence-based VIKOR method to assess renewable energy systems in a
Pythagorean fuzzy context. The axiomatically supported divergence measurements for the g-rung
orthopair fuzzy environment were proposed by Khan et al. [26]. The correlation coefficients and their
uses in pattern recognition and clustering analysis were covered by Riaz et al. [42]. Borujeni et al. [11]
studied dynamic intuitionistic fuzzy group decision analysis for sustainability risk assessment in
surface mining operation projects. Moreover, Gitinavard, et al. [20,21] presented a novel variation of
interval-valued hesitant fuzzy group outranking approach and its application in green supplier
evaluation in manufacturing systems. Mousavi [38] discussed evaluating construction projects by a
new group decision-making model based on intuitionistic fuzzy logic concepts. For more related
results related to fuzzy sets and their generalization, see [10,30,31], and the references therein.

On the other hand, in recent years, the study of uncertainty modeling and intelligent decision-
making has witnessed substantial progress through the development of advanced soft computing and
fuzzy-set-based frameworks. Dalkili¢c has played a significant role in this evolution by introducing
several innovative theoretical structures and decision-making tools. The Dalkili¢ [14], a novel
uncertainty framework, the VFPIFS-cluster model, was proposed to enhance clustering performance
under vague and imprecise environments. This work established a foundation for extending fuzzy and
intuitionistic structures with more flexible parameterization. Further advancements were presented in
Dalkili¢ [15], where hyperflexible sets with neutrosophic parameters were generalized to support
complex decision-maker preferences in uncertain domains. Building on these contributions, Dalkilig [16]
introduced VFP-soft sets, offering a powerful comparative decision-making mechanism that improves
the interpretability and reliability of multi-criteria evaluations. In another significant contribution,
Dalkilig [17] developed decision-making approaches focusing on the optimal parameter—object pair,
providing an efficient computational paradigm for soft-set-based analysis. Additionally, the interaction
between heterogeneous object sets was explored through the concept of inverse object interaction sets
for binary soft sets [18], addressing the need to analyze relationships across universes. Collectively,
these studies demonstrate a continuous effort to refine uncertainty modeling and strengthen decision-
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making methodologies, providing a robust theoretical basis for further advancements in soft computing
and fuzzy systems, see [22,23,32].

Although [FS has been applied to numerous problems, uncertainties often complicate the
accurate prediction of membership and non-membership degrees. To address this, Atanassov [6], and
Garg and Rani [19] introduced the concept of interval-valued membership u4(®) and non-
membership v4(©) degrees instead of assigning a specific value. This approach, referred to as an
interval-valued intuitionistic fuzzy set (IVIFS), was defined by Atanassov in 1989. Unlike IFS, which
uses a single value, IVIFS is represented by a rectangular region R (as shown in Figure 2). In this
figure, total agreement, total disagreement, and complete ignorance correspond to the points
([1,1],[0,0]), ([0,0],[1,1]), and ([0,0],[0,0]), respectively. When an individual cannot assign exact
membership and non-membership values for a situation o, the intervals u 4(©)) and v,4(®) form a
region R. Deveci et al. [13] assessed the public bus transportation service utilizing IVIFS's.
Subsequently, additional researchers explored IVIFSs and applied them in diverse contexts (Xu and
Gou, [46]). Although IVIFS offers the opportunity to give membership and non-membership degree
intervals rather than exact values, handling their representation is challenging. Therefore, a different
actual extension of IFSs is suggested, in which a circular region is straightforward representation
instead of a rectangular one. This is referred to as C-IFS. Atanassov [5] proposed the concept of IVFS.
In this framework, the circle with center (K((D), 5((0)) and radius r replaces the rectangular region
R depicted in Figure 1. The C-IFS reduces to a standard IFS when r = 0. Atanassov and Marinov [7]
introduced distance metrics for C-IFSs. Boltiirk and Kahraman [9] characterized interval-valued
IFSs. Alkan and Kahraman [3] explored the application of C-IFSs in the selection of hospital
placements during a pandemic. Kahraman and Alkan developed the TOPSIS method for C-IFSs and
applied it to supplier selection scenarios [25]. Otay and Kahraman [24] tackled the multi-expert
supplier evaluation issue by adapting the AHP and VIKOR methodologies for C-IFSs. For
triangular norm and conorm, see [33,34,43] and the references therein.

(1) ([0,00[1,1])

srlx) . sq0x)
(0,0) rer (%) (1,0) (00100  ralx) ([1.1].[0.0)
Figure 1. Geometric presentation of IFS Figure 2. Geometric presentation of IVIFS

In this research, we introduce the concept of a LP-IFSs, which extends the idea of representing
membership and non-membership degrees as different shapes into the LP -intuitionistic fuzzy
framework. Instead of representing an element's membership and non-membership degrees with
precise values, this new fuzzy set model employs circles centered at (o, k(©®), 8(®)), governed by the
more flexible condition k(®) + 8(®0) < 1. As shown in Figures 2 and 4, this extends the IVIFS
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concept and the C-IFS model. Since decision-makers (DMs) can work with circles representing

certain characteristics rather than precise numerical values, the decision-making process becomes more

refined and responsive. The improvement brought by LP-IFS fuzzy sets is illustrated in Figure 4. The
key contributions of the paper are outlined as follows:

* Theideas of LP-IFS and LP-IFV are introduced in this study.

» A technique for converting a set of IFV into a LP-IFS is obtained, and the multi-criteria group
decision making MCGDM can be resolved in this manner.

» LP-shapes indicate an element's membership or non-membership ina LP-IFS. Its structure enables
more sensitive modeling in the continuous environment using multi-attribute decision-making
(MADM) theory.

« To establish a novel scoring function and an accuracy function that incorporates the decision-
makers' attitude (1), the set's optimistic and pessimistic points are also defined. When the decision-
maker's viewpoint (1) approaches 1, the defuzzification of LP-IFS occurs near its optimistic point,
while it occurs near its pessimistic point as (1) approaches 0.

« For LP-IFS, certain algebraic operations are defined using #-norms and #-conorms.

« Some weighted arithmetic and geometric aggregation operators are supplied with the support of
these operations. In MADM, these aggregation operators are employed.

» To support our proposed methodology, we include illustrated examples.

[

01
oL p=2. 8 =r € [0,

(0.1)

p=1.% € [0, 2]

s(x)

s(x)
Y (0,07 | i (x) . (1,07
(0,0) k() (1.0)
Figure 3. Geometric presentation of L;-IFS. Figure 4. Geometric presentation of L,-IFS.

The structure of the paper is as follows: In Section 2, we cover a review of some fundamental
concepts. In Section 3, we introduce the concept of LP-intuitionistic fuzzy sets (LP-IFSs) as a new
extension of both intuitionistic fuzzy set and circular intuitionistic fuzzy set, along with defining basic
set-theoretic properties for LP-IFS. Additionally, some novel score and accuracy functions are defined.
Then, in Sections 4 and 5, we propose several algebraic procedures for LP-intuitionistic fuzzy values
(LP-IFVs) using max-min rules and continuous Archimedean #-norms and #-conorms, respectively.
In Section 6, based on these operations, we also introduce a few weighted aggregation operators for
LP-]FVs via continuous Archimedean #-norms and £-conorms. In Section 7, steps of the algorithm
forthe MADM technique is discussed. The proposed methodology is applied to a problem concerning
the selection of the optimal agricultural field robots MADM framework. An outline of the study and
a discussion of the findings are provided in Section 8. The study is concluded in the final section by
outlining the benefits and drawbacks of the suggested strategies and suggesting additional research for
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LP-[FSs.
2. Preliminaries

In this section, we present several classical definitions, results, and concepts that will facilitate the
discussion of the major findings.

Definition 1 ([5]). Let us have a fixed universe E and its sub-set T. The set
T = {{0, k7 (0), 87(0)) : forall © € E},

where 0 < k7 (0) + 87(0) < 1is called the intuitionistic fuzzy set (IFS) and functions kr, 87 : E —
[0,1] indicate the degree of membership (validity, etc.) and non-membership (non-validity, etc.) of
element © € E toafixedset T € E. Now, we can define also function m;: E — [0,1] by means of

r(0)=1 - kr(0) — 87(0),

and it corresponds to degree of indeterminacy (uncertainty, etc.). An intuitionistic fuzzy value (IFV) is

the pair "< k7 (©), 87(©) >" given an element © of X. To make things easier to understand, we can

write t =< kg 8z >, where k; € [0,1], s €[0,1] and 0 <k;+8;<1. The degree of

indeterminacy is represented by 7z, subject to the constraints that 7z € [0,1] and 7 = 1 — k; — ;.
The definition of the complement of an IFV t =< 8;, kg m; > is as follows:

t¢ =< 8¢, Kg, Ty >.

Definition 2. Let D[0,1] denote the set of all closed subintervals of [0,1]. An interval-valued
intuitionistic fuzzy set (IVIFS) A in X is defined as A = {< ©,uy4(0),v4(0) > © € X} where
uy:X = D[0,1] and "v4: X — D[0,1]", with the condition "0 < supuy (©) + supv4(0) < 1,0 €
X". The membership and non-membership degrees of X to A are represented by the intervals u 4 (o)
and v 4 (o), respectively.

An interval-valued intuitionistic fuzzy number (IVIFV) is the pair < u4(®),v4(©®) > for any
o € X, see [6]. In this study, A = ([uj, uz*] [vz vE]) is used to conveniently denote an IVIFX.
Here, [uz,u;*] € D[0,1], [v v4t] € D[0,1] and uz* + vt < 1.

The concepts of £-norm and #-conorm are vital in statistics and decision-making. In algebra,
binary operations defined on the closed unit interval are known as £-norms and £-conorms.

Definition 3 ([33,34,43]). A £-norm is a function 7:[0,1] X [0,1] — [0,1] that that adheres to the
following properties:

(T'1) Border condition: 7' (a,1) = a forall a € [0,1].

(72) Commutativity: 7' (a,f) =T (f,«) forall «,p € [0,1].

(73) Associativity: T(a,T(S,%)) =T (T (a,B),¥) forall a,B,¥ € [0,1].

(T4) Monotonicity: T(a,B) < T(a',B") whenever a < a’ and g < B’ forall a,a’,B,B' € [0,1].

Definition 4 ([33,34,43]). A t-conorm is a function §:[0,1] X [0,1] = [0,1] that that adheres to the
following properties:

(51) Border condition: §(a,0) = a forall a € [0,1] (border condition).

(82) Commutativity: S(a,f) = S(B,«) forall a,f € [0,1] (commutativity).

(53) Associativity: S(a,S(f,¥)) =S5(S(a,B),r) forall a,f,¥ € [0,1] (associativity).

(54) Monotonicity: S(a,B) < S(a',B’ ) whenever a < a’ and B < B’ forall a,a',B,B' € [0,1]
(monotonicity).
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Definition 5 ([33,34]). A function g:[0,1] = [0, 0] with g(1) = 0 that is strictly decreasing and
satisfies g(1) = 0 is referred to as the additive generator of a £-norm T if the relationship
T(a,B) =g *(g(a) + g(B)) holds forall (a,B) € [0,1] X [0,1].

The concept of a fuzzy complement is required to determine the additive generator of a dual %-
conorm defined on the interval [0,1].

Definition 6 ([47,48]). A fuzzy complement is a function N:[0,1] = [0,1] that meets the following
criteria:
(N1) N(0) =1 and N(1) =0 (boundary conditions).
(N2) N(a) = N(B) whenever a < f forall a,f € [0,1] (monotonicity).
(N3) Continuity.
(N4) N(N(a)) = a forall a € [0,1] (involution).

The function N:[0,1] - [0,1] given by N(a)= (1 —aP)¥/P  where p € (0,00) [47],
represents a fuzzy complement. When p = 1, N simplifies to the intuitionistic fuzzy complement
Na)=1-a.

Definition 7 ([32,48]). Let T bea t-normand § bea #-conorm on the interval [0, 1]. If T'(,f) =
N(S(N(a),N(B))) and S(a,f) = N(T(N(a),N(B))), then T and S are referred to as dual with
respect to the fuzzy complement N.

Remark 1. Let T represent a £-norm on the interval [0,1]. The corresponding dual #-conorm §
with regard to the intuitionistic fuzzy complement N is defined as follows:

S(a,f)=1-T(A—a,1-p).

It is important to mention that 7 qualifies as an Archimedean #-norm if and only if T'(a, @) < «
forall ¢ € (0,1), while § is classified as an Archimedean %Z-conorm if and only if S(a, a) > a [33].
Klement et al. [34] demonstrated that continuous Archimedean £-norms can be represented through
their additive generators, as established in the following theorem.

Theorem 1 ([34]). Let T represent a £-norm on [0, 1]. The following statements are equivalent:
(1) T is a continuous Archimedean £-norm.
(1) T possesses a continuous additive generator, meaning there exists a continuous, strictly
decreasing function g:[0,1] = [0, ] with #(1) = 0, such that T (a,B) = g 1(g(a) + g(B)) for
all (a,p) €[0,1] x [0,1].

This new fuzzy set is an extension of the IFS and IVIFS, distinguished by different LP-shape
representations of the degrees of membership and nonmembership.

3. LP-intuitionistic fuzzy sets

We begin with the primary definition of an LP-intuitionistic fuzzy set, which is as follows:
Definition 8. Let us have a fixed universe E and its sub-set T. The set

LE = {{0,k(0),8(0); R )| © € E},

1
where 0 < k(o) + 8(0) <1 and R € [O, 25] with p > 1 are called LP-IFS and functions k, 8 :

E — [0,1] indicate the degree of membership (validity, etc.) and non-membership (non-validity, etc.)
of element © € E to a fixed set T S E. Now, we can define function 7: E — [0,1] by means of

AIMS Mathematics Volume 10, Issue 12, 28308-28346.
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(o) =1 — k(o) — s8(0),

and it corresponds to degree of indeterminacy (uncertainty, etc.) (see Figures 3-9).
On the other hand, Lﬁ can also be defined using the following approach, such that:
Let £L; = {{(h,m): h,m € [0,1],and h + m < 1}. Then,

LE = {0, 8 (k(0), 8(0))) : © € E},

where

X (@), 5(0)) = {(h,m) + h,m € [0, 1] and (1k(@) = hIP + (@) — mlPyr < xfnz.,

= {(h,m) :h,m € [0,1], (Jx(©) — h|? + |8(0) — mlp)% <Xandh+m< 1}.

To simplify matters, we consider the convex part of the LP-IFS in Definition 8 for p > 1.
However, the readers interested in exploring this further may consider the nonconvex part for p > 0.

(0.1) )
(01X - ene oz 1008 € [0, 255]
a(x) 3(x)
(0,0 ic () (1,0} (0,0) we(x) (1,0
Figure 5. Geometric presentation of Lg-IFS. Figure 6. Geometric presentation of Lqq-IFS.

Note that if we want to cover the £! and LZ-intuitionistic fuzzy interpretation triangle, then X €
[0,2], and R =71 € [O, \/f], respectively, see Figures 8 and 9.

Similarly, other shapes can be defined for p > 1.

Here is the restriction of Definition 8; The intuitionistic fuzzy interpretation triangle cannot be
fully covered.

p=1% € [0,2] () N p1Rk=refoyd]
(0,1) o

| s(x)

k=2 — | ﬁ:r:\n'"z.‘\ iy -y
0.0) ) (1.0) ©0)" K00 a0

Figure 7. Triangular coverage of different X Figure 8. Triangular coverage of different N
values of L,-IFS. values of L,-IFS.
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Definition 9. Let us have a fixed universe E and its sub-set T. The set
Ly = {{o,k(0), s(0); X)|o € E},

where 0 < k(o) +8(0) <1 and X € [0,1] with p =1 is called LP-IFS and functions k,s :
E — [0,1] indicate the degree of membership (validity, etc.) and non-membership (non-validity, etc.)
of element © € E to a fixed set T S E. Now, we can define function 7: E — [0,1] by means of

(o) =1 — k(o) — s(0).

This corresponds to degree of indeterminacy (uncertainty, etc.) (see Figures 3-6, 9, and 10).

Figure 10. Optimistic and pessimistic points of LP—[FSwith d = 1.

1
Note that for p > 1,8 = 27 > 1, Figure 9 will be reversed.

AIMS Mathematics Volume 10, Issue 12, 28308-28346.
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Development of LP-intuitionistic fuzzy sets

In this section, we discuss the procedure of calculating the LP-IFS in order to convert IFS to
LP-IFS.
Assume that there are intuitionistic fuzzy pairs in an [FS Lﬁi with the following shapes:

{(K’i,l,éi,l), (K’i,z,éi,z), (K’i,3,5i,3), ...... }, where m is a numerical value of an IFS Lgl, that contains
n;, the number of intuitionistic fuzzy pairs with L‘gi.

The following formula can be used to determine the “arithmetic average” of spherical fuzzy

intuitionistic fuzzy pairs:
ni ng
Ki, . 51’ .
(e(at). o) = Y232 )
‘ ' e N L T
j=1 " j=1

The X of (K’ (Lgi) , 8 (Lﬁi)) has the maximum Euclidean distance value.

1
- g (et -l = o(2) .Y

Thus, IFS is being changed into LP-IFS.
In order to facilitate collective decision-making, we create a mechanism for converting collections
of IFSsintoa LP — [FVs.

Proposition 1. Let a set of 1FV's be denoted as
{L£1 = (K, 81; Nl),ng = (Ky, 82} X)) cee e o ,Lﬁn = (K, 8 Nn)}.
Then
L7 = (i, 8 R),
isa LP — [FV with

—yn Kij —yn Zij
K= Z]’:l n; and & = Zj:l ni’

1
8 = ma <(|K L P z%>.

1<jsn;

. n; Kij n; 8ij
Proof. Since k = Zjéln;’ and & = Zj;lni, then we have
i i

T (e dss i
nosy Bty Tt

Jj=1 n;i ni n;

Kk+s=Y" Sy

j=1'n;

1
Furthermore, it is obvious that ¥ € [O, ZP]. Note that, for Definition 9, we have

1
N = min( max ((lK - Kl-,jlp +|8— 5i,j|p)p>,1>.

1<js<n;

Example 1. The following sets of [FSs are represented as:

AIMS Mathematics Volume 10, Issue 12, 28308-28346.
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{(0.3,0.7),(0.2,0.7), (0.6,0.2)},
{(0.2,0.5), (0.3,0.4), (0.9,0.1)},

and

{(0.1,0.6), (0.5,0.5), (0.1,0.8)}

With the help of Proposition 1, we find the corresponding LP-IFSs, we have:
When p = 1, we have

(0.37,0.53; 0.63)’ (0.47,0.33; 0.93)’ (0.23,0.63; 0.53);

When p = 2, we have
(0.37,0.53;0.45) (0.47,0.33;0.73)_ (0.23,0.63;0.50),

When p =5, we have
(0.37,0.53;0.41) (0.47,0.33;0.71) (0.23,0.63;0.51),

When p = 20, we have
(0.37,0.53;0.40) (0.47,0.33;0.70), (0.23,0.63;0.50)

and so on.

4. Basic operations and relations for the LP-intuitionistic fuzzy set

In this section, we propose some of the basic operations for LP-IFSs like inclusion, union,
intersection, complement, and some compositions. Some properties are also illustrated. For the sake

of easy understanding, we take the following three LP-IFSs over fixed universe E:

Ly, = {{o,x,(0), 5., (0); ;) : forall o € E},
Ly, = {{0,1;(0), 8,(0); R,) : for all o € E},

L§’3 = {{0, k3(0), 83(0); R3) : forall © € E}.

Operations

Some basic operations between two LP-IFSs L§1 and ,ng are as follows:

Definition 10. Let L{ and L{  betwo LP-IFSs. Then,
i. —|L§’1 = {{0, 8,(0), k;,(0); R;) : forall © € E},

ii. L£1 Umin Lzz = {{0, max(k,(0),k;(0)), min(s,(0),8,(0)); min(Ry,R,)) :

forall o € E},

iii. L£1 U,nax szz = {0, max(r,(0),Kk,(0)), min(s,(0),s,(0)); max(Ry,R,)) :

forall o € E},
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V. LY Npin £, = {{o, min(i,(0),k;(0)), max(s,(0),8,(0)); min(Ry,R,)) :
forall © € EJLL Npax L, = {(0, min(ic;(0), K, (0)),
mazx(8,(0),8,(0)); max(Ry,R,)) : forallo € E},

V. £§1®mm£§2 = (K1 (0) - k2(©), 31 (0) + 8,(©) — 3, (©) - 8,(©); min(Ry, N2)),
vi. L£1®max1:£2 = (Kl((D) “ K2(0), 81(0) + 8,(©) — 81(0) - 8,(0); Mmax(Ry, Nz)),
vii. £§1€9mn£§2 = (K1((D) + 162 (0) — K1 (©) - K2 (0), 81 (0) - 8, (0); Mmin(R,, Nz))a

viii. £§1€9mx£§2 = (Kl((D) + K2(0) — k1 (©) * K2 (0), 81 (©) - 8,(0); max (R, Nz)),

iX. /’Illgl = (1 —(1- Kl((o))l,zsl((o)’l; Nl); A>0,

x. L8 "= (kiA1= (1- 8% Ry),

Xi. Lﬁl@mmﬁﬁz = (k1(0) + K,(0), 81 (0) + 8, (0); Min(¥y,Ry)),

Xil. LY @panLy, = (11 (©) + K2 (0), 8, (©) + 8, (©); max(Ry, Ry)).
Relations

The relations over LP-IFSs are first proposed as follows:

Definition 11. Let L§1 and ng be two LP-IFSs. Then, for all © € E, we have

(©]

o 0O 0 O 0O O 0o o 0o o o o

(K1 (0) < Kz(0) & 81(0) = 52((0))
Ly Cy L, 0 | (Ry = Rp) & | V (k1(0) < 12(0) & 81(0) > 5,(0)) | [;
\4 (K1 (0) < Kz(0) & 81(0) > 8, ((D))

Ly Cp LL, Hff (R < Rp) & 161 (0) = 162(0) & 51(0) = 5,(0));

(K1((0) <Ky(0) &5 (0) = 52((0))
Ly Ly Aff [ (R <Rp) &|V (k1(0) < Kk3(0) & 81(0) > 5,(0)) | |;
\% (K1((D) < Ky(0) & 8, (0) > 8, ((0))
Ly, Gy LY, iff L) 2y L
Ly, Sp LY, iff LY 2, LT ;
Ly Ly, iff LY D LY ;
L£1 c, ng iff ((Ry = Ry) &1 (0) < Kz(0) & 81 (0©) = 8,(0));
LY S L, iff (R < Rp) & 161 (0) = 12(0) & 5,(0) = 5,(0));
Ly € Ly iff ((Ry < Np) & k1 (0) < 12(0) & 5,(0) = 52(0));
LY, Sy LY, iff L) 2y LL
LY, Sp LY, iff LY 2, LT ;
Ly S LY, iff L 2 LY ;
1351 =v ng iff 1, (0) = Ky (0) & 81(0) = 8, (0);
LY, =p LY, iff Ry =Ry,
L£1 = ng iff (R; = R,)&k4(0) = 1,(0)&3,(0) = 3,(0).
From Definitions 10 and 11, we conclude the following results:

Proposition 2. Let Lpl, and Lz 5 be two LP-IFSs. Then, the following properties hold, such that
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- ﬁzzgl min ~LE)
Nimin _'L

(

(e8 )=~
( eamm _'L ) =
( :)

(

—\ T

=\ T

e _'Lgl®m¢n_'l:

Lgl in 52, and (—|Lp U iax —|[,p ) = Lgl Nax ng,
p _ rb p
Unmin £8,-and (L8 Mmax —LE,) = LR, Upnax L],
p p _ rb p
LM@W%LNZ, and —.(—.Lxleamx—.sz) = L] ® il .

= L8 ®pinLl, and ~(~LE ®pmaxLE,) = L] Domarlh,.
(L, @minLR,) = L] @in Ll and (LY, @parLE,) = L], @arLh,

Proof. The proof follows similar steps as those used in the operations of [FSs, and as such, is excluded

for brevity.

Proposition 3. Let Ly , L}
that

5 and Lg 5 be three LP-IFSs. Then, the following properties hold, such

1) LY, Umin L5, = L8 and LY Upar L3 = L,
2) LY Numin L8, = L8 sand LE Npnap L8 = LY,
3) LY, @pinly, =LY and LY @0 LY =LY,
4) LY YUpmin £, = LY, Upnin 1:51, and L§1 max L8, = LR, Umax L35
5) LY, Nomin L8, = L, Nmin L3> and LT Opax L8 = L Oprax Ly,
6) LL ®minki, = L§2®mm1:§1, and LY ®parly, = LY, ®marly >
7) LY Ominky, = LY, Ominky > and L{ @parll, = L Omarly s
8) LY, @pinll, = LY, @pinll s and LE @anll, = LE @parL
9) £, Unin (L8, Unmin £8,) = (L8, Unmin £8,) Unmin L2, and L], Upnar (L8, Umas £L,) =
(£2, Umaz £8,) Unmax L8,
10) L8, Nmin (L8, Vomin £85) = (L8, Oomin £8,) Oomin L], and
L8 Nmax (L8, Ve £8,) = (L8, Nmar £8,) N L£3,
11) £, @umin (L8, ®mintl;) = (L8, ®minll,)®mintl, and LY ®par (LR, ®martl,) =
(£2, ®marLl, ) BumarLls.
12) L8 Donin (L8, ®mintl;) = (L8 OminLl,)Bmintl, and LY Omas (L], Omarll,) =
(£2, @ marLl, )BrmarLlls.
13) L8, Omin (L8, Unmin £8,) = (L8, Omin £8,) Unmin (L8, Nomin £8,) and
L8 Max (L8, Unnin £8,) = (L8, Omaz £8,) Umin (L8, Oimaz £2)-
14) L§1 min (L8, Umas L§3) = (L8, Vumin £8,) Umax (L8, Nomin £8,) and
ax (ng max L ) - (Lgl Nmax ng) Umax (Lgl Ninazx £§3)’
15) £ n(ng Umin £8,) = (L8, ®minLl,) Umin (L8, ®minLl,) and
Lileamx (£8, Umin Lig) = (Lileamﬁiz) Unin (L8, ®maxLh, )
16) Lgleamm L2 Uy ,c§3) = (Lgleamm,cgz) Umax (L8, ®minLh,) and
Omar (L8, Umar £8,) = (L8, ®marLl,) Umas (L8, BmarLl, ):
AIMS Mathematics Volume 10, Issue 12, 28308-28346.
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17) L8, ®umin (L8, Umin £§3) = (L8, ®mintt,) Umin (L8, ®minlk,) and
L§1®m¢x( Upin £ ) _ (L§1®Wx£§2) Umin (Ilfi 1®Wm£§3),

18) LY ®min (L” Unmaz LR )= (£§1®mm£§2) Umaz (£p1®mmL§3) and
Jod ®Wm (28 Umax £2.) = (L8 ®maxLl ) Umae (L8 @marLl ),
19) £° @,,., (L" Upmin L8 3) = (Lﬁ @onin Ly 2) Unin (135 @inLy 3) and

max (L8 Umin £8.) = (L8 @parL? ) Unmin (L8 @il ).
20) L n(LP Umaz £8 ) = (L8 @uintl ) Umar (LR @pin Ll ) and
maz (E8 Unmax £ ) = (L8 @marLl ) Unmax (L8 @mantl ),
21) Lp Unin (Lp O prin 1;53) = (L§1 Ui ng) Npin (L£1 U in L§3) and
B (1:” Cin 1;53) = (Lgl S ng) Npvin (1:51 Usnazx L§3),
22) L8 Upmin (L8, Omac £8,) = (L8, Umin L2 ) Omasx (L8 Upmin L] ) and
» (1:” o L§3) = (1251 Uy 1352) N (135 . Ynmaz 1253):
2) 1 @, ( 2 Ay ng) _ (Lgl@mmzzgz) Nyin (L§1®m¢nﬁﬁ3) and
» (LP Omin L8 ) = (L8 @maell ) Vmin (L8 OmasLl ),
24) L” eamm( 2 Nna LQB) = (1:” 1€9mmL§2) Nz (13” O minL 53) and
Jod @Wm( 8, Nimax 1:53) = (Lp D mar Ll ) Nonaz (ﬁp B maxl 53)
25) LP ®mm( &, Nmin Ly 3) = (28  Ominky ) i (L5  Emink 53) and
® s (L8 8 i L§3) = (L§1®WmLN 2) Npsin (L” ®Wm£§3),
26) L} ®main (L] 8, Nz L§3) = (L§1®W~n£§ 2) Ninaz (£§1®m¢n553) and
x( 2, O £8) = (L8, ®maxt? ) Omar (L8, ®masll )
27) 1P @, (Lp Oin LY 3) = (ng’ 1@/m¢'/nL£ 2) Nin (/;;i 1@mm£2§ 3) and
@ (L8 Oin £2.) = (L8 @l ) Oin (L8 @ L).
28) L] @pin (L], Oomar £8) = (L8 @pintl ) Nonar (L7, @pinlf ) and

p
LN 1@W (1:5 Mz L8

3) = (L8 @maxtl ) Vmax (L8 @marlf)-

Proof. The proof follows a process similar to that used in the operations of I[FSs and is therefore

omitted for the sake of brevity.

Proposition 4. Let LF ¥ L ,-and Ly , bethree LP-IFSs. Then, the following properties hold, such

that
) L] ®umin (L8 ®mintt )
L8 @ (L8 Bomin Ll )

AIMS Mathematics

c (£§1®mm£§2) D in (L£1®mm1;§3) and

< (L8 ®marLl ) ®min (L5 ®mastl ),
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b) Lp ®/m4/n, (L ®max ) = (Lp ®m¢n ) ®max ([« ®m4,n ) and
I ®W (L” Omarlh, ) € (L8, @martl ) Bmas (L8 OmarLl ).

c) L min (Lp eamm*cx 3) c (Lg 1@471,”,,1:5 2) Dnin ( m4/n[*£ 3) and
@ ax (Lp EB””W’VCQ 3) < (Lp @m‘”Lg 2) Dmin (’C m‘mﬁg 3)

d) Li 1@W (L8 @mart? ) € (L8 @pminLl ) Drmas (L8 @ikl ) and
ax (Lp Dmarli 3) < (Lg 1@m“x1:£ 2) Dimaz ( @ ol 3)

€) Lp @mw, (‘Cp ®mm£§ 3) - (‘Cg 1®m¢n££ 2) Qmin (Lp @mmﬁg 3) and
Lp EBmax (Lp ®mm££ 3) - (‘C5 169"“”1:5 2) Bmin ( m“xﬁg 3)

f) £ min ( Qmarly 3) - (L§ l@mmﬁg 2) ® ax ( D min Lk 3) and
Lp @max ELP ®/ma,x/;£ 33 - E‘Cg 1®max££ 2; ®/max ((Lp eamaxﬁg 3))

0 LY @pin (LR, ®minLf ) 2 (L8 @minLR ) ®min (LR, @minLy ) and

/ma,x X ®m¢n£’p > ['p @mapr ®m¢fn /mapr

(L R 3) ( R X 2) ( R 3)

h) L{ @pin ( O marly 3) = (125 l@mmllﬁ 2) ®mazx ( @ min Ly 3) and
ax ( BmarLy 3) > (Lg 1@”’”"””[:g 2) ®maz ( @ oLy 3)

) Lp @mm ( z@mng 3) - (Lg 16”””/”1:5 2) @nin ( EB””W"LQ 3) and
Lg 1®/ma,x (135 2@/m¢/n£'§ 3) = (Lg 1®m¢zx£§ 2) @,in (Lp ea/maxﬁg 3)

) Lg 1694%% (Lg Z@max*[:g 3) = (Lg 1®m/m1:§ 2) @ ax (Lp Gmmﬁg 3) and
Ly Dimaz (L5 2@””""“[:s 3) - (L5 169””“”['5 2) @ max ( m"'xL§ 3)

K) L8 ®umin (L8 @minLk ) = (L8 BminLl ) @pin (L] ®umintf ) and
L3, ®oma (L5 2@"’””’65 3) - (Lﬁ 1®mdx£§ 2) @min ( ®marli 3)

1) Lg 1®mm (Lg Z@maxLNP 3) = (pr 1®/mxmﬁp ) @ ax (Lp ®mm££ 3) and
Lg 1®/max (Lp Z@MMLQ 3) = (Lp ®max£xp 2) @max (Lp ®max g )

p P

m) L£ 1®m¢n£x 2 gv Lg 1 nm/in Lx 2 gv Lﬁ l@mi/nﬁp 2 —‘u Lp 1 Um/m Lp 2 —‘u L£ 1®m¢n££ 2’

N) LY ®maxll So Ly Nmae L8 Sy LR @l Sy LY Upar LR Sy LE @parll .
Proof. This proof also follows similar steps as those used in the operations of IFSs, and as such, is
excluded for brevity.

Remark 2. If we take X; =0 =X, =X, then all operations and relations reduce for LP-IFSs as
well as [FSs.

LP-intuitionistic fuzzy model operators

In this subsection, some of the new model operators are introduced using the intuitionistic fuzzy
approach and similar to logic operators’ “necessity”” and “possibility”. Moreover, some extensions are
obtained with the help of some parameters. First, we start with these two operators, such that:
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Definition 12. Let £{ bea LP-IFS. Then, we have
o L§ = {{0,k(0),1—k(0);R)]|o € E} = {{0, 8 (k(0),1 — k(0)))|© € E}.
o LF ={(0,1-5(0),s(0);R)o€EE}={oK(1-2s8(0),s(0))]oEE}.

Let w,y € [0,1] be fixed numbers. Then, the following are the extensions of LP-intuitionistic
fuzzy model operators:

D, (£LY) = {{0, k() + wn(0), 8(0) + (1 — w)n(0); R )|o € E}

= {(0, R (k(0) + wn(0), 8(0) + (1 — w)7(0)))|o € E},

Fyy(£2) = ({0, k(0) + w(0), 8(0) + fr(©); R )| € E}
= {{o, N1 (K((D) + wn (o), s(0) + ﬁn((o)))ko € E},

Gy (£2) = (0, 0ic(0), B3(0); )]0 € E}
= {0, X! (wK(0), Bs(0)))|0 € E},

Ho,(£2) = (0, wk(0), 5(0) + fr(0); R )| € E}
= {0, X! (wK(0), 8(0) + fr(0)))|0 € E},

H* 0, (L]) = {0, wk(0), 3(0) + B(1 — wk(©) — 5(0)); R )]0 € E}

= ({0, X" (wr(0), 5(0) + (1 ~ wi(0) ~ 5(0)) )} |0 € E},

Huy(LY) = {0, wk(0), 8(0) + B — B5(0); X )]0 € E}
= {{0, X! (wK(0), 5(0) + B — Bs(0)))|o € E},

Joy(£8) = {{0,k(0) + wn(0), Bs(0); X )|o € E}

= {0, X! (k(0) + wr(0), B5(0)))|0 € E},
1
Ty (£8) = (0,5 (k(0) + 0(1 = k(0) = B5(0))), Bs(0); X} |0 € E}

= {{o, X (% (K((D) + w(1 - k(o) - ﬁs(m))),ﬁs(m))) |o € E},

Joy(LY) = {(0,k(0) + 0 — wk(0), fs(0); R )|o € E}
= {0, X} (k(0) + w — wk(0), Bs(0)))|© € E}.

The defuzzification function is essential for LP-IFS to enhance its applicability in various
methods. The score and accuracy functions must be defined, similar to those in IFS and IVIFS. In
this context, we propose novel accuracy and scoring functions for LP-IFS, derived from various
perspectives. Initially, the classical defuzzification formulas for IFS and IVIFS are presented below
to clarify the source of these functions:

Definition 13. Let T = (k,8) be a IFV. Then, score function (S,FV(T)) and accuracy functions
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(Hpn(T)) of T are denoted and defined as, such that
Sipv(T) =k — 3,
where —1 < S;py(T) < 1.
Hypy(T) =k + 8,
where 0 < H;zy(T) < 1, respectively.

Definition 14. Let A = ([k~,x*],[87,87]) be a IVIFV. Then, score function (S, (A4)) and
accuracy functions (H IVEN (A)) of A are denoted and defined as, such that

tst k-5~

SIFV(K_,G_)+Slpv(K+,5+) K
SIVIFV (A) = > = . :

where —1 < SIVIFV(A) < 1.

HIVIFV(A) _ HIFV(K‘,a‘)-;-HIFV(K+,5+) _ K++5+;K_+<§_’
where 0 < Hyy;ry(A) < 1, respectively.

Before offering any recommendations, let us begin by explaining how defuzzification functions
are utilized in LP-IFS. Essentially, LP-IFS forms different shapes with anorm X around the central
IFS point. In reality, every point within LP-IFS represents an [FS. Therefore, the points within the
LP-IFS can be utilized to generate a score value.

We split the LP-IFS values into four equal parts for interpretation. As shown in Figure 10,
increasing the k and 8 values from the central IFS point (k,8) leads to values falling in the first
quarter (Q1). Consequently, the membership and non-membership values will increase. By decreasing
the value of k and increasing the value of .8, the second quartile (Q2) values can be obtained from
the IFS with the center at (x,.8). In this case, the minimum membership value and the highest non-
membership value of the LP-IFS are identified when the angle is set to 45° angle, and the point is
at a distance of X. This point, also an IFS, is referred to as the "pessimistic point" of the LP-IFS.
Alternatively, the LP-IFS attains the point with the maximum membership and minimum non-
membership values by moving to a position in the fourth quartile (Q4) at a distance of X and a 45°
angle. This point, also an IFS, is termed the "optimistic point" of the LP-IFS. As a result, the two
specified points within the LP-shapes can be utilized to calculate the score and accuracy values for
the LP-IFS, similar to the use of endpoints in IVIFS.

In this context, new functions for scoring (S;»_;ry) and accuracy (H p_;py) are introduced for
LP—]FV, for d = 2.

Definition 15. A LP-intuitionistic fuzzy number is a collection of
Ly = (k, 8 N),

where L§ represent the LP-intuitionistic fuzzy number with conditions:
(1) 0 <k(x)+s(x)<1.
(i) 0 < k(x),s8(x), XN < 1.
(i) 0 =N<2.
For the sake of simplicity, the set of the LP-intuitionistic fuzzy number is (LP — FN.8).

Definition 16. Let Lﬁ = (k,8;8) be a LP —[FV with optimistic point <K +%,5 —%) and
2P 2p
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pessimistic point <K — %,5 + %) Then, score function (SLp_IFV(Lg)) and accuracy functions
2p 2p

(H Lp—mz(l:g)) of Lg are denoted and defined with respect to the decision-maker’s preference

information A € [0,1]:

A*Siry K+%,5—il +(1-1)*Siry K—il,5+% 1
20 2D 2P 2P/ K—8+2PR(21-1)

3 3 i

Scp_1ry (135) =

where —1 < Spp_;py(£LF) < 1.

N X X . X X
HLP_IFV(LQ) = A HIFV <K+_l'5 __l> + (1 _A) HIFV <K__l,5 +_1> = K+5,

2P 2P 2D 2D

where 0 < H Lp_,FV(Lg) < 1, respectively. Note that parameter A represents the decision-maker's
viewpoint on the model. When A is zero, it reflects a fully pessimistic view, while a value of one
indicates a completely optimistic outlook. Common interpretations suggest that A € [0,0.5) reflects
a pessimistic stance, and A € (0.5, 1] reflects an optimistic stance. A neutral or indifferent attitude is
indicated when 1 = 0.5.
These rules define the comparison between two LP — IFVs Lgl and Lﬁz, such that
a) Lf, is higher ranked than £}, if Sgp_ ey (£8,) > Scooiev(£F,)-
b) L§1 is lower ranked than Lﬁz if SLp_IFV(Lgl) < SLP_IFV(LQZ) , when SLp_,FV(Lgl) =
SLP—IFv(ng) for two LP — IFVs, then,
c) L£1 is higher ranked than ng if HLp_,FV(Lgl) > HLP_Ipv(ng),
d) L£1 is lower ranked than ng if HLp_,FV(Lgl) < HLP_IF‘/<L§2),

e) £§, issimilar £, if Hpp_yey(£8,) = Hoviev(£R,):
5. Operations on LP-intuitionistic fuzzy set via £-norms and £-conorms

By applying universal £ -norms and # -conorms, algebraic operations among LP -[FS in
Definition 10 (vii-x) can be expanded. Note that, for upcoming results, & € [0,1].

Definition 17. Let L{ = (k;,8;8;) and LY = (iz, 82; Xp) be two LP-IFSs. Assume that, in the
context of LP-intuitionistic fuzzy complement, N(h) =1 — h with Q as the norm or conorm, T
and § asthe dual £-norm and %-conorm, respectively. The general algebraic operations among LP-
[FSs are defined as follows:
1) Lgl@aﬁgz = (S(KL K3), T (81,82); QRy, NZ)))
2) L£1®DL£2 = (T(Kp K3),S(81,82); QR Nz))-

It is clear that the operations presented in Definition 17 are based on those outlined in Definition 10,
with particular selections for 7', §, and Q.

We now show that the sum and product of two LP-IFSs also resultin LP-IFSs, as stated in the
following proposition:

Proposition 5. Let L{ = (k;,81;8;) and LY = (kp, 85; X;) be two LP-IFSs. Assume that, in the
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context of intuitionistic fuzzy complement, N(h) = 1 — A with Q as the norm or conorm, 7 and
S asthe dual £-norm and %-conorm, respectively. Then ,Cg 1€BQ£§ 5 and ,Cg 1®QL£ , are also LP-

IFS.

Proof. Sine § is a t-conorm corresponding to intuitionistic fuzzy complement N, then S(h,d) =
1-T7(1—hnh,1—0). Weknow that A <1 —06 and T is nondecreasing, then we have

T(ho)+SHh6)=T(h06)+1-T(1—-h1-0)
<T1-n1-8)+1-T7A-h1-0)=1.

Furthermore, as the domain of Q is the unit closed interval, we deduce that Lg 1®QL£ 5 is a
LP-]FS. It can also be demonstrated that ,Cgl@gﬁgz isa LP —[FV.
Continuous Archimedean #-norms and £-conorm can be stated using their additive generators,

as demonstrated by Klement et al. [46]. Consequently, one can define some algebraic operations among
LP — [FVs by employing additive generators of strict Archimedean #-norms and #-conorms.

Definition 18. Let A > 0, and assume that £ = (k.,8.;N;) and £ = (kg, 8g; Ng) are two LP —
[FV's. Suppose that the additive generator of a continuous Archimedean #-normis g:[0,1] = [0, o],
and the additive generator of a continuous Archimedean #-norm or #-conorm is o:[0,1] = [0, oo],
with h(#) = g(1 — #). The following definitions describe algebraic operations for LP — [FV:
i. L@, 2= (n"(h(ky) +h(ke)) g7 (g(sr) +8(80)); 07 (a(Rp) + 8(Ry))),
i, L ®, 8= (g glk) + glre)), h 1 (h(s) + h(se)); 07 (a(Ry) + 0(Rg))),
i, A,L = (h71(A0(ko), g (2g(s0) 07 (20 (X)),
iv. L% = (g (Ag(k)), b~ (Ah(sL)); 97 (A0(RL))).
The following statement verifies that LP — [FV's is also multiplication by constant and power of
LP —[FVs.

Proposition 6. Let A > 0, and assume that £ = (k, 8,; X,) and £ = (kg, 8¢; Ng) are two LP —
IFVs. Suppose that the additive generator of a continuous Archimedean #-norm is g:[0,1] — [0, o],
and the additive generator of a continuous Archimedean #-norm or #-conorm is o:[0,1] = [0, o],
with h(t) = g(1 —1).Then L P, L, L R, 2, A,L and L.

Proof. The Proposition 6 makes it obvious that £L @, £ and L Q, L are LP —[FVs. It is well
known that h™1(#) =1—g 1(¢#) and g(#) =h(1—+%). Now, k <1—58 and h,h™! are non-
decreasing, then

0 < h™*(2h(x)) + g7 (Ag(sr)
< h 1 (Ah(1 —s,)) + g~ (AgCsp))
=1-g (A1 — 5)) + g1 (1g(s0)
=1-g ' (Ag(sr)) + g7 (18(s,))
=1

Furthermore, as the range of ™1 is the unit closed interval, we deduce that A,L£ isa LP — IFV.
Likewise, it can be demonstrated that L% isa LP — [FV.

Example 2. Assume that g h,9,0:[0,1] = [0, ] characterized by 1 > 0, g(¥) = —log #,h(¥) =
—log (1 —1%),9(¢) = —log £ and o(¢) = —log (1 — %). The algebraic operators are then obtained
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a) LD, & = (kg + Kg — KKe, 8.8g; R Ng),
b) LDy L = (K + kg — Kpkg, 8,89 Xy + Rg — Ry Rg),
¢) L&, & = (Kpke, 8 + 89 — 8,8g; Ry Ng),
d) L Qs 8 = (Krke, 8 + 8¢ — 8p80; Xy + Rg — N Ng),
e) AL =(1—(1—rp)% 8% K}
0 Aol =(1-(1—K)* 81— (1=R)?),
9 L% =(k},1- (1 -s)h KR},
hy £% = (k},1— (1 -84 1—(1— KA.
Some fundamental features of algebraic operations are provided by the following theorem.

Theorem 2. Let A,y > 0, and assume that £ = (k;, 8.;8;), £ = (Kg, 8¢; Ng) and T = (kg, 8x; Ng)
are three LP — [FVs. Suppose that the additive generator of a continuous Archimedean #-norm is
g:[0,1] = [0, oo], and the additive generator of a continuous Archimedean #Z-norm or #-conorm is
9:[0,1] = [0, o], with h(#) = g(1 — #£). Then, followings hold such that

1) LD, =26, L,

2) LOL=2LQ,L,

3) (5@99) DB T=LD, (B@SI):

4) LB B T=LB, (R, T),

5) 25(L Dy 8) = 1,L Dy 4,8,

6) (/18 + VS)L = ASL 699 YL,

7) (LQ, D =L @, 2™,

8) L7 R, LY = LAetYe

Proof. (1)~(4) hold. For (5), we have
Ao(L @o 8) = Ao (k) + hi(kg)), g7 (g(5) + 8(80)); 07 (8(RL) + 8(Rg)))
= (7 (a0 (7 (00 + 1)) ) &7 (28 (27 (800
+ga)) )50 (20 (67 (0(%0) + 0(x0)) ) )
= (A~ (Ah(x;) + Ah(xe)), g7 (A8(s,) + Ag(5e)); 071 (A0(R,) + 28(Re)))
) (h‘l (n (7 (an0e)) + b (5 (2000)) ), g_l(g(g_l(lg(éﬁ)))
g (g_l(lg(zsg)))) — (a (672 (10(x0)) + 0 (9-1(/19(%))))
= (W™ (h(icae) + hize)), 87 (8(81c) + 8(820)); 87 (9(Rar) + A0(830)))
= 1oL D, 1,8,
For (6), we have
(Ao +v)L = (W7 (A +)h(k.)), g7 (A +1)glsr)); o~ (A + Y)a(Rp)))
= (A~ (Ah () + yhx,)), g7 (AgCsr) + va(sL)); o7 (20(R,) + yo(R,)))
» h~1 (h (h'(a0(ky))) + b (h_l(yh(lcﬁ)))), )
g (g(g 7 (2e(e)) +8 (g‘l(yg(é,c)))) ;o (9 (67 (20(%)) + o (s‘l(ye(&c))))

AIMS Mathematics Volume 10, Issue 12, 28308-28346.



28328

= (07" (h(a,c) +h(y,c) ) 87 (8o,) + 8(y0)) 107 (2(Ra,0) + 08,0 )

= A,L DBy 7, L.

For (7), we have

(L ®, )% = <g‘1 (28(keo,0)) b7t (A0(50g,e) ) ;07" (AS(NL&Q)»
= (g (22 (g7 (800 + 80x)) ), 17" (40 (67 () + hCa)) )

-1 <Aa 71 (a(R,) + a(xg)))»

= (g 1(/1g(KL) + Ag(;cg)) h~ 1(/1h(5L) + Ah(sg)) 9"1(/19(?{1;) + AS(NQ)))

= (g7 (2 (57 (20e0))) + 2 (87 (2800))) ) 7 (1 (0 (Ans.))

+h (b7 (2(s)) ;07 (o (67 (20(%0)) + & (07 (R0 (X0)))
= (g7 (8lza,) + 80cern)) b7 ((a,) + h(sea,))
o7t (8(Re2,) + o(Xgn))) = L7 ®, 2.

For (8), we have

L2% = (g7 (A +p)gk)), b (A + Y)h(sp)); 07 (A + v)o(RL)))

i 1 (Ag(ie) +vg(er)), h (Ah(s,) + yh(s.))o 7 (Ao (Rp) +yo(R,)))
(g ( (57*(18(x0)) +8 (g‘l(yg(rq:)))) 07t (1 (072 (Ansp)) )

+h (071 (h(s)) ) 507 (o (07 (R0(%0)) + 0 (67 (ro (%)) ))

( *(glocpn) + 80een)) b7 (h(apa) +h(szy)) 507 (0(R,2) + s(xﬁy)))
L

6. Aggregation operators via LP-IFVs

Aggregation operators are crucial in converting input values expressed as fuzzy values into a
single output value. In this section, we present a weighted arithmetic aggregation operator and a
weighted geometric aggregation operator for LP — [FVs, utilizing the algebraic operations outlined in
Section 3. Note that LP-intuitionistic fuzzy numbers (LP — [FVs) on E is denoted by LP — IFV(E).

6.1. LP-intuitionistic fuzzy weighted averaging aggregation operators

Definition 19. Let {L ( NL) i=1, ,n} be the set of LP — [FV's. Suppose that the
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additive generator of a continuous Archimedean # -norm is g:[0,1] — [0, 0], and the additive
generator of a continuous Archimedean #-norm or #-conorm is ©:[0,1] = [0, ], with h(¥) =
g(1 —%). Then, LP-intuitionistic fuzzy weighted averaging aggregation (LP — IFWAA) operator
with mapping LP — [FWAA: LP —IFV(E) - LP — IFV(E) is computed as follows:

LP — IFWAA, (Ly, Ly, Loy oo oo o L) = (0) ®L, @il
with weight vector @ = (@}, @,, @3, ..., w,)" with 0 <@; <1 and ¥}, @; = 1.

Theorem 3. Let {Li = (Kﬁi,zsLi,;Nﬁi):i =1, ,n} be the set of LP — [FVs. Suppose that the
additive generator of a continuous Archimedean #-norm is g:[0,1] — [0, 0], and the additive
generator of a continuous Archimedean £-norm or £-conorm is o:[0,1] = [0, ], with h(¥) =
g(1 —#). If LP-intuitionistic fuzzy weighted averaging aggregation (LP — [FWAA) operator is
defined with the help of this transformation LP — I[FWAA: LP — IFV(E) - LP — IFV(E), then
LP — I[FWAA, (Ly,L,,Ls, ... ... ... ,L;) is LP —IFV, and we have

Lp - IFWAAS (Ll, Lz, L3, ......... ’LTI)

= (b1 (B win(er)). 87t (B wigsz)) 07 (Bim win(Kz))).

with weight vector @ = (@1, @,, @3, ..., w,)" with 0 <@; <1 and ¥}, @; = 1.

Proof. As evident from Proposition 7, LP — IFWAAg (L4, L5, L3, v ... ,L,) isa LP —[FV. Using

mathematical induction, it can be demonstrated that the second part also holds true. If n = 2, then we
have

LY — [FWAA, (Ly, L;) = @1eL1 By W2eL,

= (7 (Mt + M 2)) 87 (2oms) + 2oac,)) 07 ((Ry,2,) + (Rec,))
= <h—1 (h (h-l (wlh(xﬁl))) +h (h‘1 (wlh(rc,gl)»);

g1 (g (g"l (wlg(éﬁl))) +g (g—l (wzg(ézz)))>;
(oo (o)) o 07 (menc)
e 700 ) )
0 1 (wro(8z,) + mg(Xe,))

- <h_1< j=1 @jh (Kﬁj)>'g_1( =1 wfg(‘gﬁj»;s_l( j=1 @0 (Nﬁj)»'

Let us temporarily assume that the following expression hold, such that

An—l == Lp - IFWAAS (Ll' ---'Ln—l)

a7 ) (25 ) (55 )
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We now have

LP — IFWAAy (L1, e, Ly) = An_1 By @y Ln

n-1 n-1 n—1
={h™?! w;h (K'LJ.) gt w;g (ALJ.) ;971 Z ;9 (NL].)
Jj=1 j=1 j=1

n—-1 n—1
={(h"! Z wjh (KLJ.) + wnh(;an) g1 wg (5Lj) n wng(5Ln)
=1 =
n-1 n n ,
9—1 Z ZD'jE) (NL]‘) + G)'na(NLn) = h—l <2 ZD'ih(KLi)>’g1 <2 wig(é[,i)> ; 8_1 <z wia(xLi)> .
= = =1 i=1

That concludes the proof.

Corollary 1. Assume that gh,e,0:[0,1] - [0,00] characterized by, g(£) = —log #,h(¥) =
—log (1 —%),8(¢#) = —log £ and o(¢t) = —log (1 — ). The algebraic LP -intuitionistic fuzzy
weighted averaging aggregation operators are then obtained such that

LP — [FWAA, (Lq, ..., L) = <1 Ty (1—x)" T, 805 Ty xjf’>
and

Wi i i
LP — [FWAA, (L, ..., L) = <1 -y (1 —xg) 10 5}5 1-T1%, (1- xLi)’” >

6.2. LP-intuitionistic fuzzy weighted geometric aggregation operators

Definition 20. Let {Li = (KLi,sﬁi,; NLi):i =1, ,n} be the set of LP — IFV's. Suppose that the
additive generator of a continuous Archimedean # -norm is g:[0,1] — [0, 0], and the additive
generator of a continuous Archimedean #-norm or #-conorm is o:[0,1] — [0, o], with h(%) =
g(1 —%). Then, LP-intuitionistic fuzzy weighted geometric aggregation (LP — I[FWAA,) operator
with mapping LP — [FWAA: LP — [FV(E) - LP — [FV(E) is computed as follows
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LP — [FWAA, (L4, L3, L3, ..., L) = (8) B, L7,
with weight vector @ = (wy, @y, W3, ..., w,)" with 0 < @; <1 and Yiim =1

Theorem 4. Let {Li = (Kﬁi,sLi,;Nﬁi):i =1, ...,n} be the set of LP — [FVs. Suppose that the
additive generator of a continuous Archimedean #-norm is g:[0,1] — [0, ], and the additive
generator of a continuous Archimedean £-norm or £-conorm is o:[0,1] = [0, o], with h(#) =
g(1 —#). If LP-intuitionistic fuzzy weighted geometric aggregation (LP — [FWAA,) operator is
defined with the help of this transformation LP — IFWAA,: LP — IFV(E) — LP — IFV(E), then
LP —IFWAA, (Ly,L,,Ls,...,L,) is LP —IFV and we have

Lp_IFWGAS (Ll,Lz,Lg, ......... ,Ln)

= (g7 (S0 mig(ie,)) b (S @i(sr,)) 07 (T @i0(Re)):
with weight vector @ = (@1, @,, @3, ..., w,)" with 0 <@; <1 and ¥}, @; = 1.
Proof. By using the same arguments like Theorem 4, it can be proven.

Corollary 2. Assume that g h,e,0:[0,1] = [0,] characterized by, g(¥) = —log £,h(%) =
—log(1—%),8(t) = —log £ and o(¢*) = —log (1 —#). The algebraic LP -intuitionistic fuzzy
weighted geometric aggregation operators are then obtained, such that

LP — IFWGA, (Ly, ..., Ly) = <1_[ kg1 —n (1—8.,)" H RY >

and

LP —IFWGA, (Ly, ..., Ly) = <1‘[" LT =TTy (1—8) 51— T, (1- xLi)wi>.

7. The MADM framework based on the proposed techniques

The MADM technique is particularly effective for selecting the most suitable alternative from a
finite set of options due to its structured framework. To further improve the performance and reliability

of existing methods, we present a procedure for the MADM technique that incorporates four
specialized operators: the LP —IFWAA, operator, LP —IFWAA, operator, LP—

IFWGA, operator, and LP — [FWGA, operator. Our aim is to apply this procedure to real-world
problems and thereby enhance the decision-making process.

We consider a finite set of alternatives denoted by (1) = {(0),, )5, ..., 0);,}. Similarly, we define
a finite set of attributes as O = {C)l, C)z, . @n} , associated with a weight vector @ =
(wq, @y, ..., w,)T, where w; >0 with Z;'l=1 w; = 1. To construct the decision matrix for evaluating

the optimal alternative, LP — IFV values are assigned to each alternative-attribute pair. Here, kg,
and 8, represent the positive and negative membership degrees, respectively, while «@; and B;
denote reference parameters corresponding to an alternative (();) under attribute (f)j), as specified
by the decision makers. These values satisfy the conditions 0 < k;, + &8, <1 and 0 <N, <1.
Furthermore, the degree of refusal is given by m; = 1 — K, — &,,. To validate the proposed approach,
we also consider several real-world applications and demonstrate the evaluation process through the
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developed theoretical framework.
7.1. The proposed algorithm

Our main objective of this subsection is to present a process that illustrates the problem to be
addressed in the subsequent section. The fundamental steps of the decision-making approach are as
follows:

Step 1. Construct the team decision matrix by representing their evaluations in the LP — [FV
form.

Step 2. When assigning values, two types of criteria are considered: profit and cost. For cost-type
criteria, normalization is performed as a first priority; for profit-type criteria, normalization is not
required.

((Kﬁi, 5£i)), same type input data
L (8¢, xz,)),  different type input data.

In this case, as the input data for all attributes is uniform, normalization is unnecessary. All alternatives
and criteria in the given problem share the same characteristics.

Step 3. Using the four various types of operators" LP — [FWAA, operator, LP — [FWAA,
operator, LP — I[FWGA, operator, and LP — [FWGA, operator,” merge the dataset into a single
representative set such that

LP — [FWAA, (Ly, ..., L) = <1 -~ (1—KL) 8 | T b xZi),

LP —[FWAA, (Ly, ..., Ly) = <1 Ty (1 —xe)™ T, s 1 =TIk, (1- xﬁi)w‘),

LP — IFWGA, (Ly, ..., L) = <1_[ Ko 1— H (1—s.)" H N,cl>

LP — IFWGAy (Ly, ..., Ly) = < myokph =TTy (1—ep) 51— T, (1- xﬁi)w‘).
Step 4. Determine the aggregated theories with respect to different score values, such as

1
K—8+2PX(2A-1)

SLp—IFV(L) = 3 >

where —1 < SLP—IFV(L) <1
If the score function fails to provide a satisfactory result, the accuracy function is then applied as
follows:

HLP—IFV(L) =K + 3,
where 0 < HLP—IFV(L) <1.

Step 5. Our aim is to identify the most suitable alternative by analyzing the ranking results derived
from the score values. To enhance the reliability of the proposed techniques and to demonstrate their
practical applicability, several numerical examples are considered, highlighting the effectiveness and
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validity of the developed operators. Furthermore, the geometric interpretation of the proposed
algorithm is illustrated in Figure 11.

:

—

el b | Construct the ’ Compute ; Compute

{ start ) »| o > normalized | P

¥ | decisionvalues ' values | aggregate values
v

o) Choose the best | Rankingthe | Score values and

1_‘__” >, ::| alternative | .:| values acouracy values

I

Figure 11. Flow chart of the proposed algorithm.
7.2. Types of agricultural field robots

Agricultural field robots, often referred to as agribots, are specialized autonomous machines
designed to perform a variety of tasks in agricultural fields. They are increasingly being used in modern
farming to improve efficiency, reduce labor costs, and address the growing challenges of food
production, such as labor shortages, sustainability, and climate change. These robots can handle tasks
such as planting, watering, weeding, monitoring crop health, and even harvesting. Here are some key
types and applications of agricultural field robots:

(,: Harvesting robots are advanced machines designed to automate the picking and harvesting of
crops in agriculture. These robots use technologies like artificial intelligence (Al), computer vision,
and robotic arms to identify, select, and harvest ripe produce with precision. By reducing reliance on
manual labor, they enhance efficiency, minimize crop damage, and enable around-the-clock operations,
making them an essential innovation in modern farming. Harvesting robots are transforming modern
agriculture by boosting productivity, minimizing waste, and addressing labor shortages.

(,: Spraying and irrigation robots are autonomous machines used in agriculture to optimize the
application of water, fertilizers, and pesticides. These robots are equipped with sensors, GPS, and Al
technologies to accurately deliver water and chemicals based on the specific needs of crops. They can
move through fields autonomously, reducing waste, preventing overuse, and ensuring even distribution.
By improving efficiency and precision, spraying and irrigation robots help conserve resources, protect
the environment, and support sustainable farming practices. Spraying and irrigation robots are a crucial
part of precision agriculture, ensuring optimal resource use while supporting crop health and
sustainability.

(3: Crop monitoring robots are autonomous machines designed to track the health, growth, and
conditions of crops in real time. These robots are equipped with sensors, cameras, and Al technologies
to gather data on soil moisture, plant health, pest infestations, and nutrient levels. By providing precise,
up-to-date information, crop monitoring robots help farmers make informed decisions, optimize
resource use, and improve crop yields. They are an essential tool in precision agriculture, enabling
early detection of issues and enhancing overall farm productivity. By offering real-time, accurate data,
crop monitoring robots are transforming modern agriculture, helping farmers optimize their practices
and improve sustainability while maximizing yields.
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(04: Soil analysis robots are autonomous machines designed to assess soil conditions in agricultural
fields. Equipped with sensors and sampling tools, these robots measure factors like soil moisture, pH
levels, nutrient content, and temperature. By providing precise, real-time data, soil analysis robots help
farmers understand the health of their soil and make informed decisions about irrigation, fertilization,
and crop management. They are crucial in precision agriculture, enhancing resource efficiency,
improving crop yields, and supporting sustainable farming practices. Soil analysis robots are
revolutionizing how farmers manage their soil, providing detailed insights that lead to improved
productivity, resource conservation, and sustainable agricultural practices.

()s: Swarming robots are groups of autonomous machines that work together collaboratively, often
mimicking the behavior of natural swarms like ants or bees. In agriculture, these robots communicate
and coordinate to perform tasks such as planting, weeding, harvesting, and monitoring crops.
Swarming robots rely on decentralized control, Al, and sensor networks to efficiently cover large areas,
making them ideal for precision farming. Their ability to work in groups enhances productivity,
reduces labor costs, and increases the overall efficiency of farming operations.

Selecting the right agricultural robot involves considering a variety of factors to ensure it meets the
needs of your farm and integrates well into your existing operations so followings are the attributes.
Here are some key factors to take into account:

0,: Compatibility for an agriculture robot refers to its ability to seamlessly integrate with existing
farming systems, technologies, and operations. It ensures that the robot can work alongside current
equipment, software, and infrastructure without issues. Key aspects include: Robot must connect with
other farm machinery, like tractors or irrigation systems. It should work with farm management
software, GPS systems, and data platforms for smooth operation and data sharing. The robot must be
suited to the farm’s specific conditions, such as crop type, soil, and terrain. It should easily adapt to
the farm's size and operations, whether for small-scale or large-scale farming. Ensuring compatibility
enhances efficiency, reduces costs, and maximizes the robot’s effectiveness in agricultural tasks.

0,: Technology and Features refer to the advanced tools and capabilities integrated into a robot to
enhance its performance and efficiency. In the context of robotics, these include: Devices for detecting
environmental conditions, monitoring crop health, and navigating autonomously. Enables the robot to
analyze data, adapt to its environment, and improve decision-making over time. GPS, LiDAR, and
other technologies that enable robots to move and operate independently in fields. Robotic arms,
sprayers, or harvesting tools that enable accurate and efficient task execution. IoT, Wi-Fi, or Bluetooth
capabilities that enable communication with other systems and data sharing. These technologies and
features ensure that robots are capable, efficient, and suited for complex tasks, particularly in sectors
like agriculture.

05 : Maintenance and support refer to the ongoing care and services required to keep a robot
functioning optimally throughout its lifespan. For agricultural robots, this includes: Routine checks to
ensure the robot's hardware, such as sensors and moving parts, are in good working condition. Keeping
the robot's software and Al algorithms up to date for improved functionality and bug fixes. Timely
repairs to address any mechanical or electrical issues that may arise. Access to experts or service teams
to help troubleshoot problems or provide guidance on usage. Providing operators with manuals,
tutorials, and support for efficient use and maintenance of the robot. Proper maintenance and support
ensure the robot’s reliability, extend its lifespan, and prevent costly breakdowns, making it essential
for sustained operation.

0,: Regulatory compliance refers to the adherence of agricultural robots to laws, guidelines, and
standards set by governing bodies. It ensures that the robot operates safely and ethically within legal
frameworks. Key aspects include: Ensuring the robot meets safety requirements to protect users,
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workers, and the environment. Complying with laws regarding pesticide use, emissions, and
sustainable farming practices. Adhering to rules on data collection and storage, especially when robots
gather information from fields or connected devices. Obtaining necessary approvals and certifications
from regulatory agencies before the robot is deployed. Meeting regulatory compliance ensures the
robot is legally permitted for use and operates safely and responsibly in agricultural settings.

Step 1. Develop the team matrix by embedding their assessments within the LP — IFV representation,
see Table 1.

Table 1. Decision matrix of LP? — IF information.

0y 0, 03 O4 Os
o (0.5,0.4; 0.8) (0.7,0.2;0.3) (0.6,0.2; 0.6) (0.3,0.7;0.9) (0.6,0.1;1)
5 (0.8,0.2;0.7) (0.3,0.7;0.5) (0.5,0.3; 0.8) (0.9,0.1;0.3) (0.3,0.6; 0.9)
s (0.7,0.1; 0.4) (0.6,0.3; 1) (0.5,0.2; 0.6) (0.3,0.6; 0.8) (0.4,0.4; 0.4)
o (0.8,0.2; 0.4) (0.5,0.2;0.3) (0.3,0.3;0.7) (0.7,0.3;0.9) (0.8,0.1;0.9)

Step 2. When assigning values, two cases are considered: Data of the same type and data of different
types. If the data are of different types, normalization is applied as the first priority, such that:

L= {((KLU'SLL”; NLi>)’
g (('5Lil K‘Ci' H Nﬁi));

In this case, as the input data for all attributes is of the same type, normalization is unnecessary. All
alternatives and criteria in the given problem share a uniform nature.

same type input data

different type input data.

Step 3. For p = 3, the data are aggregated into a singleton set using four operators L3 — I[FWAA,
operator, L3 — IFWAA, operator, L3 — IFWGA, operator, and L3 —IFWGA, along with the

weight vector @ = (0.27,0.24,0.22,0.17,0.1)T. The results of this aggregation are presented in
Tables 2 and 3.

Table 2. L3 — IFWAA, and L3 — IFWAA, operators.

L3 —IFWAA, L3 — IFWAA,
@1 (0.56,0.28; 1) (0.56,0.28; 0.62)
®2 (0.67,0.29; 0.68) (0.67,0.29; 0.59)
3 (0.55,0.24; 1) (0.55,0.24; 0.61)
ON (0.65,0.22; 0.67) (0.65,0.22; 0.53)

Table 3. L3 — IFWGA, and L3 —IFWGA, operators.

L3 —IFWGA, L3 — IFWGA,
@1 (0.53,0.37; 0.62) (0.53,0.37; 1)
®2 (0.53,0.42; 0.59) (0.53,0.42; 0.69)
W3 (0.51,0.31; 0.61) (0.51,0.31; 1)
(O (0.56,0.23; 0.53) (0.56,0.23; 0.70)

Step 3. Refer to Tables 4 and 5 to find the aggregated theory's score values for decision maker’s attitude
A = 0.3, such that:
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Table 4. £3 — I[FWAA score values.

S 1py
SL3—IFV((I)1) 51:3—1FV((1)2) 5L3—1FV((1)3) 5L3—1FV((1)4)
L3 — IFWAAQ 0.01 0.07 0.02 0.09
L3 — IFWAA, 0.04 0.08 0.05 0.10

Table 5. £3 — IFWGA score values.

51:3—1FV
SL3—IFV((I)1) 51:3—1FV((1)2) 5L3—1FV((1)3) 5L3—1FV((1)4)
L3 — IFWGA@ 0.01 —0.01 0.02 0.07
L3 —IFWGA, —0.01 —0.02 —0.03 0.05

Step 4. The ranking results are analyzed based on the computed score values to identify the most
prominent alternative among the four. The detailed results are provided in Tables 6 and 7.

Table 6. Ranking of £3 — [FWAA operators w.r.t. Sy3_;py.

S ipy
£3—1FWAA4 Wy >0y > W3 > W,
L3 —IFWAA, W4 > W)y > W3 > W,

Table 7. Ranking of £3 — [FWAA operators w.r.t. Sy3_;py.

51:3—1FV
L3 — IFWGA, Wy > W3 > W1 > )
L3 — IFWGA, Wy > W, > W, > s

The geometric representation of Table 6, in relation to Table 4, is given as follows (see Figure 12):

0.1
0.09

0.08 0.08
0.07
0.06
0.05
0.04 0.04
0.02 0.02
0.01
0
0 0.5 1 15 2 25 3 35 4 4.5
(LA3-IFWA [A_q) _ (LA3-IFWA (A o) _

Figure 12. Scores of alternatives based on the two £3 — [FWAA.
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The geometric representation of Table 7, in relation to Table 5, is given as follows (see Figure 13):

0.08

0.07
0.06

0.05
0.04

0.02 0.02
0.01

0 0.5 1..001 15 +—=001 2.5 3 3i5 4 4.5
-0.02 -0.02

-0.04

(LA3-IFWG (A_q) _ (LA3-IFWG [A_o) _

Figure 13. Scores of alternatives based on the two £3 — IFWGA.

It is evident that the most desirable decision is (),. Moreover, since each operator yields identical
ranking results, the operators can be considered stable.

7.3. Advantages of agricultural robots

o Labor Efficiency: Robots can work around the clock, reducing the need for human labor, which is
becoming increasingly scarce in rural areas.

o Precision Agriculture: Robots can perform tasks with high precision, reducing waste of resources
like seeds, water, and pesticides.

o Sustainability: By optimizing resource use and reducing chemical inputs, robots contribute to more
environmentally friendly farming practices.

e Yield Improvement: Early detection of pests, diseases, or nutrient deficiencies enables timely
intervention, improving crop yield and quality.

7.4. Challenges and considerations

e High Initial Costs: The cost of acquiring and maintaining agricultural robots can be prohibitive for
small farms.

e Field Variability: Different crops and field conditions may require tailored robotic solutions,
limiting the general applicability of a single robot model.

e Technology Integration: Successful integration of robots into farming requires compatible software
systems and trained personnel to manage them.

o Power Supply: Energy efficiency and battery life are limitations for many agricultural robots,
especially in large-scale operations.

In the future, Al-powered agribots are expected to play an even bigger role in precision agriculture,
leveraging machine learning and data analysis to enhance food security and optimize farming in the
face of climate change and population growth.
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8. Results and discussion

The individual overseeing the process evaluates the alternatives, considering the assigned weights.
The project manager has also determined that all experts are of equal standing, making it suitable to
apply weights aligned with the proposed model. In the next phase, decision-makers use predefined
LP — |F language concepts to assess the situation. This section compares the four proposed LP — IF
aggregation operators with the existing operators introduced using [F. The comparison highlights the
effectiveness of these operators in addressing uncertain real-world decision-making problems (DM Ps).
A key advantage of this concept is that, through the LP-space, it gives freedom to take different
membership functions by varying the value of p like £, £2, ..., L®. Tables 6 and 7 provide the
rating results of four options using the proposed approach. Individuals should follow agriculture
experts to select best one robot. The proposed method and the existing approach produced slightly
different ranking outcomes, though both identified the same top choice. The comparison results are
shown in Tables 6 and 7. By comparing the results with those found in the literature, it is clear that the
LP —]FS MADM strategy proposed in this study aligns with the outcomes obtained from the IFS
MADM approach, which has been demonstrated and applied in various contexts. The new model
introduces variations in the results due to the lambda (A1) value, representing the decision-maker's
attitude, and the norm (X) value, reflecting the uncertainty in the decisions. However, as shown in
Tables 8 and 9, these factors enable the development of a case-specific structure, differentiating it from
traditional IFS MADM methods. This flexibility makes the use of LP — [FS numbers in MADM
models highly relevant.

The ranking values obtained from the score function is examined to determine the most prominent
alternative among the four, as presented in Table 8.

Table 8. £3 — IFWAA and IFWGA score values.

Se3_tpy
5L3—1FV((1)1) SL?'—IFV((’)Z) 5L3—1FV((1)3) 5L3—1FV((1)4)
IFWAA 0.29 0.37 0.32 0.43
IFWGA 0.16 0.11 0.20 0.33

Table 9. Ranking of I[FWAA and IFWGA operators w.r.t. Sigy.

csIFV
IFWAA Wy > W3 > W, > W,
IFWGA W, > W3 > W > W,

Next, we explore the applicability and flexibility of the developed method for handling diverse
inputs and outputs.

Authenticity and ease of use of the suggested approach: We devised a system capable of handling
any type of input data, and the proposed model effectively addresses uncertainty. This approach
incorporates IF8, IVIFS and L% — IF or C — IFS through the addition of the pth value of norm
X. By introducing the pth value, the interpretation of these parameters’ changes, expanding both
membership and non-membership spaces. While our method can be applied in various contexts, we
focus on its application to the selection of agriculture robots. The proposed LP — IF model is clear,
easy to understand, and can be adapted to different outcomes.
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Score Function's Impact: We begin by generalizing the associated accuracy functions and the types
score functions that are introduced. Since each score function has its own distinct ordering and
evaluation procedures due to pth value of norm X and decision maker’s attitude A, slight variations
in results are expected. As shown in Table 10, there are minor differences in the rankings produced by
new SF. However, it is important to note that the overall outcome remains largely consistent across
all score functions.

Flexibility in aggregation with variable inputs and outputs: This approach is significantly more
versatile than others, as it can adjust to different conditions in MADM methods and the pth value of
norm X, which allows to get membership and non-membership values indifferent shapes. Moreover,
it can be readily applied to a variety of input and output scenarios.

Sensitivity analysis: The results of the sensitivity analysis for the proposed models are presented in
Tables 10—13. Both algorithms yield identical outcomes when A variate, then the rank of attributes is
changes. Although variations in score functions lead to changes in the ranking of alternatives, the
optimal result remains unchanged. This indicates that both methods are influenced solely by the score
functions used. The geometrically representation of Table 10 can be seen in Figure 14, we have

Table 10. Sensitivity analysis for A value (L3 — IFWAA, )

®q 3 W3 W4 Ranking

1=0 -0.32 -0.16 -0.31 —0.14 W, > W, > Wz > W),
A=0.1 —0.24 —-0.10 —-0.23 —0.08 W, > W, > Wz > W),
1=0.2 —-0.16 —0.05 —0.15 —0.03 W, > W, > Wz > W),
A=0.3 —-0.07 0.01 —0.06 —0.03 W, > W, > Wz > W),
1=0.4 0.1 0.7 0.2 0.9 W, > W, > Wz > W,
A=0.5 0.10 0.12 0.11 0.14 W, > W, > Wz > W),
1=0.6 0.17 0.18 0.19 0.20 W, > W, > Wz > W,
1=0.7 0.26 0.24 0.27 0.25 W3 > W, > W, > K,
1=0.8 0.35 0.30 0.36 0.31 W3 > W, > W, > K,
1=0.9 0.43 0.35 0.44 0.37 W; > W > W, > 0,
A=1 0.52 0.41 0.53 0.42 W3 > W > W, > K,

' ‘ Il Alternative 1

Il Alternative 2

[lAlternative 3

0.8~ B Alternative 4/

0.6

Score values
I
=

o
o

-0.2

1 1 1 1 1 1 1 1 1 1 1
A=0.0 A=0.1 A=0.2 A=0.3 A=0.4 A=0.5 A=0.6 A=0.7 A=0.8 A=0.9 A=1.0
Lambda value

-0.4

Figure 14. Scores of alternatives based on the £3 — IFWAA, w.r.t. A.
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Through the geometrically representation of Table 11 can be seen in Figure 15, we have

Table 11. Sensitivity analysis for A value (L3 — IFWAA, ).

04 02 @3 I Ranking

2A=0 —016 ~0.12 ~0.15 ~0.08 0> 0, > W3 > W),
A=01 —0.11 ~0.07 ~0.10 ~0.03 W, > W, > Wy > 0
A=02 —006 ~0.02 ~0.05 0.01 W, > W, > Wy > Q)
A=03 —001 0.03 0.01 0.05 W, > W, > Wy > Q)
A=0.4 004 0.08 0.05 0.10 W, > W)y > Qs > 0,
A=0.5 010 0.12 0.1 0.14 W, > W, > Wy > Q)
A=0.6 015 0.17 0.16 0.19 W, > W, > Wy > Q)
A=0.7 020 0.22 0.21 0.23 Wy > W)y > Qs > 0,
A=08 025 0.27 0.26 0.28 W, > Wy > Wy > 0,
A=09 029 0.32 0.30 0.31 W, > 0, > @)y > 0,

A=1 034 0.37 0.35 0.36 Wy > 0, > @)y > 6

0.3—

0.2~

-0.1— |

Score values
o
i
I

=]

Il Alternative 1
-Alternallve 2|
I:lAlternatlve 3|
Il Alternative 4|

|
A=0.0

| |
A=0.1 A=0.2

A=0.5
Lambda value

A=0.6 A=0.7

A=0.8 A=0.9 A=1.0

Figure 15. Scores of alternatives based on the L3 — I[FWAAc w.rt. A.

Through the geometrically representation of Table 12 can be seen in Figure 16, we have

Table 12. Sensitivity analysis for A value (1:3 —IFWGA, )

04 02 W3 0y Ranking
2=0 ~0.20 ~0.21 ~0.19 ~011 W > 03 > 0, > 0,
A=0.1 ~0.15 ~0.16 ~0.14 ~0.07 Wy > 03 > 0, > 0,
1=0.2 ~0.10 —0.11 ~0.09 ~0.02 W > 0 >0, > 0,
1=0.3 ~0.05 ~0.06 —0.04 0.02 W > 03 >0, > 0,
A=0.4 0.01 —0.01 0.02 0.07 Wy > W5 > 0y > ),
A=0.5 0.05 0.04 0.07 0.11 W > 0 >0, > 0,
A1=0.6 0.11 0.09 0.12 0.1 Wy > W5 > 0y > ),
A1=0.7 0.16 0.14 0.17 0.20 Wy > W5 > 0y > W)y
1=0.8 0.21 0.19 0.22 0.24 W > 03 > 0, > 0,
2=0.9 0.26 0.24 0.27 0.29 Wy > W5 > W)y > W,
A=1 031 0.29 0.32 0.33 Wy > 0z >0 > W),
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0.4

Score values

Il Alternative 1|
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[ Alternative 4] —|

A=0.0

A=0.1

A=0.2

A=0.3

A=0.4

A=0.5
Lambda value

A=0.6 A=0.7

A=0.8 A=0.9 A=1.0

Figure 16. Scores of alternatives based on the £3 — [FWGA, w.r.t. A.

Through the geometrically representation of Table 13 can be seen in Figure 17, we have

Table 13. Sensitivity analysis for A value (L3 —IFWGA, )

04 (P W3 W4 Ranking
A=0 —0.37 —0.25 —0.35 —0.18 W, >0, > 0W; > W,
A=0.1 —0.28 —-0.20 —-0.27 —-0.12 W, >0, > 0W; > W,
A=0.2 —0.20 —-0.14 —-0.18 —0.07 W, > W, > W3 > W,
A=0.3 —-0.11 —0.08 —-0.10 —-0.01 W, > W, > W3 > W,
A=10.4 —0.03 —0.02 —0.02 —-0.5 W, > W, > W3 > W,
A=10.5 0.05 0.04 0.07 0.11 Wy > W, > W3 > W,
A=0.6 0.14 0.10 0.15 0.17 W, > 0W; >0 >0,
A=0.7 0.22 0.15 0.24 0.23 W3 >0, > W, >0,
A=0.8 0.31 0.21 0.32 0.29 W3 >0, > W, >0,
A=0.9 0.39 0.27 0.40 0.34 W3 >0, > W, >0,
A=1 0.47 0.33 0.49 0.40 W3 >0 >0, >0,
0.5
0.4— =
0.3— -
0.2~ |
é 0.1~ I -
T !
W
-0.2— I Alternative 2| |
[Alternative 3
Il Alternative 4]
-0.3— =
0.4 | | | | | | | | | | |
A=0.0 A=0.1 A=0.2 A=0.3 A=0.4 A=0.5 A=0.6 A=0.7 A=0.8 A=0.9 A=1.0
Lambda value
Figure 17. Scores of alternatives based on the £3 — [FWGA, w.r.t. A.
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9. Comparative analysis
In this section, the analytical comparison of LP-IFSs is discussed in Table 14.

Table 14. The analytical comparison of LP-IFSs with alternative fuzzy methodologies.

Collections Remarks N,

FS [72] Unable to handle non-membership s(o) No

IFS [9] just deal with the single value No

Interval IFS [10] cannot deal with the condition value in the LP-shapes for 2 >p > 1, No
p>2

CIFS [11] cannot deal with the condition value in the LP-shapes for 2 >p > 1, No
p>2

D-IFS [40] cannot deal with the condition value in the LP-shapes for 2 >p > 1, No
p>2

LP —[FS deal with the condition value in the LP-shapesfor 2>p > 1, p > 2 Yes

These fuzzy sets influence the optimal selection and impose limitations on decision-makers. We
introduce the innovative concept of LP -[FSs, enabling decision-makers to achieve improved
outcomes through this advanced approach.

10. Conclusions

Our main aim of this paper is to present the concept of LP —iintuitionistic fuzzy Set (LP — IFS),
where the membership and non-membership degrees are depicted by different LP-shapes with a norm
X and a center composed of two components. These components must satisfy the condition that the
sum of their squares is less than or equal to one. In this fuzzy set representation, the membership and
non-membership degrees are visualized through the circular structure. Circular Intuitionistic Fuzzy
Sets (C — IFSs) and interval-intuitionistic Fuzzy Sets (IVIFSs) are extended by a LP — [FS.
Compared to IFS, C — IFSs, and IVIFSs, LP — IFS offer decision-makers or specialists a more
flexible and comprehensive framework for analyzing items. This flexibility makes it possible to modify
the degrees of membership and non-membership, which makes it easier to communicate doubt and
promotes more thoughtful decision-making. To establish a novel scoring function and an accuracy
function that incorporates the decision-makers' attitude (1), the set's optimistic and pessimistic points
are also defined. When the decision-maker's viewpoint (1) approaches 1, the defuzzification of LP-
IFS occurs near its optimistic point, while it occurs near its pessimistic point as (1) approaches 0. A
technique for converting intuitionistic fuzzy values (IFV) into LP — IFV is presented in this study.
Algebraic operations for LP — [FSs using continuous Archimedean £-norms and #-conorms are also
introduced, as well as basic set-theoretic operations for L? — [FSs. A number of weighted aggregation
procedures for LP — [FSs are presented using these algebraic techniques. Finally, based on the
concepts discussed, we propose a MADM approach within a LP —iintuitionistic fuzzy framework,
applying it to a real-world MADM problem from the literature concerning the selection of the optimal
agricultural field robots MADM framework. In the future, researchers may explore alternative
aggregation operators and similarity measures. Additionally, tools like fuzzy integrals or other
aggregation operators could be utilized when transforming IFVs into LP — [FVs. The proposed
approach could also be applied to MADM problems such as classification, machine learning, pattern
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recognition, data mining, clustering, and medical diagnostics.
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