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Abstract: It is a well-known fact that ℒ𝑝 -spaces provide a robust and flexible framework for 

analyzing functions with different types of behavior, uncertainty, and regularity. They are widely 

applicable in many areas of mathematics, science, and engineering. In this study, we introduced a novel 

generalization that combines interval intuitionistic fuzzy sets (𝐼𝐹𝑆s), as proposed by Atanassov [8], 

with circular intuitionistic fuzzy sets (𝐶-𝐼𝐹𝑆), introduced by Atanassov [9], because these classical sets 

restrict us. This new concept is known as the ℒ𝑝-intuitionistic fuzzy set (value) (ℒ𝑝-𝐼𝐹𝑆(𝑉)). The 

degrees of membership and non-membership in a ℒ𝑝-𝐼𝐹𝑆 are depicted by a diamond shape, circle, 

star shape, and square with its center defined by non-negative real numbers "𝜅" and "𝓈", ensuring 

that 𝜅 + 𝓈 ≤ 1. The structure of a ℒ𝑝-𝐼𝐹𝑆 facilitates the representation of information through points 

on different shapes with respect to 𝑝𝑡ℎ-norm with a designated center and norm "ℵ", thereby enabling 

a more precise characterization of the fuzziness inherent in uncertain data. As a result, a ℒ𝑝 -𝐼𝐹𝑆 

empowers decision-makers to evaluate options within a broader and more flexible framework, leading 

to the possibility of making more nuanced decisions. After establishing the concept of ℒ𝑝-𝐼𝐹𝑆, some 

fundamental operations involving ℒ𝑝-𝐼𝐹𝑆𝑠 were outlined. To establish a novel scoring function and 

an accuracy function that incorporates the decision-makers' attitude (𝜆 ), the set's optimistic and 



28309 

AIMS Mathematics  Volume 10, Issue 12, 28308–28346. 

pessimistic points were defined. When the decision-maker's viewpoint ( 𝜆 ) approached 1, the 

defuzzification of ℒ𝑝-𝐼𝐹𝑆 occurred near its optimistic point, while it occurred near its pessimistic 

point as (𝜆) approached 0. Moreover, a technique for converting a collection of intuitionistic fuzzy 

values into a ℒ𝑝-intuitionistic fuzzy values (ℒ𝑝-𝐼𝐹𝑉𝑠) was formulated. Additionally, several algebraic 

operations between ℒ𝑝 - 𝐼𝐹𝑉  using general triangular 𝓉 -norms and triangular 𝓉 -conorms were 

proposed. To transform input values represented by ℒ𝑝 -𝐼𝐹𝑉𝑠  into a single output value, specific 

weighted aggregation operators based on these algebraic methods were introduced. The proposed 

methodology was applied to a problem concerning the selection of the optimal artificial intelligence 

(AI) agricultural field robots multi-attribute decision-making (𝑀𝐴𝐷𝑀 ) framework. Finally, a 

framework was also presented for addressing 𝑀𝐴𝐷𝑀  challenges within a ℒ𝑝 -intuitionistic fuzzy 

context. It is interesting to note that the time complexity of the proposed method and a comparative 

analysis were evaluated. 

Keywords: ℒ𝑝 -intuitionistic fuzzy sets; ℒ𝑝 -intuitionistic fuzzy score function; ℒ𝑝 -intuitionistic 

fuzzy aggregation operators; ℒ𝑝 -intuitionistic fuzzy multi-attribute decision making problem; 

artificial intelligence powered agricultural field robots’ selection 
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1. Introduction 

There are clear and well-defined boundaries between members and non-members of a collection. 

However, many classification concepts that we commonly use in everyday conversations involve sets 

that lack this characteristic, such as groups of tall people, expensive cars, highly contagious diseases, 

short driving distances, modest benefits, numbers close to a specific value, or sunny days. In these 

cases, there are subtle distinctions that enable gradual transitions between membership and non-

membership. Zadeh's fuzzy set theory [49] effectively captures such ambiguous concepts in natural 

language. Real-world situations often require the inclusion of negative information, which cannot be 

easily inferred from positive aspects alone. For instance, while antibiotics are effective in treating 

certain illnesses, they may also have adverse side effects on the body. The positive aspect of this 

information can be considered the membership degree, whereas the negative aspect represents the non-

membership degree, which is separate from the membership. In particular, Atanassov [4] introduced 

the concept of incorporating both membership and non-membership degrees, known as the 𝐼𝐹𝑆 . 

Figure 1 offers a geometrical representation of an 𝐼𝐹𝑆, depicted as an ordered pair within a triangular 

region. In Figure 1, the points (1,0) and (0,1) represent total agreement and complete disagreement, 

respectively, while (0,0) signifies a lack of knowledge or uncertainty about the situation. Within the 

triangular region, the ordered pair (𝜅𝑇(ⱷ), 𝓈𝑇(ⱷ)), referred to as the intuitionistic fuzzy value 𝐼𝐹𝑉), 

reflects that an individual agrees with situation ⱷ by 𝜅𝑇 and disagrees by 𝓈𝑇. 

Intuitionistic fuzzy sets (𝐼𝐹𝑆) have been applied across fields due to their strong capacity to handle 

uncertainty. In decision-making (𝐷𝑀), two main approaches stand out. One involves multi-criteria 

decision-making ( 𝑀𝐶𝐷𝑀 ) techniques that rely on information measures such as distance, 

similarity/dissimilarity, divergence, knowledge, and entropy. For Pythagorean fuzzy set and related 

concepts, see [47,48] and the references therein. 

The other approach uses aggregation operators (𝐴𝑂 s), which combine multiple pieces of 

information into a single value. Xu [44] introduced average aggregation operators for 𝐼𝐹𝑆, while Liu 
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et al. [35] expanded prioritized 𝐴𝑂s for 𝐼𝐹𝑆 applications. Several researchers subsequently focused 

on developing aggregation operators for 𝐼𝐹𝑆s [45]. Boran et al. [12] explored the TOPSIS method for 

𝐼𝐹𝑆 s and applied it to solve supplier selection problems. Khan et al. [28] examined the 𝑉𝐼𝐾𝑂𝑅 

method for 𝐼𝐹𝑆s, applying it to the selection of renewable energy sources. Khan and colleagues [29] 

provided theoretical foundations for the empirically effective 𝑉𝐼𝐾𝑂𝑅 method. For more details on 

𝑀𝐶𝐷𝑀 techniques, refer to Alinezhad and Khalili [2]. Additionally, Akram et al. [1] introduced an 

intuitionistic fuzzy logic controller for a heater fan system. 

Divergence measures were initially introduced to quantify the difference between two probability 

distributions in classical probability theory. Bhandari et al. [8] extended this concept to fuzzy sets, 

defining a formula to measure how distinct two fuzzy sets are from each other. Their approach 

proposed a non-negative, symmetric measure that satisfies the identity of indiscernible. Later, Montes 

et al. [39] developed an axiomatic framework for fuzzy divergence. These measures have become 

essential tools in various fields, such as figure skating scoring [27], decision-making [10], and image 

thresholding and processing. Divergence measures play a crucial role in various scientific domains, 

such as pattern recognition, decision-making, market forecasting, image processing, and machine 

learning. Mishra et al. [37] applied a divergence-based 𝑀𝐴𝐵𝐴𝐶 method for smartphone selection. 

Luo and Wang [36] extended the 𝑉𝐼𝐾𝑂𝑅 approach to 𝐼𝐹𝑆. Zhou et al. [50] introduced differentiation 

measures for Pythagorean fuzzy sets using belief functions, applying them in medical diagnostics. Rani 

et al. [41] employed a divergence-based 𝑉𝐼𝐾𝑂𝑅  method to assess renewable energy systems in a 

Pythagorean fuzzy context. The axiomatically supported divergence measurements for the 𝑞 -rung 

orthopair fuzzy environment were proposed by Khan et al. [26]. The correlation coefficients and their 

uses in pattern recognition and clustering analysis were covered by Riaz et al. [42]. Borujeni et al. [11] 

studied dynamic intuitionistic fuzzy group decision analysis for sustainability risk assessment in 

surface mining operation projects. Moreover, Gitinavard, et al. [20,21] presented a novel variation of 

interval-valued hesitant fuzzy group outranking approach and its application in green supplier 

evaluation in manufacturing systems. Mousavi [38] discussed evaluating construction projects by a 

new group decision-making model based on intuitionistic fuzzy logic concepts. For more related 

results related to fuzzy sets and their generalization, see [10,30,31], and the references therein. 

On the other hand, in recent years, the study of uncertainty modeling and intelligent decision-

making has witnessed substantial progress through the development of advanced soft computing and 

fuzzy-set–based frameworks. Dalkılıç has played a significant role in this evolution by introducing 

several innovative theoretical structures and decision-making tools. The Dalkılıç [14], a novel 

uncertainty framework, the VFPIFS-cluster model, was proposed to enhance clustering performance 

under vague and imprecise environments. This work established a foundation for extending fuzzy and 

intuitionistic structures with more flexible parameterization. Further advancements were presented in 

Dalkılıç [15], where hyperflexible sets with neutrosophic parameters were generalized to support 

complex decision-maker preferences in uncertain domains. Building on these contributions, Dalkılıç [16] 

introduced VFP-soft sets, offering a powerful comparative decision-making mechanism that improves 

the interpretability and reliability of multi-criteria evaluations. In another significant contribution, 

Dalkılıç [17] developed decision-making approaches focusing on the optimal parameter–object pair, 

providing an efficient computational paradigm for soft-set-based analysis. Additionally, the interaction 

between heterogeneous object sets was explored through the concept of inverse object interaction sets 

for binary soft sets [18], addressing the need to analyze relationships across universes. Collectively, 

these studies demonstrate a continuous effort to refine uncertainty modeling and strengthen decision-
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making methodologies, providing a robust theoretical basis for further advancements in soft computing 

and fuzzy systems, see [22,23,32]. 

Although 𝐼𝐹𝑆  has been applied to numerous problems, uncertainties often complicate the 

accurate prediction of membership and non-membership degrees. To address this, Atanassov [6], and 

Garg and Rani [19] introduced the concept of interval-valued membership 𝑢𝒜(ⱷ)  and non-

membership 𝑣𝒜(ⱷ) degrees instead of assigning a specific value. This approach, referred to as an 

interval-valued intuitionistic fuzzy set (𝐼𝑉𝐼𝐹𝑆), was defined by Atanassov in 1989. Unlike 𝐼𝐹𝑆, which 

uses a single value, 𝐼𝑉𝐼𝐹𝑆 is represented by a rectangular region 𝑅 (as shown in Figure 2). In this 

figure, total agreement, total disagreement, and complete ignorance correspond to the points 

([1,1], [0,0]), ([0,0], [1,1]), and ([0,0], [0,0]), respectively. When an individual cannot assign exact 

membership and non-membership values for a situation ⱷ, the intervals 𝑢𝒜(ⱷ)) and 𝑣𝒜(ⱷ) form a 

region 𝑅 . Deveci et al. [13] assessed the public bus transportation service utilizing 𝐼𝑉𝐼𝐹𝑆 s. 

Subsequently, additional researchers explored 𝐼𝑉𝐼𝐹𝑆s and applied them in diverse contexts (Xu and 

Gou, [46]). Although 𝐼𝑉𝐼𝐹𝑆 offers the opportunity to give membership and non-membership degree 

intervals rather than exact values, handling their representation is challenging. Therefore, a different 

actual extension of 𝐼𝐹𝑆 s is suggested, in which a circular region is straightforward representation 

instead of a rectangular one. This is referred to as 𝐶-𝐼𝐹𝑆. Atanassov [5] proposed the concept of 𝐼𝑉𝐹𝑆. 

In this framework, the circle with center (𝜅(ⱷ), 𝓈(ⱷ)) and radius 𝑟 replaces the rectangular region 

𝑅 depicted in Figure 1. The 𝐶-𝐼𝐹𝑆 reduces to a standard 𝐼𝐹𝑆 when 𝑟 = 0. Atanassov and Marinov [7] 

introduced distance metrics for 𝐶 -𝐼𝐹𝑆 s. Boltrrk and Kahraman [9] characterized interval-valued 

𝐼𝐹𝑆 s. Alkan and Kahraman [3] explored the application of 𝐶 -𝐼𝐹𝑆 s in the selection of hospital 

placements during a pandemic. Kahraman and Alkan developed the TOPSIS method for 𝐶-𝐼𝐹𝑆s and 

applied it to supplier selection scenarios [25]. Otay and Kahraman [24] tackled the multi-expert 

supplier evaluation issue by adapting the 𝐴𝐻𝑃  and 𝑉𝐼𝐾𝑂𝑅  methodologies for 𝐶 - 𝐼𝐹𝑆 s. For 

triangular norm and conorm, see [33,34,43] and the references therein. 

In this research, we introduce the concept of a ℒ𝑝-𝐼𝐹𝑆s, which extends the idea of representing 

membership and non-membership degrees as different shapes into the ℒ𝑝 -intuitionistic fuzzy 

framework. Instead of representing an element's membership and non-membership degrees with 

precise values, this new fuzzy set model employs circles centered at 〈ⱷ, 𝜅(ⱷ), 𝓈(ⱷ)〉, governed by the 

more flexible condition 𝜅(ⱷ) + 𝓈(ⱷ) ≤ 1 . As shown in Figures 2 and 4, this extends the 𝐼𝑉𝐼𝐹𝑆 

  

Figure 1. Geometric presentation of 𝐼𝐹𝑆. Figure 2. Geometric presentation of 𝐼𝑉𝐼𝐹𝑆. 
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concept and the 𝐶 -𝐼𝐹𝑆  model. Since decision-makers (𝐷𝑀 s) can work with circles representing 

certain characteristics rather than precise numerical values, the decision-making process becomes more 

refined and responsive. The improvement brought by ℒ𝑝-𝐼𝐹𝑆 fuzzy sets is illustrated in Figure 4. The 

key contributions of the paper are outlined as follows: 

• The ideas of ℒ𝑝-𝐼𝐹𝑆 and ℒ𝑝-𝐼𝐹𝑉 are introduced in this study. 

• A technique for converting a set of 𝐼𝐹𝑉 into a ℒ𝑝-𝐼𝐹𝑆 is obtained, and the multi-criteria group 

decision making 𝑀𝐶𝐺𝐷𝑀 can be resolved in this manner. 

• ℒ𝑝-shapes indicate an element's membership or non-membership in a ℒ𝑝-𝐼𝐹𝑆. Its structure enables 

more sensitive modeling in the continuous environment using multi-attribute decision-making 

(𝑀𝐴𝐷𝑀) theory. 

• To establish a novel scoring function and an accuracy function that incorporates the decision-

makers' attitude (𝜆), the set's optimistic and pessimistic points are also defined. When the decision-

maker's viewpoint (𝜆) approaches 1, the defuzzification of ℒ𝑝-𝐼𝐹𝑆 occurs near its optimistic point, 

while it occurs near its pessimistic point as (𝜆) approaches 0. 

• For ℒ𝑝-𝐼𝐹𝑆, certain algebraic operations are defined using 𝓉-norms and 𝓉-conorms. 

• Some weighted arithmetic and geometric aggregation operators are supplied with the support of 

these operations. In 𝑀𝐴𝐷𝑀, these aggregation operators are employed. 

• To support our proposed methodology, we include illustrated examples. 

The structure of the paper is as follows: In Section 2, we cover a review of some fundamental 

concepts. In Section 3, we introduce the concept of ℒ𝑝-intuitionistic fuzzy sets (ℒ𝑝-𝐼𝐹𝑆s) as a new 

extension of both intuitionistic fuzzy set and circular intuitionistic fuzzy set, along with defining basic 

set-theoretic properties for ℒ𝑝-𝐼𝐹𝑆. Additionally, some novel score and accuracy functions are defined. 

Then, in Sections 4 and 5, we propose several algebraic procedures for ℒ𝑝-intuitionistic fuzzy values 

(ℒ𝑝-𝐼𝐹𝑉s) using max-min rules and continuous Archimedean 𝓉-norms and 𝓉-conorms, respectively. 

In Section 6, based on these operations, we also introduce a few weighted aggregation operators for 

ℒ𝑝-𝐼𝐹𝑉s via continuous Archimedean 𝓉-norms and 𝓉-conorms. In Section 7, steps of the algorithm 

for the 𝑀𝐴𝐷𝑀 technique is discussed. The proposed methodology is applied to a problem concerning 

the selection of the optimal agricultural field robots 𝑀𝐴𝐷𝑀 framework. An outline of the study and 

a discussion of the findings are provided in Section 8. The study is concluded in the final section by 

outlining the benefits and drawbacks of the suggested strategies and suggesting additional research for 

 

 

Figure 3. Geometric presentation of ℒ1-𝐼𝐹𝑆. Figure 4. Geometric presentation of ℒ2-𝐼𝐹𝑆. 
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ℒ𝑝-𝐼𝐹𝑆s. 

2. Preliminaries 

In this section, we present several classical definitions, results, and concepts that will facilitate the 

discussion of the major findings. 

Definition 1 ([5]). Let us have a fixed universe 𝐸 and its sub-set 𝑇. The set 

𝑇 = {〈ⱷ, 𝜅𝑇(ⱷ), 𝓈𝑇(ⱷ)〉 ∶ for all ⱷ ∈ 𝐸}, 

where 0 ≤ 𝜅𝑇(ⱷ) + 𝓈𝑇(ⱷ) ≤ 1 is called the intuitionistic fuzzy set (𝐼𝐹𝑆) and functions 𝜅𝑇 , 𝓈𝑇 ∶ 𝐸 →

[0, 1] indicate the degree of membership (validity, etc.) and non-membership (non-validity, etc.) of 

element ⱷ ∈ 𝐸 to a fixed set 𝑇 ⊆ 𝐸. Now, we can define also function 𝜋𝑇: 𝐸 →  [0, 1] by means of 

𝜋𝑇(ⱷ)=1 − 𝜅𝑇(ⱷ) − 𝓈𝑇(ⱷ), 

and it corresponds to degree of indeterminacy (uncertainty, etc.). An intuitionistic fuzzy value (𝐼𝐹𝑉) is 

the pair "< 𝜅𝑇(ⱷ), 𝓈𝑇(ⱷ) >" given an element ⱷ of 𝑋. To make things easier to understand, we can 

write 𝑡̃ =< 𝜅𝑡̃, 𝓈𝑡̃ > , where 𝜅𝑡̃ ∈ [0,1] , 𝓈𝑡̃ ∈ [0,1]  and 0 ≤ 𝜅𝑡̃ + 𝓈𝑡̃ ≤ 1 . The degree of 

indeterminacy is represented by 𝜋𝑡̃, subject to the constraints that 𝜋𝑡̃ ∈ [0,1] and 𝜋𝑡̃ = 1 − 𝜅𝑡̃ − 𝓈𝑡̃. 

The definition of the complement of an 𝐼𝐹𝑉 𝑡̃ =< 𝓈𝑡̃ , 𝜅𝑡̃, 𝜋𝑡̃ > is as follows: 

𝑡̃𝐶 =< 𝓈𝑡̃ , 𝜅𝑡̃, 𝜋𝑡̃ >. 

Definition 2. Let 𝐷[0,1]  denote the set of all closed subintervals of [0,1] . An interval-valued 

intuitionistic fuzzy set (𝐼𝑉𝐼𝐹𝑆) 𝒜  in 𝑋 is defined as 𝒜 = {< ⱷ, 𝑢𝒜(ⱷ), 𝑣𝒜(ⱷ) > ⱷ ∈ 𝑋} where 

𝑢𝒜: 𝑋 → 𝐷[0,1] and "𝑣𝒜: 𝑋 → 𝐷[0,1]", with the condition "0 ≤ sup𝑢𝒜  (ⱷ) + sup𝑣𝒜(ⱷ) ≤ 1,ⱷ ∈
𝑋". The membership and non-membership degrees of 𝑋 to 𝒜 are represented by the intervals 𝑢𝒜(ⱷ) 
and 𝑣𝒜(ⱷ), respectively. 

An interval-valued intuitionistic fuzzy number (𝐼𝑉𝐼𝐹𝑉) is the pair < 𝑢𝒜(ⱷ), 𝑣𝒜(ⱷ) > for any 

ⱷ ∈ 𝑋, see [6]. In this study, 𝒜̃ = ([𝑢𝒜̃
− , 𝑢𝒜̃

+], [𝑣𝒜̃
− , 𝑣𝒜̃

+]) is used to conveniently denote an 𝐼𝑉𝐼𝐹ℵ. 

Here, [𝑢𝒜̃
− , 𝑢𝒜̃

+] ∈ 𝐷[0,1], [𝑣𝒜̃
− , 𝑣𝒜̃

+] ∈ 𝐷[0,1] and 𝑢𝒜̃
+ + 𝑣𝒜̃

+ ≤ 1. 

The concepts of 𝓉-norm and 𝓉-conorm are vital in statistics and decision-making. In algebra, 

binary operations defined on the closed unit interval are known as 𝓉-norms and 𝓉-conorms. 

Definition 3 ([33,34,43]). A 𝓉-norm is a function 𝒯: [0,1] × [0,1] → [0,1] that that adheres to the 

following properties: 

(𝒯1) Border condition: 𝒯(𝛼, 1) = 𝛼 for all 𝛼 ∈ [0,1]. 

(𝒯2) Commutativity: 𝒯(𝛼, 𝛽) = 𝒯(𝛽, 𝛼) for all 𝛼, 𝛽 ∈ [0,1]. 
(𝒯3) Associativity: 𝒯(𝛼, 𝒯(𝛽, ɤ)) = 𝒯(𝒯(𝛼, 𝛽), ɤ) for all 𝛼, 𝛽, ɤ ∈ [0,1]. 
(𝒯4) Monotonicity: 𝒯(𝛼, 𝛽) ⩽ 𝒯(𝛼′, 𝛽′) whenever 𝛼 ⩽ 𝛼′ and 𝛽 ⩽ 𝛽′ for all 𝛼, 𝛼′, 𝛽, 𝛽′ ∈ [0,1]. 

Definition 4 ([33,34,43]). A 𝓉-conorm is a function 𝒮: [0,1] × [0,1] → [0,1] that that adheres to the 

following properties: 

(𝒮1) Border condition: 𝒮(𝛼, 0) = 𝛼 for all 𝛼 ∈ [0,1] (border condition). 

(𝒮2) Commutativity: 𝒮(𝛼, 𝛽) = 𝒮(𝛽, 𝛼) for all 𝛼, 𝛽 ∈ [0,1] (commutativity). 

(𝒮3) Associativity: 𝒮(𝛼, 𝒮(𝛽, ɤ)) = 𝒮(𝒮(𝛼, 𝛽), ɤ) for all 𝛼, 𝛽, ɤ ∈ [0,1] (associativity). 

(𝒮4) Monotonicity: 𝒮(𝛼, 𝛽) ⩽ 𝒮(𝛼′, 𝛽′ ) whenever 𝛼 ⩽ 𝛼′ and 𝛽 ⩽ 𝛽′ for all 𝛼, 𝛼′, 𝛽, 𝛽′ ∈ [0,1] 
(monotonicity). 
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Definition 5 ([33,34]). A function ǥ: [0,1] → [0,∞]  with ǥ(1) = 0  that is strictly decreasing and 

satisfies ǥ(1) = 0  is referred to as the additive generator of a  𝓉 -norm 𝒯  if the relationship 

𝒯(𝛼, 𝛽) = ǥ−1(ǥ(𝛼) + ǥ(𝛽)) holds for all (𝛼, 𝛽) ∈ [0,1] × [0,1]. 
The concept of a fuzzy complement is required to determine the additive generator of a dual 𝓉-

conorm defined on the interval [0,1]. 

Definition 6 ([47,48]). A fuzzy complement is a function 𝑁: [0,1] → [0,1] that meets the following 

criteria: 

(N1) 𝑁(0) = 1 and 𝑁(1) = 0 (boundary conditions). 

(N2) 𝑁(𝛼) ⩾ 𝑁(𝛽) whenever 𝛼 ⩽ 𝛽 for all 𝛼, 𝛽 ∈ [0,1] (monotonicity). 

(N3) Continuity. 

(N4) 𝑁(𝑁(𝛼)) = 𝛼 for all 𝛼 ∈ [0,1] (involution). 

The function 𝑁: [0,1] → [0,1]  given by 𝑁(𝛼) = (1 − 𝛼𝑝)1/𝑝 , where 𝑝 ∈ (0,∞)  [47], 

represents a fuzzy complement. When 𝑝 = 1,𝑁  simplifies to the intuitionistic fuzzy complement 

𝑁(𝛼) = 1 − 𝛼. 

Definition 7 ([32,48]). Let 𝒯 be a 𝓉-norm and 𝒮 be a 𝓉-conorm on the interval [0, 1]. If 𝒯(𝛼, 𝛽) =
𝑁(𝒮(𝑁(𝛼), 𝑁(𝛽))) and 𝒮(𝛼, 𝛽) = 𝑁(𝒯(𝑁(𝛼),𝑁(𝛽))), then 𝒯 and 𝒮 are referred to as dual with 

respect to the fuzzy complement 𝑁. 

Remark 1. Let 𝒯 represent a 𝓉-norm on the interval [0,1]. The corresponding dual 𝓉-conorm 𝒮 

with regard to the intuitionistic fuzzy complement 𝑁 is defined as follows: 

𝒮(𝛼, 𝛽) = 1 − 𝒯(1 − 𝛼, 1 − 𝛽). 

It is important to mention that 𝒯 qualifies as an Archimedean 𝓉-norm if and only if 𝒯(𝛼, 𝛼) < 𝛼 

for all 𝛼 ∈ (0,1), while 𝒮 is classified as an Archimedean 𝓉-conorm if and only if 𝒮(𝛼, 𝛼) > 𝛼 [33]. 

Klement et al. [34] demonstrated that continuous Archimedean 𝓉-norms can be represented through 

their additive generators, as established in the following theorem. 

Theorem 1 ([34]). Let 𝒯 represent a 𝓉-norm on [0, 1]. The following statements are equivalent: 

(i) 𝒯 is a continuous Archimedean 𝓉-norm. 

(ii) 𝒯  possesses a continuous additive generator, meaning there exists a continuous, strictly 

decreasing function ǥ: [0,1] → [0,∞]  with 𝓉(1) = 0 , such that 𝒯(𝛼, 𝛽) = ǥ−1(ǥ(𝛼) + ǥ(𝛽))  for 

all (𝛼, 𝛽) ∈ [0,1] × [0,1]. 
This new fuzzy set is an extension of the 𝐼𝐹𝑆 and 𝐼𝑉𝐼𝐹𝑆, distinguished by different ℒ𝑝-shape 

representations of the degrees of membership and nonmembership. 

3. 𝓛𝒑-intuitionistic fuzzy sets 

We begin with the primary definition of an ℒ𝑝-intuitionistic fuzzy set, which is as follows: 

Definition 8. Let us have a fixed universe 𝐸 and its sub-set 𝑇. The set 

ℒℵ
𝑝 = {〈ⱷ, 𝜅(ⱷ), 𝓈(ⱷ); ℵ 〉| ⱷ ∈ 𝐸}, 

where 0 ≤ 𝜅(ⱷ) + 𝓈(ⱷ) ≤ 1  and ℵ ∈ [0, 2
1

𝑝]  with 𝑝 ≥ 1  are called ℒ𝑝 -𝐼𝐹𝑆  and functions 𝜅, 𝓈 ∶

𝐸 → [0, 1] indicate the degree of membership (validity, etc.) and non-membership (non-validity, etc.) 

of element ⱷ ∈ 𝐸 to a fixed set 𝑇 ⊆ 𝐸. Now, we can define function 𝜋: 𝐸 → [0, 1] by means of 
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𝜋(ⱷ) = 1 − 𝜅(ⱷ) − 𝓈(ⱷ), 

and it corresponds to degree of indeterminacy (uncertainty, etc.) (see Figures 3–9). 

On the other hand, ℒℵ
𝑝

 can also be defined using the following approach, such that: 

Let ℒ1 = {〈ℎ,𝑚〉 ∶ ℎ,𝑚 ∈ [0, 1], and ℎ + 𝑚 ≤ 1}. Then, 

ℒℵ
𝑝 = {〈ⱷ, ℵ 

1(𝜅(ⱷ), 𝓈(ⱷ))〉 ∶ ⱷ ∈ 𝐸}, 

where 

ℵ 
1(𝜅(ⱷ), 𝓈(ⱷ)) = {〈ℎ,𝑚〉 ∶ ℎ,𝑚 ∈ [0, 1] and (|𝜅(ⱷ) − ℎ|𝑝 + |𝓈(ⱷ) − 𝑚|𝑝)

1

𝑝 ≤ ℵ} ∩ ℒ1, 

= {〈ℎ,𝑚〉 ∶ ℎ,𝑚 ∈ [0, 1], (|𝜅(ⱷ) − ℎ|𝑝 + |𝓈(ⱷ) − 𝑚|𝑝)
1
𝑝 ≤ ℵ and ℎ + 𝑚 ≤ 1}. 

To simplify matters, we consider the convex part of the ℒ𝑝 -𝐼𝐹𝑆  in Definition 8 for 𝑝 ≥ 1 . 

However, the readers interested in exploring this further may consider the nonconvex part for 𝑝 > 0. 

Note that if we want to cover the ℒ1 and ℒ2-intuitionistic fuzzy interpretation triangle, then ℵ ∈

[0, 2], and ℵ = 𝑟 ∈ [0, √2], respectively, see Figures 8 and 9. 

Similarly, other shapes can be defined for 𝑝 ≥ 1. 

Here is the restriction of Definition 8; The intuitionistic fuzzy interpretation triangle cannot be 

fully covered. 

  

Figure 5. Geometric presentation of ℒ6-𝐼𝐹𝑆. Figure 6. Geometric presentation of ℒ100-𝐼𝐹𝑆. 

  

Figure 7. Triangular coverage of different ℵ 

values of ℒ2-𝐼𝐹𝑆. 

Figure 8. Triangular coverage of different ℵ 

values of ℒ2-𝐼𝐹𝑆. 
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Definition 9. Let us have a fixed universe 𝐸 and its sub-set 𝑇. The set 

ℒℵ
𝑝 = {〈ⱷ, 𝜅(ⱷ), 𝓈(ⱷ); ℵ〉|ⱷ ∈ 𝐸}, 

where 0 ≤ 𝜅(ⱷ) + 𝓈(ⱷ) ≤ 1  and ℵ ∈ [0,1]  with 𝑝 ≥ 1  is called ℒ𝑝 -𝐼𝐹𝑆  and functions 𝜅, 𝓈 ∶
𝐸 → [0, 1] indicate the degree of membership (validity, etc.) and non-membership (non-validity, etc.) 

of element ⱷ ∈ 𝐸 to a fixed set 𝑇 ⊆ 𝐸. Now, we can define function 𝜋: 𝐸 → [0, 1] by means of 

𝜋(ⱷ) = 1 − 𝜅(ⱷ) − 𝓈(ⱷ).
 

This corresponds to degree of indeterminacy (uncertainty, etc.) (see Figures 3–6, 9, and 10). 

 

Figure 9. ℒ𝑝-intuitionistic fuzzy sets with ℵ ∈ [0,1]. 

 

Figure 10. Optimistic and pessimistic points of ℒ𝑝−𝐼𝐹𝑆 with 𝑑 = 1. 

Note that for 𝑝 ≥ 1, ℵ = 2
1

𝑝 ≥ 1, Figure 9 will be reversed.  
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Development of ℒ 
𝑝-intuitionistic fuzzy sets 

In this section, we discuss the procedure of calculating the ℒ 
𝑝-𝐼𝐹𝑆 in order to convert 𝐼𝐹𝑆 to 

ℒ 
𝑝-𝐼𝐹𝑆. 

Assume that there are intuitionistic fuzzy pairs in an 𝐼𝐹𝑆  ℒℵ
𝑝

𝑖
  with the following shapes: 

{(𝜅𝑖,1, 𝓈𝑖,1), (𝜅𝑖,2, 𝓈𝑖,2), (𝜅𝑖,3, 𝓈𝑖,3), …… }, where 𝑚 is a numerical value of an 𝐼𝐹𝑆 ℒℵ
𝑝

𝑖
 that contains 

𝑛𝑖, the number of intuitionistic fuzzy pairs with ℒℵ
𝑝

𝑖
. 

The following formula can be used to determine the “arithmetic average” of spherical fuzzy 

intuitionistic fuzzy pairs: 

(𝜅 (ℒℵ
𝑝

𝑖
) , 𝓈 (ℒℵ

𝑝

𝑖
)) = (∑

𝜅𝑖,𝑗

𝑛𝑖

𝑛𝑖

𝑗=1

,∑
𝓈𝑖,𝑗

𝑛𝑖

𝑛𝑖

𝑗=1

). 

The ℵ of (𝜅 (ℒℵ
𝑝

𝑖
) , 𝓈 (ℒℵ

𝑝

𝑖
)) has the maximum Euclidean distance value. 

ℵ𝑖 = 𝓂𝒶𝓍
1≤𝑗≤𝑛𝑖

((|𝜅 (ℒℵ
𝑝

𝑖
) − 𝜅𝑖,𝑗|

𝑝

+ |𝓈 (ℒℵ
𝑝

𝑖
) − 𝓈𝑖,𝑗|

𝑝

)

1

𝑝
). 

Thus, 𝐼𝐹𝑆 is being changed into ℒ 
𝑝-𝐼𝐹𝑆. 

In order to facilitate collective decision-making, we create a mechanism for converting collections 

of 𝐼𝐹𝑆s into a ℒ𝑝 − 𝐼𝐹𝑉𝑠. 

Proposition 1. Let a set of 𝐼𝐹𝑉s be denoted as 

{ℒℵ
𝑝

1
= (𝜅1, 𝓈1; ℵ1), ℒℵ

𝑝

2
= (𝜅2, 𝓈2; ℵ2), ……… , ℒℵ

𝑝

𝑛
= (𝜅𝑛, 𝓈𝑛; ℵ𝑛)}. 

Then 

ℒℵ
𝑝 = 〈𝜅, 𝓈; ℵ〉, 

is a ℒ𝑝 − 𝐼𝐹𝑉 with 

𝜅 = ∑
𝜅𝑖,𝑗

𝑛𝑖

𝑛𝑖
𝑗=1  and 𝓈 = ∑

𝓈𝑖,𝑗

𝑛𝑖

𝑛𝑖
𝑗=1 , 

ℵ = 𝓂𝒶𝓍
1≤𝑗≤𝑛𝑖

((|𝜅 − 𝜅𝑖,𝑗|
𝑝
+ |𝓈 − 𝓈𝑖,𝑗|

𝑝
)
1

𝑝, 2
1

𝑝). 

Proof. Since 𝜅 = ∑
𝜅𝑖,𝑗

𝑛𝑖

𝑛𝑖
𝑗=1  and 𝓈 = ∑

𝓈𝑖,𝑗

𝑛𝑖

𝑛𝑖
𝑗=1 , then we have 

𝜅 + 𝓈 = ∑
𝜅𝑖,𝑗

𝑛𝑖

𝑛𝑖
𝑗=1 + ∑

𝓈𝑖,𝑗

𝑛𝑖

𝑛𝑖
𝑗=1 =

∑ (𝜅𝑖,𝑗+𝓈𝑖,𝑗)
𝑛𝑖
𝑗=1

𝑛𝑖
≤
∑ 1
𝑛𝑖
𝑗=1

𝑛𝑖
= 1. 

Furthermore, it is obvious that ℵ ∈ [0, 2
1

𝑝]. Note that, for Definition 9, we have 

ℵ = min( max
1≤𝑗≤𝑛𝑖

((|𝜅 − 𝜅𝑖,𝑗|
𝑝
+ |𝓈 − 𝓈𝑖,𝑗|

𝑝
)
1

𝑝) , 1). 

Example 1. The following sets of 𝐼𝐹𝑆𝑠 are represented as: 
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{(0.3, 0.7), (0.2, 0.7), (0.6, 0.2)}, 

{(0.2, 0.5), (0.3, 0.4), (0.9, 0.1)}, 

and 

{(0.1, 0.6), (0.5, 0.5), (0.1, 0.8)}. 

With the help of Proposition 1, we find the corresponding ℒ𝑝-𝐼𝐹𝑆𝑠, we have: 

 When 𝑝 = 1, we have 

(0.37, 0.53; 0.63), (0.47, 0.33; 0.93), (0.23, 0.63; 0.53); 

 When 𝑝 = 2, we have 

(0.37, 0.53; 0.45), (0.47, 0.33; 0.73), (0.23, 0.63; 0.50); 

 When 𝑝 = 5, we have 

(0.37, 0.53; 0.41), (0.47, 0.33; 0.71), (0.23, 0.63; 0.51); 

 When 𝑝 = 20, we have 

(0.37, 0.53; 0.40), (0.47, 0.33; 0.70), (0.23, 0.63; 0.50), 

and so on. 

4. Basic operations and relations for the 𝓛𝒑-intuitionistic fuzzy set 

In this section, we propose some of the basic operations for ℒ𝑝 -𝐼𝐹𝑆𝑠  like inclusion, union, 

intersection, complement, and some compositions. Some properties are also illustrated. For the sake 

of easy understanding, we take the following three ℒ𝑝-𝐼𝐹𝑆𝑠 over fixed universe 𝐸: 

ℒℵ
𝑝

1
= {〈ⱷ, 𝜅ℒ1(ⱷ), 𝓈ℒ1(ⱷ); ℵℒ1〉 ∶ for all ⱷ ∈ 𝐸}, 

ℒℵ
𝑝

2
= {〈ⱷ, 𝜅2(ⱷ), 𝓈2(ⱷ); ℵ2〉 ∶ for all ⱷ ∈ 𝐸}, 

ℒℵ
𝑝

3
= {〈ⱷ, 𝜅3(ⱷ), 𝓈3(ⱷ); ℵ3〉 ∶ for all ⱷ ∈ 𝐸}. 

Operations 

Some basic operations between two ℒ𝑝-𝐼𝐹𝑆𝑠 ℒℵ
𝑝

1
 and ℒℵ

𝑝

2
 are as follows: 

Definition 10. Let ℒℵ
𝑝

1
 and ℒℵ

𝑝

2
 be two ℒ𝑝-𝐼𝐹𝑆𝑠. Then, 

i. ¬ℒℵ
𝑝

1
= {〈ⱷ, 𝓈1(ⱷ), 𝜅1(ⱷ); ℵ1〉 ∶ for all ⱷ ∈ 𝐸}, 

ii. ℒℵ
𝑝

1
∪𝓂𝒾𝓃 ℒℵ

𝑝

2
= {〈ⱷ, 𝓂𝒶𝓍(𝜅1(ⱷ), 𝜅2(ⱷ)), 𝓂𝒾𝓃(𝓈1(ⱷ), 𝓈2(ⱷ));𝓂𝒾𝓃(ℵ1, ℵ2)〉 ∶

for all ⱷ ∈ 𝐸}, 

iii. ℒℵ
𝑝

1
∪𝓂𝒶𝓍 ℒℵ

𝑝

2
= {〈ⱷ, 𝓂𝒶𝓍(𝜅1(ⱷ), 𝜅2(ⱷ)), 𝓂𝒾𝓃(𝓈1(ⱷ), 𝓈2(ⱷ));𝓂𝒶𝓍(ℵ1, ℵ2)〉 ∶

for all ⱷ ∈ 𝐸}, 
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iv. ℒℵ
𝑝

1
∩𝓂𝒾𝓃 ℒℵ

𝑝

2
= {〈ⱷ, 𝓂𝒾𝓃(𝜅1(ⱷ), 𝜅2(ⱷ)), 𝓂𝒶𝓍(𝓈1(ⱷ), 𝓈2(ⱷ));𝓂𝒾𝓃(ℵ1, ℵ2)〉 ∶

for all ⱷ ∈ 𝐸}ℒℵ
𝑝

1
∩𝓂𝒶𝓍 ℒℵ

𝑝

2
= {〈ⱷ, 𝓂𝒾𝓃(𝜅1(ⱷ), 𝜅2(ⱷ)),

𝓂𝒶𝓍(𝓈1(ⱷ), 𝓈2(ⱷ));𝓂𝒶𝓍(ℵ1, ℵ2)〉 ∶ for all ⱷ ∈ 𝐸}, 

v. ℒℵ
𝑝

1
⨂𝓂𝒾𝓃ℒℵ

𝑝

2
= (𝜅1(ⱷ) ∙ 𝜅2(ⱷ), 𝓈1(ⱷ) + 𝓈2(ⱷ) − 𝓈1(ⱷ) ∙ 𝓈2(ⱷ);𝓂𝒾𝓃(ℵ1, ℵ2)), 

vi. ℒℵ
𝑝

1
⨂𝓂𝒶𝓍ℒℵ

𝑝

2
= (𝜅1(ⱷ) ∙ 𝜅2(ⱷ), 𝓈1(ⱷ) + 𝓈2(ⱷ) − 𝓈1(ⱷ) ∙ 𝓈2(ⱷ);𝓂𝒶𝓍(ℵ1, ℵ2)), 

vii.  ℒℵ
𝑝

1
⨁𝓂𝒾𝓃ℒℵ

𝑝

2
= (𝜅1(ⱷ) + 𝜅2(ⱷ) − 𝜅1(ⱷ) ∙ 𝜅2(ⱷ), 𝓈1(ⱷ) ∙ 𝓈2(ⱷ);𝓂𝒾𝓃(ℵ1, ℵ2)), 

viii. ℒℵ
𝑝

1
⨁𝓂𝒶𝓍ℒℵ

𝑝

2
= (𝜅1(ⱷ) + 𝜅2(ⱷ) − 𝜅1(ⱷ) ∙ 𝜅2(ⱷ), 𝓈1(ⱷ) ∙ 𝓈2(ⱷ);𝓂𝒶𝓍(ℵ1, ℵ2)), 

ix. 𝜆ℒℵ
𝑝

1
= (1 − (1 − 𝜅1(ⱷ))

𝜆
, 𝓈1(ⱷ)

𝜆; ℵ1); 𝜆 > 0, 

x. ℒℵ
𝑝

1

𝜆
= (𝜅1

𝜆, 1 − (1 − 𝓈1)
𝜆; ℵ1), 

xi. ℒℵ
𝑝

1
@𝓂𝒾𝓃ℒℵ

𝑝

2
= (𝜅1(ⱷ) + 𝜅2(ⱷ), 𝓈1(ⱷ) + 𝓈2(ⱷ);𝓂𝒾𝓃(ℵ1, ℵ2)), 

xii. ℒℵ
𝑝

1
@𝓂𝒶𝓍ℒℵ

𝑝

2
= (𝜅1(ⱷ) + 𝜅2(ⱷ), 𝓈1(ⱷ) + 𝓈2(ⱷ);𝓂𝒶𝓍(ℵ1, ℵ2)). 

Relations 

The relations over ℒ𝑝-𝐼𝐹𝑆𝑠 are first proposed as follows: 

Definition 11. Let ℒℵ
𝑝

1
 and ℒℵ

𝑝

2
 be two ℒ𝑝-𝐼𝐹𝑆𝑠. Then, for all ⱷ ∈ 𝐸, we have 

o ℒℵ
𝑝

1
⊂𝜐 ℒℵ

𝑝

2
 iff 

(

 
 
(ℵ1 = ℵ2) & (

(𝜅1(ⱷ) < 𝜅2(ⱷ) & 𝓈1(ⱷ) ≥ 𝓈2(ⱷ))

∨ (𝜅1(ⱷ) ≤ 𝜅2(ⱷ) & 𝓈1(ⱷ) > 𝓈2(ⱷ))

∨ (𝜅1(ⱷ) < 𝜅2(ⱷ) & 𝓈1(ⱷ) > 𝓈2(ⱷ))

)

)

 
 

; 

o ℒℵ
𝑝

1
⊂𝜌 ℒℵ

𝑝

2
 iff ((ℵ1 < ℵ2) & 𝜅1(ⱷ) = 𝜅2(ⱷ) & 𝓈1(ⱷ) = 𝓈2(ⱷ)); 

o ℒℵ
𝑝

1
⊂ ℒℵ

𝑝

2
 iff 

(

 
 
(ℵ1 < ℵ2) &(

(𝜅1(ⱷ) < 𝜅2(ⱷ) & 𝓈1(ⱷ) ≥ 𝓈2(ⱷ))

∨ (𝜅1(ⱷ) ≤ 𝜅2(ⱷ) & 𝓈1(ⱷ) > 𝓈2(ⱷ))

∨ (𝜅1(ⱷ) < 𝜅2(ⱷ) & 𝓈1(ⱷ) > 𝓈2(ⱷ))

)

)

 
 

; 

o ℒℵ
𝑝

1
⊂𝜐 ℒℵ

𝑝

2
 iff ℒℵ

𝑝

2
⊃𝜐 ℒℵ

𝑝

1
; 

o ℒℵ
𝑝

1
⊂𝜌 ℒℵ

𝑝

2
 iff ℒℵ

𝑝

2
⊃𝜌 ℒℵ

𝑝

1
; 

o ℒℵ
𝑝

1
⊂ ℒℵ

𝑝

2
 iff ℒℵ

𝑝

2
⊃ ℒℵ

𝑝

1
; 

o ℒℵ
𝑝

1
⊆𝜐 ℒℵ

𝑝

2
 iff ((ℵ1 = ℵ2) & 𝜅1(ⱷ) ≤ 𝜅2(ⱷ) & 𝓈1(ⱷ) ≥ 𝓈2(ⱷ)); 

o ℒℵ
𝑝

1
⊆𝜌 ℒℵ

𝑝

2
 iff ((ℵ1 ≤ ℵ2) & 𝜅1(ⱷ) = 𝜅2(ⱷ) & 𝓈1(ⱷ) = 𝓈2(ⱷ)); 

o ℒℵ
𝑝

1
⊆ ℒℵ

𝑝

2
 iff ((ℵ1 ≤ ℵ2) & 𝜅1(ⱷ) ≤ 𝜅2(ⱷ) & 𝓈1(ⱷ) ≥ 𝓈2(ⱷ)); 

o ℒℵ
𝑝

1
⊆𝜐 ℒℵ

𝑝

2
 iff ℒℵ

𝑝

2
⊇𝜐 ℒℵ

𝑝

1
; 

o ℒℵ
𝑝

1
⊆𝜌 ℒℵ

𝑝

2
 iff ℒℵ

𝑝

2
⊇𝜌 ℒℵ

𝑝

1
; 

o ℒℵ
𝑝

1
⊆ ℒℵ

𝑝

2
 iff ℒℵ

𝑝

2
⊇ ℒℵ

𝑝

1
; 

o ℒℵ
𝑝

1
=𝜐 ℒℵ

𝑝

2
 iff  𝜅1(ⱷ) = 𝜅2(ⱷ) & 𝓈1(ⱷ) = 𝓈2(ⱷ); 

o ℒℵ
𝑝

1
=𝜌 ℒℵ

𝑝

2
 iff ℵ1 = ℵ2; 

o ℒℵ
𝑝

1
= ℒℵ

𝑝

2
 iff (ℵ1 = ℵ2)&𝜅1(ⱷ) = 𝜅2(ⱷ)&𝓈1(ⱷ) = 𝓈2(ⱷ). 

From Definitions 10 and 11, we conclude the following results: 

Proposition 2. Let ℒℵ
𝑝

1
, and ℒℵ

𝑝

2
 be two ℒ𝑝-𝐼𝐹𝑆𝑠. Then, the following properties hold, such that 
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• ¬(¬ℒℵ
𝑝

1
∪𝓂𝒾𝓃 ¬ℒℵ

𝑝

2
) = ℒℵ

𝑝

1
∩𝓂𝒾𝓃 ℒℵ

𝑝

2
, and ¬(¬ℒℵ

𝑝

1
∪𝓂𝒶𝓍 ¬ℒℵ

𝑝

2
) = ℒℵ

𝑝

1
∩𝓂𝒶𝓍 ℒℵ

𝑝

2
, 

• ¬(¬ℒℵ
𝑝

1
∩𝓂𝒾𝓃 ¬ℒℵ

𝑝

2
) = ℒℵ

𝑝

1
∪𝓂𝒾𝓃 ℒℵ

𝑝

2
, and ¬(¬ℒℵ

𝑝

1
∩𝓂𝒶𝓍 ¬ℒℵ

𝑝

2
) = ℒℵ

𝑝

1
∪𝓂𝒶𝓍 ℒℵ

𝑝

2
, 

• ¬(¬ℒℵ
𝑝

1
⨁𝓂𝒾𝓃¬ℒℵ

𝑝

2
) = ℒℵ

𝑝

1
⨂𝓂𝒾𝓃ℒℵ

𝑝

2
, and ¬(¬ℒℵ

𝑝

1
⨁𝓂𝒶𝓍¬ℒℵ

𝑝

2
) = ℒℵ

𝑝

1
⨂𝓂𝒶𝓍ℒℵ

𝑝

2
, 

• ¬(¬ℒℵ
𝑝

1
⨂𝓂𝒾𝓃¬ℒℵ

𝑝

2
) = ℒℵ

𝑝

1
⨁𝓂𝒾𝓃ℒℵ

𝑝

2
, and ¬(¬ℒℵ

𝑝

1
⨂𝓂𝒶𝓍¬ℒℵ

𝑝

2
) = ℒℵ

𝑝

1
⨁𝓂𝒶𝓍ℒℵ

𝑝

2
, 

• ¬(¬ℒℵ
𝑝

1
@𝓂𝒾𝓃¬ℒℵ

𝑝

2
) = ℒℵ

𝑝

1
@𝓂𝒾𝓃ℒℵ

𝑝

2
, and ¬(¬ℒℵ

𝑝

1
@𝓂𝒶𝓍¬ℒℵ

𝑝

2
) = ℒℵ

𝑝

1
@𝓂𝒶𝓍ℒℵ

𝑝

2
. 

Proof. The proof follows similar steps as those used in the operations of 𝐼𝐹𝑆𝑠, and as such, is excluded 

for brevity. 

Proposition 3. Let ℒℵ
𝑝

1
, ℒℵ

𝑝

2
 and ℒℵ

𝑝

3
 be three ℒ𝑝-𝐼𝐹𝑆𝑠. Then, the following properties hold, such 

that 

1) ℒℵ
𝑝

1
∪𝓂𝒾𝓃 ℒℵ

𝑝

1
= ℒℵ

𝑝

1
, and ℒℵ

𝑝

1
∪𝓂𝒶𝓍 ℒℵ

𝑝

1
= ℒℵ

𝑝

1
, 

2) ℒℵ
𝑝

1
∩𝓂𝒾𝓃 ℒℵ

𝑝

1
= ℒℵ

𝑝

1
, and ℒℵ

𝑝

1
∩𝓂𝒶𝓍 ℒℵ

𝑝

1
= ℒℵ

𝑝

1
, 

3) ℒℵ
𝑝

1
@𝓂𝒾𝓃ℒℵ

𝑝

1
= ℒℵ

𝑝

1
, and ℒℵ

𝑝

1
@𝓂𝒶𝓍ℒℵ

𝑝

1
= ℒℵ

𝑝

1
, 

4) ℒℵ
𝑝

1
∪𝓂𝒾𝓃 ℒℵ

𝑝

2
= ℒℵ

𝑝

2
∪𝓂𝒾𝓃 ℒℵ

𝑝

1
, and ℒℵ

𝑝

1
∪𝓂𝒶𝓍 ℒℵ

𝑝

2
= ℒℵ

𝑝

2
∪𝓂𝒶𝓍 ℒℵ

𝑝

1
, 

5) ℒℵ
𝑝

1
∩𝓂𝒾𝓃 ℒℵ

𝑝

2
= ℒℵ

𝑝

2
∩𝓂𝒾𝓃 ℒℵ

𝑝

1
, and ℒℵ

𝑝

1
∩𝓂𝒶𝓍 ℒℵ

𝑝

2
= ℒℵ

𝑝

2
∩𝓂𝒶𝓍 ℒℵ

𝑝

1
, 

6) ℒℵ
𝑝

1
⨂𝓂𝒾𝓃ℒℵ

𝑝

2
= ℒℵ

𝑝

2
⨂𝓂𝒾𝓃ℒℵ

𝑝

1
, and ℒℵ

𝑝

1
⨂𝓂𝒶𝓍ℒℵ

𝑝

2
= ℒℵ

𝑝

2
⨂𝓂𝒶𝓍ℒℵ

𝑝

1
, 

7) ℒℵ
𝑝

1
⨁𝓂𝒾𝓃ℒℵ

𝑝

2
= ℒℵ

𝑝

2
⨁𝓂𝒾𝓃ℒℵ

𝑝

1
, and ℒℵ

𝑝

1
⨁𝓂𝒶𝓍ℒℵ

𝑝

2
= ℒℵ

𝑝

2
⨁𝓂𝒶𝓍ℒℵ

𝑝

1
, 

8) ℒℵ
𝑝

1
@𝓂𝒾𝓃ℒℵ

𝑝

1
= ℒℵ

𝑝

2
@𝓂𝒾𝓃ℒℵ

𝑝

1
, and ℒℵ

𝑝

1
@𝓂𝒶𝓍ℒℵ

𝑝

2
= ℒℵ

𝑝

2
@𝓂𝒶𝓍ℒℵ

𝑝

1
, 

9) ℒℵ
𝑝

1
∪𝓂𝒾𝓃 (ℒℵ

𝑝

2
∪𝓂𝒾𝓃 ℒℵ

𝑝

3
) = (ℒℵ

𝑝

1
∪𝓂𝒾𝓃 ℒℵ

𝑝

1
) ∪𝓂𝒾𝓃 ℒℵ

𝑝

3
 and ℒℵ

𝑝

1
∪𝓂𝒶𝓍 (ℒℵ

𝑝

2
∪𝓂𝒶𝓍 ℒℵ

𝑝

3
) =

(ℒℵ
𝑝

1
∪𝓂𝒶𝓍 ℒℵ

𝑝

2
) ∪𝓂𝒶𝓍 ℒℵ

𝑝

3
, 

10) ℒℵ
𝑝

1
∩𝓂𝒾𝓃 (ℒℵ

𝑝

2
∩𝓂𝒾𝓃 ℒℵ

𝑝

3
) = (ℒℵ

𝑝

1
∩𝓂𝒾𝓃 ℒℵ

𝑝

2
) ∩𝓂𝒾𝓃 ℒℵ

𝑝

3
 and 

ℒℵ
𝑝

1
∩𝓂𝒶𝓍 (ℒℵ

𝑝

2
∩𝓂𝒶𝓍 ℒℵ

𝑝

3
) = (ℒℵ

𝑝

1
∩𝓂𝒶𝓍 ℒℵ

𝑝

2
) ∩𝓂𝒶𝓍 ℒℵ

𝑝

3
, 

11) ℒℵ
𝑝

1
⨂𝓂𝒾𝓃 (ℒℵ

𝑝

2
⨂𝓂𝒾𝓃ℒℵ

𝑝

3
) = (ℒℵ

𝑝

1
⨂𝓂𝒾𝓃ℒℵ

𝑝

2
)⨂𝓂𝒾𝓃ℒℵ

𝑝

3
  and ℒℵ

𝑝

1
⨂𝓂𝒶𝓍 (ℒℵ

𝑝

2
⨂𝓂𝒶𝓍ℒℵ

𝑝

3
) =

(ℒℵ
𝑝

1
⨂𝓂𝒶𝓍ℒℵ

𝑝

2
)⨂𝓂𝒶𝓍ℒℵ

𝑝

3
, 

12) ℒℵ
𝑝

1
⨁𝓂𝒾𝓃 (ℒℵ

𝑝

2
⨁𝓂𝒾𝓃ℒℵ

𝑝

3
) = (ℒℵ

𝑝

1
⨁𝓂𝒾𝓃ℒℵ

𝑝

2
)⨁𝓂𝒾𝓃ℒℵ

𝑝

3
  and ℒℵ

𝑝

1
⨁𝓂𝒶𝓍 (ℒℵ

𝑝

2
⨁𝓂𝒶𝓍ℒℵ

𝑝

3
) =

(ℒℵ
𝑝

1
⨁𝓂𝒶𝓍ℒℵ

𝑝

2
)⨁𝓂𝒶𝓍ℒℵ

𝑝

3
, 

13) ℒℵ
𝑝

1
∩𝓂𝒾𝓃 (ℒℵ

𝑝

2
∪𝓂𝒾𝓃 ℒℵ

𝑝

3
) = (ℒℵ

𝑝

1
∩𝓂𝒾𝓃 ℒℵ

𝑝

2
) ∪𝓂𝒾𝓃 (ℒℵ

𝑝

1
∩𝓂𝒾𝓃 ℒℵ

𝑝

3
) and 

ℒℵ
𝑝

1
∩𝓂𝒶𝓍 (ℒℵ

𝑝

2
∪𝓂𝒾𝓃 ℒℵ

𝑝

3
) = (ℒℵ

𝑝

1
∩𝓂𝒶𝓍 ℒℵ

𝑝

2
) ∪𝓂𝒾𝓃 (ℒℵ

𝑝

1
∩𝓂𝒶𝓍 ℒℵ

𝑝

3
), 

14) ℒℵ
𝑝

1
∩𝓂𝒾𝓃 (ℒℵ

𝑝

2
∪𝓂𝒶𝓍 ℒℵ

𝑝

3
) = (ℒℵ

𝑝

1
∩𝓂𝒾𝓃 ℒℵ

𝑝

2
) ∪𝓂𝒶𝓍 (ℒℵ

𝑝

1
∩𝓂𝒾𝓃 ℒℵ

𝑝

3
) and 

ℒℵ
𝑝

1
∩𝓂𝒶𝓍 (ℒℵ

𝑝

2
∪𝓂𝒶𝓍 ℒℵ

𝑝

3
) = (ℒℵ

𝑝

1
∩𝓂𝒶𝓍 ℒℵ

𝑝

2
) ∪𝓂𝒶𝓍 (ℒℵ

𝑝

1
∩𝓂𝒶𝓍 ℒℵ

𝑝

3
), 

15) ℒℵ
𝑝

1
⨁𝓂𝒾𝓃 (ℒℵ

𝑝

2
∪𝓂𝒾𝓃 ℒℵ

𝑝

3
) = (ℒℵ

𝑝

1
⨁𝓂𝒾𝓃ℒℵ

𝑝

2
) ∪𝓂𝒾𝓃 (ℒℵ

𝑝

1
⨁𝓂𝒾𝓃ℒℵ

𝑝

3
) and 

ℒℵ
𝑝

1
⨁𝓂𝒶𝓍 (ℒℵ

𝑝

2
∪𝓂𝒾𝓃 ℒℵ

𝑝

3
) = (ℒℵ

𝑝

1
⨁𝓂𝒶𝓍ℒℵ

𝑝

2
) ∪𝓂𝒾𝓃 (ℒℵ

𝑝

1
⨁𝓂𝒶𝓍ℒℵ

𝑝

3
), 

16) ℒℵ
𝑝

1
⨁𝓂𝒾𝓃 (ℒℵ

𝑝

2
∪𝓂𝒶𝓍 ℒℵ

𝑝

3
) = (ℒℵ

𝑝

1
⨁𝓂𝒾𝓃ℒℵ

𝑝

2
) ∪𝓂𝒶𝓍 (ℒℵ

𝑝

1
⨁𝓂𝒾𝓃ℒℵ

𝑝

3
) and 

ℒℵ
𝑝

1
⨁𝓂𝒶𝓍 (ℒℵ

𝑝

2
∪𝓂𝒶𝓍 ℒℵ

𝑝

3
) = (ℒℵ

𝑝

1
⨁𝓂𝒶𝓍ℒℵ

𝑝

2
) ∪𝓂𝒶𝓍 (ℒℵ

𝑝

1
⨁𝓂𝒶𝓍ℒℵ

𝑝

3
), 
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17) ℒℵ
𝑝

1
⨂𝓂𝒾𝓃 (ℒℵ

𝑝

2
∪𝓂𝒾𝓃 ℒℵ

𝑝

3
) = (ℒℵ

𝑝

1
⨂𝓂𝒾𝓃ℒℵ

𝑝

2
) ∪𝓂𝒾𝓃 (ℒℵ

𝑝

1
⨂𝓂𝒾𝓃ℒℵ

𝑝

3
) and 

ℒℵ
𝑝

1
⨂𝓂𝒶𝓍 (ℒℵ

𝑝

2
∪𝓂𝒾𝓃 ℒℵ

𝑝

3
) = (ℒℵ

𝑝

1
⨂𝓂𝒶𝓍ℒℵ 

𝑝

2
) ∪𝓂𝒾𝓃 (ℒℵ 

𝑝

1
⨂𝓂𝒶𝓍ℒℵ 

𝑝

3
), 

18) ℒℵ 
𝑝

1
⨂𝓂𝒾𝓃 (ℒℵ 

𝑝

2
∪𝓂𝒶𝓍 ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
⨂𝓂𝒾𝓃ℒℵ 

𝑝

2
) ∪𝓂𝒶𝓍 (ℒℵ 

𝑝

1
⨂𝓂𝒾𝓃ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
⨂𝓂𝒶𝓍 (ℒℵ 

𝑝

2
∪𝓂𝒶𝓍 ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
⨂𝓂𝒶𝓍ℒℵ 

𝑝

2
) ∪𝓂𝒶𝓍 (ℒℵ 

𝑝

1
⨂𝓂𝒶𝓍ℒℵ 

𝑝

3
), 

19) ℒℵ 
𝑝

1
@𝓂𝒾𝓃 (ℒℵ 

𝑝

2
∪𝓂𝒾𝓃 ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
@𝓂𝒾𝓃ℒℵ 

𝑝

2
) ∪𝓂𝒾𝓃 (ℒℵ 

𝑝

1
@𝓂𝒾𝓃ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
@𝓂𝒶𝓍 (ℒℵ 

𝑝

2
∪𝓂𝒾𝓃 ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
@𝓂𝒶𝓍ℒℵ 

𝑝

2
) ∪𝓂𝒾𝓃 (ℒℵ 

𝑝

1
@𝓂𝒶𝓍ℒℵ 

𝑝

3
), 

20) ℒℵ 
𝑝

1
@𝓂𝒾𝓃 (ℒℵ 

𝑝

2
∪𝓂𝒶𝓍 ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
@𝓂𝒾𝓃ℒℵ 

𝑝

2
) ∪𝓂𝒶𝓍 (ℒℵ 

𝑝

1
@𝓂𝒾𝓃ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
@𝓂𝒶𝓍 (ℒℵ 

𝑝

2
∪𝓂𝒶𝓍 ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
@𝓂𝒶𝓍ℒℵ 

𝑝

2
) ∪𝓂𝒶𝓍 (ℒℵ 

𝑝

1
@𝓂𝒶𝓍ℒℵ 

𝑝

3
), 

21) ℒℵ 
𝑝

1
∪𝓂𝒾𝓃 (ℒℵ 

𝑝

2
∩𝓂𝒾𝓃 ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
∪𝓂𝒾𝓃 ℒℵ 

𝑝

2
) ∩𝓂𝒾𝓃 (ℒℵ 

𝑝

1
∪𝓂𝒾𝓃 ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
∪𝓂𝒶𝓍 (ℒℵ 

𝑝

2
∩𝓂𝒾𝓃 ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
∪𝓂𝒶𝓍 ℒℵ 

𝑝

2
) ∩𝓂𝒾𝓃 (ℒℵ 

𝑝

1
∪𝓂𝒶𝓍 ℒℵ 

𝑝

3
), 

22) ℒℵ 
𝑝

1
∪𝓂𝒾𝓃 (ℒℵ 

𝑝

2
∩𝓂𝒶𝓍 ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
∪𝓂𝒾𝓃 ℒℵ 

𝑝

2
) ∩𝓂𝒶𝓍 (ℒℵ 

𝑝

1
∪𝓂𝒾𝓃 ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
∪𝓂𝒶𝓍 (ℒℵ 

𝑝

2
∩𝓂𝒶𝓍 ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
∪𝓂𝒶𝓍 ℒℵ 

𝑝

2
) ∩𝓂𝒶𝓍 (ℒℵ 

𝑝

1
∪𝓂𝒶𝓍 ℒℵ 

𝑝

3
), 

23) ℒℵ 
𝑝

1
⨁𝓂𝒾𝓃 (ℒℵ 

𝑝

2
∩𝓂𝒾𝓃 ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
⨁𝓂𝒾𝓃ℒℵ 

𝑝

2
) ∩𝓂𝒾𝓃 (ℒℵ 

𝑝

1
⨁𝓂𝒾𝓃ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
⨁𝓂𝒶𝓍 (ℒℵ 

𝑝

2
∩𝓂𝒾𝓃 ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
⨁𝓂𝒶𝓍ℒℵ 

𝑝

2
) ∩𝓂𝒾𝓃 (ℒℵ 

𝑝

1
⨁𝓂𝒶𝓍ℒℵ 

𝑝

3
), 

24) ℒℵ 
𝑝

1
⨁𝓂𝒾𝓃 (ℒℵ 

𝑝

2
∩𝓂𝒶𝓍 ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
⨁𝓂𝒾𝓃ℒℵ 

𝑝

2
) ∩𝓂𝒶𝓍 (ℒℵ 

𝑝

1
⨁𝓂𝒾𝓃ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
⨁𝓂𝒶𝓍 (ℒℵ 

𝑝

2
∩𝓂𝒶𝓍 ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
⨁𝓂𝒶𝓍ℒℵ 

𝑝

2
) ∩𝓂𝒶𝓍 (ℒℵ 

𝑝

1
⨁𝓂𝒶𝓍ℒℵ 

𝑝

3
), 

25) ℒℵ 
𝑝

1
⨂𝓂𝒾𝓃 (ℒℵ 

𝑝

2
∩𝓂𝒾𝓃 ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
⨂𝓂𝒾𝓃ℒℵ 

𝑝

2
) ∩𝓂𝒾𝓃 (ℒℵ 

𝑝

1
⨂𝓂𝒾𝓃ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
⨂𝓂𝒶𝓍 (ℒℵ 

𝑝

2
∩𝓂𝒾𝓃 ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
⨂𝓂𝒶𝓍ℒℵ 

𝑝

2
) ∩𝓂𝒾𝓃 (ℒℵ 

𝑝

1
⨂𝓂𝒶𝓍ℒℵ 

𝑝

3
), 

26) ℒℵ 
𝑝

1
⨂𝓂𝒾𝓃 (ℒℵ 

𝑝

2
∩𝓂𝒶𝓍 ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
⨂𝓂𝒾𝓃ℒℵ 

𝑝

2
) ∩𝓂𝒶𝓍 (ℒℵ 

𝑝

1
⨂𝓂𝒾𝓃ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
⨂𝓂𝒶𝓍 (ℒℵ 

𝑝

2
∩𝓂𝒶𝓍 ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
⨂𝓂𝒶𝓍ℒℵ 

𝑝

2
) ∩𝓂𝒶𝓍 (ℒℵ 

𝑝

1
⨂𝓂𝒶𝓍ℒℵ 

𝑝

3
), 

27) ℒℵ 
𝑝

1
@𝓂𝒾𝓃 (ℒℵ 

𝑝

2
∩𝓂𝒾𝓃 ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
@𝓂𝒾𝓃ℒℵ 

𝑝

2
) ∩𝓂𝒾𝓃 (ℒℵ 

𝑝

1
@𝓂𝒾𝓃ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
@𝓂𝒶𝓍 (ℒℵ 

𝑝

2
∩𝓂𝒾𝓃 ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
@𝓂𝒶𝓍ℒℵ 

𝑝

2
) ∩𝓂𝒾𝓃 (ℒℵ 

𝑝

1
@𝓂𝒶𝓍ℒℵ 

𝑝

3
), 

28) ℒℵ 
𝑝

1
@𝓂𝒾𝓃 (ℒℵ 

𝑝

2
∩𝓂𝒶𝓍 ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
@𝓂𝒾𝓃ℒℵ 

𝑝

2
) ∩𝓂𝒶𝓍 (ℒℵ 

𝑝

1
@𝓂𝒾𝓃ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
@𝓂𝒶𝓍 (ℒℵ 

𝑝

2
∩𝓂𝒶𝓍 ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
@𝓂𝒶𝓍ℒℵ 

𝑝

2
) ∩𝓂𝒶𝓍 (ℒℵ 

𝑝

1
@𝓂𝒶𝓍ℒℵ 

𝑝

3
). 

Proof. The proof follows a process similar to that used in the operations of 𝐼𝐹𝑆𝑠 and is therefore 

omitted for the sake of brevity. 

Proposition 4. Let ℒℵ 
𝑝

1
, ℒℵ 

𝑝

2
, and ℒℵ 

𝑝

3
 be three ℒ𝑝-𝐼𝐹𝑆𝑠. Then, the following properties hold, such 

that 

a) ℒℵ 
𝑝

1
⨂𝓂𝒾𝓃 (ℒℵ 

𝑝

2
⨁𝓂𝒾𝓃ℒℵ 

𝑝

3
) ⊂ (ℒℵ 

𝑝

1
⨂𝓂𝒾𝓃ℒℵ 

𝑝

2
)⨁𝓂𝒾𝓃 (ℒℵ 

𝑝

1
⨂𝓂𝒾𝓃ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
⨂𝓂𝒶𝓍 (ℒℵ 

𝑝

2
⨁𝓂𝒾𝓃ℒℵ 

𝑝

3
) ⊂ (ℒℵ 

𝑝

1
⨂𝓂𝒶𝓍ℒℵ 

𝑝

2
)⨁𝓂𝒾𝓃 (ℒℵ 

𝑝

1
⨂𝓂𝒶𝓍ℒℵ 

𝑝

3
), 
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b) ℒℵ 
𝑝

1
⨂𝓂𝒾𝓃 (ℒℵ 

𝑝

2
⨁𝓂𝒶𝓍ℒℵ 

𝑝

3
) ⊂ (ℒℵ 

𝑝

1
⨂𝓂𝒾𝓃ℒℵ 

𝑝

2
)⨁𝓂𝒶𝓍 (ℒℵ 

𝑝

1
⨂𝓂𝒾𝓃ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
⨂𝓂𝒶𝓍 (ℒℵ 

𝑝

2
⨁𝓂𝒶𝓍ℒℵ 

𝑝

3
) ⊂ (ℒℵ 

𝑝

1
⨂𝓂𝒶𝓍ℒℵ 

𝑝

2
)⨁𝓂𝒶𝓍 (ℒℵ 

𝑝

1
⨂𝓂𝒶𝓍ℒℵ 

𝑝

3
), 

c) ℒℵ 
𝑝

1
@𝓂𝒾𝓃 (ℒℵ 

𝑝

2
⨁𝓂𝒾𝓃ℒℵ 

𝑝

3
) ⊂ (ℒℵ 

𝑝

1
@𝓂𝒾𝓃ℒℵ 

𝑝

2
)⨁𝓂𝒾𝓃 (ℒℵ 

𝑝

1
@𝓂𝒾𝓃ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
@𝓂𝒶𝓍 (ℒℵ 

𝑝

2
⨁𝓂𝒾𝓃ℒℵ 

𝑝

3
) ⊂ (ℒℵ 

𝑝

1
@𝓂𝒶𝓍ℒℵ 

𝑝

2
)⨁𝓂𝒾𝓃 (ℒℵ 

𝑝

1
@𝓂𝒶𝓍ℒℵ 

𝑝

3
), 

d) ℒℵ 
𝑝

1
@𝓂𝒾𝓃 (ℒℵ 

𝑝

2
⨁𝓂𝒶𝓍ℒℵ 

𝑝

3
) ⊂ (ℒℵ 

𝑝

1
@𝓂𝒾𝓃ℒℵ 

𝑝

2
)⨁𝓂𝒶𝓍 (ℒℵ 

𝑝

1
@𝓂𝒾𝓃ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
@𝓂𝒶𝓍 (ℒℵ 

𝑝

2
⨁𝓂𝒶𝓍ℒℵ 

𝑝

3
) ⊂ (ℒℵ 

𝑝

1
@𝓂𝒶𝓍ℒℵ 

𝑝

2
)⨁𝓂𝒶𝓍 (ℒℵ 

𝑝

1
@𝓂𝒶𝓍ℒℵ 

𝑝

3
). 

e) ℒℵ 
𝑝

1
⨁𝓂𝒾𝓃 (ℒℵ 

𝑝

2
⨂𝓂𝒾𝓃ℒℵ 

𝑝

3
) ⊃ (ℒℵ 

𝑝

1
⨁𝓂𝒾𝓃ℒℵ 

𝑝

2
)⨂𝓂𝒾𝓃 (ℒℵ 

𝑝

1
⨁𝓂𝒾𝓃ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
⨁𝓂𝒶𝓍 (ℒℵ 

𝑝

2
⨂𝓂𝒾𝓃ℒℵ 

𝑝

3
) ⊃ (ℒℵ 

𝑝

1
⨁𝓂𝒶𝓍ℒℵ 

𝑝

2
)⨂𝓂𝒾𝓃 (ℒℵ 

𝑝

1
⨁𝓂𝒶𝓍ℒℵ 

𝑝

3
), 

f) ℒℵ 
𝑝

1
⨁𝓂𝒾𝓃 (ℒℵ 

𝑝

2
⨂𝓂𝒶𝓍ℒℵ 

𝑝

3
) ⊃ (ℒℵ 

𝑝

1
⨁𝓂𝒾𝓃ℒℵ 

𝑝

2
)⨂𝓂𝒶𝓍 (ℒℵ 

𝑝

1
⨁𝓂𝒾𝓃ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
⨁𝓂𝒶𝓍 (ℒℵ 

𝑝

2
⨂𝓂𝒶𝓍ℒℵ 

𝑝

3
) ⊃ (ℒℵ 

𝑝

1
⨁𝓂𝒶𝓍ℒℵ 

𝑝

2
)⨂𝓂𝒶𝓍 (ℒℵ 

𝑝

1
⨁𝓂𝒶𝓍ℒℵ 

𝑝

3
), 

g) ℒℵ 
𝑝

1
@𝓂𝒾𝓃 (ℒℵ 

𝑝

2
⨂𝓂𝒾𝓃ℒℵ 

𝑝

3
) ⊃ (ℒℵ 

𝑝

1
@𝓂𝒾𝓃ℒℵ 

𝑝

2
)⨂𝓂𝒾𝓃 (ℒℵ 

𝑝

1
@𝓂𝒾𝓃ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
@𝓂𝒶𝓍 (ℒℵ 

𝑝

2
⨂𝓂𝒾𝓃ℒℵ 

𝑝

3
) ⊃ (ℒℵ 

𝑝

1
@𝓂𝒶𝓍ℒℵ 

𝑝

2
)⨂𝓂𝒾𝓃 (ℒℵ 

𝑝

1
@𝓂𝒶𝓍ℒℵ 

𝑝

3
), 

h) ℒℵ 
𝑝

1
@𝓂𝒾𝓃 (ℒℵ 

𝑝

2
⨂𝓂𝒶𝓍ℒℵ 

𝑝

3
) ⊃ (ℒℵ 

𝑝

1
@𝓂𝒾𝓃ℒℵ 

𝑝

2
)⨂𝓂𝒶𝓍 (ℒℵ 

𝑝

1
@𝓂𝒾𝓃ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
@𝓂𝒶𝓍 (ℒℵ 

𝑝

2
⨂𝓂𝒶𝓍ℒℵ 

𝑝

3
) ⊃ (ℒℵ 

𝑝

1
@𝓂𝒶𝓍ℒℵ 

𝑝

2
)⨂𝓂𝒶𝓍 (ℒℵ 

𝑝

1
@𝓂𝒶𝓍ℒℵ 

𝑝

3
). 

i) ℒℵ 
𝑝

1
⨁𝓂𝒾𝓃 (ℒℵ 

𝑝

2
@𝓂𝒾𝓃ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
⨁𝓂𝒾𝓃ℒℵ 

𝑝

2
)@𝓂𝒾𝓃 (ℒℵ 

𝑝

1
⨁𝓂𝒾𝓃ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
⨁𝓂𝒶𝓍 (ℒℵ 

𝑝

2
@𝓂𝒾𝓃ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
⨁𝓂𝒶𝓍ℒℵ 

𝑝

2
)@𝓂𝒾𝓃 (ℒℵ 

𝑝

1
⨁𝓂𝒶𝓍ℒℵ 

𝑝

3
), 

j) ℒℵ 
𝑝

1
⨁𝓂𝒾𝓃 (ℒℵ 

𝑝

2
@𝓂𝒶𝓍ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
⨁𝓂𝒾𝓃ℒℵ 

𝑝

2
)@𝓂𝒶𝓍 (ℒℵ 

𝑝

1
⨁𝓂𝒾𝓃ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
⨁𝓂𝒶𝓍 (ℒℵ 

𝑝

2
@𝓂𝒶𝓍ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
⨁𝓂𝒶𝓍ℒℵ 

𝑝

2
)@𝓂𝒶𝓍 (ℒℵ 

𝑝

1
⨁𝓂𝒶𝓍ℒℵ 

𝑝

3
), 

k) ℒℵ 
𝑝

1
⨂𝓂𝒾𝓃 (ℒℵ 

𝑝

2
@𝓂𝒾𝓃ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
⨂𝓂𝒾𝓃ℒℵ 

𝑝

2
)@𝓂𝒾𝓃 (ℒℵ 

𝑝

1
⨂𝓂𝒾𝓃ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
⨂𝓂𝒶𝓍 (ℒℵ 

𝑝

2
@𝓂𝒾𝓃ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
⨂𝓂𝒶𝓍ℒℵ 

𝑝

2
)@𝓂𝒾𝓃 (ℒℵ 

𝑝

1
⨂𝓂𝒶𝓍ℒℵ 

𝑝

3
), 

l) ℒℵ 
𝑝

1
⨂𝓂𝒾𝓃 (ℒℵ 

𝑝

2
@𝓂𝒶𝓍ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
⨂𝓂𝒾𝓃ℒℵ 

𝑝

2
)@𝓂𝒶𝓍 (ℒℵ 

𝑝

1
⨂𝓂𝒾𝓃ℒℵ 

𝑝

3
) and 

ℒℵ 
𝑝

1
⨂𝓂𝒶𝓍 (ℒℵ 

𝑝

2
@𝓂𝒶𝓍ℒℵ 

𝑝

3
) = (ℒℵ 

𝑝

1
⨂𝓂𝒶𝓍ℒℵ 

𝑝

2
)@𝓂𝒶𝓍 (ℒℵ 

𝑝

1
⨂𝓂𝒶𝓍ℒℵ 

𝑝

3
), 

m) ℒℵ 
𝑝

1
⨂𝓂𝒾𝓃ℒℵ 

𝑝

2
⊆𝜐 ℒℵ 

𝑝

1
∩𝓂𝒾𝓃 ℒℵ 

𝑝

2
⊆𝜐 ℒℵ 

𝑝

1
@𝓂𝒾𝓃ℒℵ 

𝑝

2
⊆𝜐 ℒℵ 

𝑝

1
∪𝓂𝒾𝓃 ℒℵ 

𝑝

2
⊆𝜐 ℒℵ 

𝑝

1
⨁𝓂𝒾𝓃ℒℵ 

𝑝

2
, 

n) ℒℵ 
𝑝

1
⨂𝓂𝒶𝓍ℒℵ 

𝑝

2
⊆𝜐 ℒℵ 

𝑝

1
∩𝓂𝒶𝓍 ℒℵ 

𝑝

2
⊆𝜐 ℒℵ 

𝑝

1
@𝓂𝒶𝓍ℒℵ 

𝑝

2
⊆𝜐 ℒℵ 

𝑝

1
∪𝓂𝒶𝓍 ℒℵ 

𝑝

2
⊆𝜐 ℒℵ 

𝑝

1
⨁𝓂𝒶𝓍ℒℵ 

𝑝

2
. 

Proof. This proof also follows similar steps as those used in the operations of 𝐼𝐹𝑆𝑠, and as such, is 

excluded for brevity. 

Remark 2. If we take ℵ1 = 0 = ℵ 2 = ℵ 3, then all operations and relations reduce for ℒ𝑝-𝐼𝐹𝑆𝑠 as 

well as 𝐼𝐹𝑆𝑠. 

ℒ𝑝-intuitionistic fuzzy model operators 

In this subsection, some of the new model operators are introduced using the intuitionistic fuzzy 

approach and similar to logic operators’ “necessity” and “possibility”. Moreover, some extensions are 

obtained with the help of some parameters. First, we start with these two operators, such that: 



28323 

AIMS Mathematics  Volume 10, Issue 12, 28308–28346. 

Definition 12. Let ℒℵ 
𝑝

 be a ℒ𝑝-𝐼𝐹𝑆. Then, we have 

o ℒℵ 
𝑝 = {〈ⱷ, 𝜅(ⱷ), 1 − 𝜅(ⱷ); ℵ 〉|ⱷ ∈ 𝐸} = {〈ⱷ, ℵ 

1(𝜅(ⱷ), 1 − 𝜅(ⱷ))〉|ⱷ ∈ 𝐸}. 

o ℒℵ 
𝑝 = {〈ⱷ, 1 − 𝓈(ⱷ), 𝓈(ⱷ); ℵ 〉|ⱷ ∈ 𝐸} = {〈ⱷ, ℵ 

1(1 − 𝓈(ⱷ), 𝓈(ⱷ))〉|ⱷ ∈ 𝐸}. 

Let 𝜔, 𝛾 ∈ [0, 1] be fixed numbers. Then, the following are the extensions of ℒ𝑝-intuitionistic 

fuzzy model operators: 

𝐷𝜔(ℒℵ 
𝑝 ) = {〈ⱷ, 𝜅(ⱷ) + 𝜔𝜋(ⱷ), 𝓈(ⱷ) + (1 − 𝜔)𝜋(ⱷ); ℵ 〉|ⱷ ∈ 𝐸} 

= {〈ⱷ, ℵ 
1(𝜅(ⱷ) + 𝜔𝜋(ⱷ), 𝓈(ⱷ) + (1 − 𝜔)𝜋(ⱷ))〉|ⱷ ∈ 𝐸}, 

𝐹𝜔,𝛾(ℒℵ 
𝑝 ) = {〈ⱷ, 𝜅(ⱷ) + 𝜔𝜋(ⱷ), 𝓈(ⱷ) + 𝛽𝜋(ⱷ); ℵ 〉|ⱷ ∈ 𝐸} 

= {〈ⱷ, ℵ 
1(𝜅(ⱷ) + 𝜔𝜋(ⱷ), 𝓈(ⱷ) + 𝛽𝜋(ⱷ))〉|ⱷ ∈ 𝐸}, 

𝐺𝜔,𝛾(ℒℵ 
𝑝 ) = {〈ⱷ,𝜔𝜅(ⱷ), 𝛽𝓈(ⱷ); ℵ 〉|ⱷ ∈ 𝐸} 

= {〈ⱷ, ℵ 
1(𝜔𝜅(ⱷ), 𝛽𝓈(ⱷ))〉|ⱷ ∈ 𝐸}, 

𝐻𝜔,𝛾(ℒℵ 
𝑝 ) = {〈ⱷ,𝜔𝜅(ⱷ), 𝓈(ⱷ) + 𝛽𝜋(ⱷ); ℵ 〉|ⱷ ∈ 𝐸} 

= {〈ⱷ, ℵ 
1(𝜔𝜅(ⱷ), 𝓈(ⱷ) + 𝛽𝜋(ⱷ))〉|ⱷ ∈ 𝐸}, 

𝐻∗𝜔,𝛾(ℒℵ 
𝑝 ) = {〈ⱷ,𝜔𝜅(ⱷ), 𝓈(ⱷ) + 𝛽(1 − 𝜔𝜅(ⱷ) − 𝓈(ⱷ)); ℵ 〉|ⱷ ∈ 𝐸} 

= {〈ⱷ, ℵ 
1 (𝜔𝜅(ⱷ), 𝓈(ⱷ) + 𝛽(1 − 𝜔𝜅(ⱷ) − 𝓈(ⱷ)))〉 |ⱷ ∈ 𝐸}, 

𝐻̅𝜔,𝛾(ℒℵ 
𝑝 ) = {〈ⱷ,𝜔𝜅(ⱷ), 𝓈(ⱷ) + 𝛽 − 𝛽𝓈(ⱷ); ℵ 〉|ⱷ ∈ 𝐸} 

= {〈ⱷ, ℵ 
1(𝜔𝜅(ⱷ), 𝓈(ⱷ) + 𝛽 − 𝛽𝓈(ⱷ))〉|ⱷ ∈ 𝐸}, 

𝐽𝜔,𝛾(ℒℵ 
𝑝 ) = {〈ⱷ, 𝜅(ⱷ) + 𝜔𝜋(ⱷ), 𝛽𝓈(ⱷ); ℵ 〉|ⱷ ∈ 𝐸} 

= {〈ⱷ, ℵ 
1(𝜅(ⱷ) + 𝜔𝜋(ⱷ), 𝛽𝓈(ⱷ))〉|ⱷ ∈ 𝐸}, 

𝐽∗𝜔,𝛾(ℒℵ 
𝑝 ) = {〈ⱷ,

1

2
(𝜅(ⱷ) + 𝜔(1 − 𝜅(ⱷ) − 𝛽𝓈(ⱷ))) , 𝛽𝓈(ⱷ); ℵ 〉 |ⱷ ∈ 𝐸} 

= {〈ⱷ, ℵ 
1 (
1

2
(𝜅(ⱷ) + 𝜔(1 − 𝜅(ⱷ) − 𝛽𝓈(ⱷ))) , 𝛽𝓈(ⱷ))〉 |ⱷ ∈ 𝐸}, 

𝐽𝜔̅,𝛾(ℒℵ 
𝑝 ) = {〈ⱷ, 𝜅(ⱷ) + 𝜔 − 𝜔𝜅(ⱷ), 𝛽𝓈(ⱷ); ℵ 〉|ⱷ ∈ 𝐸} 

= {〈ⱷ, ℵ 
1(𝜅(ⱷ) + 𝜔 − 𝜔𝜅(ⱷ), 𝛽𝓈(ⱷ))〉|ⱷ ∈ 𝐸}. 

The defuzzification function is essential for ℒ𝑝 -𝐼𝐹𝑆  to enhance its applicability in various 

methods. The score and accuracy functions must be defined, similar to those in 𝐼𝐹𝑆 and 𝐼𝑉𝐼𝐹𝑆. In 

this context, we propose novel accuracy and scoring functions for ℒ𝑝 -𝐼𝐹𝑆 , derived from various 

perspectives. Initially, the classical defuzzification formulas for 𝐼𝐹𝑆 and 𝐼𝑉𝐼𝐹𝑆 are presented below 

to clarify the source of these functions: 

Definition 13. Let 𝑇 = (𝜅, 𝓈)  be a 𝐼𝐹𝑉 . Then, score function (𝑆𝐼𝐹𝑉(𝑇))  and accuracy functions 
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(𝐻𝐹𝑁(𝑇)) of 𝑇 are denoted and defined as, such that 

𝑆𝐼𝐹𝑉(𝑇) = 𝜅 − 𝓈, 

where −1 ≤ 𝑆𝐼𝐹𝑉(𝑇) ≤ 1. 

𝐻𝐼𝐹𝑉(𝑇) = 𝜅 + 𝓈, 

where 0 ≤ 𝐻𝐼𝐹𝑉(𝑇) ≤ 1, respectively. 

Definition 14. Let 𝐴 = ([𝜅−, 𝜅+], [𝓈−, 𝓈+])  be a 𝐼𝑉𝐼𝐹𝑉 . Then, score function (𝑆𝐼𝑉𝐼𝐹𝑉(𝐴))  and 

accuracy functions (𝐻𝐼𝑉𝐹𝑁(𝐴)) of 𝐴 are denoted and defined as, such that 

𝑆𝐼𝑉𝐼𝐹𝑉(𝐴) =
𝑆𝐼𝐹𝑉(𝜅

−,𝓈−)+𝑆𝐼𝐹𝑉(𝜅
+,𝓈+)

2
=
𝜅+−𝓈++𝜅−−𝓈−

2 ,   

where −1 ≤ 𝑆𝐼𝑉𝐼𝐹𝑉(𝐴) ≤ 1. 

𝐻𝐼𝑉𝐼𝐹𝑉(𝐴) =
𝐻𝐼𝐹𝑉(𝜅

−,𝓈−)+𝐻𝐼𝐹𝑉(𝜅
+,𝓈+)

2
=
𝜅++𝓈++𝜅−+𝓈−

2 , 

where 0 ≤ 𝐻𝐼𝑉𝐼𝐹𝑉(𝐴) ≤ 1, respectively. 

Before offering any recommendations, let us begin by explaining how defuzzification functions 

are utilized in ℒ𝑝-𝐼𝐹𝑆. Essentially, ℒ𝑝-𝐼𝐹𝑆 forms different shapes with a norm ℵ around the central 

𝐼𝐹𝑆 point. In reality, every point within ℒ𝑝-𝐼𝐹𝑆 represents an 𝐼𝐹𝑆. Therefore, the points within the 

ℒ𝑝-𝐼𝐹𝑆 can be utilized to generate a score value. 

We split the ℒ𝑝 -𝐼𝐹𝑆  values into four equal parts for interpretation. As shown in Figure 10, 

increasing the 𝜅 and 𝓈 values from the central 𝐼𝐹𝑆 point (𝜅, 𝓈) leads to values falling in the first 

quarter (Q1). Consequently, the membership and non-membership values will increase. By decreasing 

the value of 𝜅 and increasing the value of 𝓈, the second quartile (Q2) values can be obtained from 

the 𝐼𝐹𝑆 with the center at (𝜅, 𝓈). In this case, the minimum membership value and the highest non-

membership value of the ℒ𝑝-𝐼𝐹𝑆 are identified when the angle is set to 450 angle, and the point is 

at a distance of ℵ . This point, also an 𝐼𝐹𝑆, is referred to as the "pessimistic point" of the ℒ𝑝-𝐼𝐹𝑆. 

Alternatively, the ℒ𝑝 -𝐼𝐹𝑆  attains the point with the maximum membership and minimum non-

membership values by moving to a position in the fourth quartile (Q4) at a distance of ℵ  and a 450 

angle. This point, also an 𝐼𝐹𝑆, is termed the "optimistic point" of the ℒ𝑝-𝐼𝐹𝑆. As a result, the two 

specified points within the ℒ𝑝-shapes can be utilized to calculate the score and accuracy values for 

the ℒ𝑝-𝐼𝐹𝑆, similar to the use of endpoints in 𝐼𝑉𝐼𝐹𝑆. 

In this context, new functions for scoring (𝑆ℒ𝑝−𝐼𝐹𝑉 ) and accuracy (𝐻ℒ𝑝−𝐼𝐹𝑉 ) are introduced for 

ℒ𝑝−𝐼𝐹𝑉 , for 𝑑 = 2. 

Definition 15. A ℒ𝑝-intuitionistic fuzzy number is a collection of 

ℒℵ
𝑝 = (𝜅, 𝓈; ℵ), 

where ℒℵ
𝑝
 represent the ℒ𝑝-intuitionistic fuzzy number with conditions: 

(i) 0 ≤ 𝜅(𝑥) + 𝓈(𝑥) ≤ 1. 

(ii) 0 ≤ 𝜅(𝑥), 𝓈(𝑥), ℵ ≤ 1. 

(ii) 0 ≤ ℵ ≤ 2. 

For the sake of simplicity, the set of the ℒ𝑝-intuitionistic fuzzy number is (ℒ𝑝 − 𝐹𝑁𝓈). 

Definition 16. Let ℒℵ
𝑝 = (𝜅, 𝓈; ℵ)  be a ℒ𝑝 − 𝐼𝐹𝑉  with optimistic point (𝜅 +

ℵ

2
1
𝑝

, 𝓈 −
ℵ

2
1
𝑝

)  and 
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pessimistic point (𝜅 −
ℵ

2
1
𝑝

, 𝓈 +
ℵ

2
1
𝑝

) . Then, score function (𝑆ℒ𝑝−𝐼𝐹𝑉(ℒℵ
𝑝))  and accuracy functions 

(𝐻ℒ𝑝−𝐼𝐹𝑉(ℒℵ
𝑝))  of ℒℵ

𝑝
  are denoted and defined with respect to the decision-maker’s preference 

information 𝜆 ∈ [0,1]: 

𝑆ℒ𝑝−𝐼𝐹𝑉(ℒℵ
𝑝) =

𝜆∗𝑆𝐼𝐹𝑉(𝜅+
ℵ

2

1
𝑝

,𝓈−
ℵ

2

1
𝑝

)+(1−𝜆)∗𝑆𝐼𝐹𝑉(𝜅−
ℵ

2

1
𝑝

,𝓈+
ℵ

2

1
𝑝

)

3
=
𝜅−𝓈+2

1
𝑝ℵ(2𝜆−1)

3
, 

where −1 ≤ 𝑆ℒ𝑝−𝐼𝐹𝑉(ℒℵ
𝑝) ≤ 1. 

𝐻ℒ𝑝−𝐼𝐹𝑉(ℒℵ
𝑝) = 𝜆∗𝐻𝐼𝐹𝑉 (𝜅 +

ℵ

2
1
𝑝

, 𝓈 −
ℵ

2
1
𝑝

) + (1 − 𝜆)∗𝐻𝐼𝐹𝑉 (𝜅 −
ℵ

2
1
𝑝

, 𝓈 +
ℵ

2
1
𝑝

) = 𝜅 + 𝓈, 

where 0 ≤ 𝐻ℒ𝑝−𝐼𝐹𝑉(ℒℵ
𝑝) ≤ 1 , respectively. Note that parameter 𝜆  represents the decision-maker's 

viewpoint on the model. When 𝜆 is zero, it reflects a fully pessimistic view, while a value of one 

indicates a completely optimistic outlook. Common interpretations suggest that 𝜆 ∈ [0, 0. 5) reflects 

a pessimistic stance, and 𝜆 ∈ (0.5, 1] reflects an optimistic stance. A neutral or indifferent attitude is 

indicated when 𝜆 = 0.5. 

These rules define the comparison between two ℒ𝑝 − 𝐼𝐹𝑉𝑠 ℒℵ
𝑝

1
 and ℒℵ

𝑝

2
, such that 

a) ℒℵ
𝑝

1
 is higher ranked than ℒℵ

𝑝

2
 if 𝑆ℒ𝑝−𝐼𝐹𝑉(ℒℵ

𝑝

1
) > 𝑆ℒ𝑝−𝐼𝐹𝑉(ℒℵ

𝑝

2
), 

b) ℒℵ
𝑝

1
  is lower ranked than ℒℵ

𝑝

2
  if 𝑆ℒ𝑝−𝐼𝐹𝑉(ℒℵ

𝑝

1
) < 𝑆ℒ𝑝−𝐼𝐹𝑉(ℒℵ

𝑝

2
) , when 𝑆ℒ𝑝−𝐼𝐹𝑉(ℒℵ

𝑝

1
) =

𝑆ℒ𝑝−𝐼𝐹𝑉(ℒℵ
𝑝

2
) for two ℒ𝑝 − 𝐼𝐹𝑉𝑠, then, 

c) ℒℵ
𝑝

1
 is higher ranked than ℒℵ

𝑝

2
 if 𝐻ℒ𝑝−𝐼𝐹𝑉(ℒℵ

𝑝

1
) > 𝐻ℒ𝑝−𝐼𝐹𝑉(ℒℵ

𝑝

2
), 

d) ℒℵ
𝑝

1
 is lower ranked than ℒℵ

𝑝

2
 if 𝐻ℒ𝑝−𝐼𝐹𝑉(ℒℵ

𝑝

1
) < 𝐻ℒ𝑝−𝐼𝐹𝑉(ℒℵ

𝑝

2
), 

e) ℒℵ
𝑝

1
 is similar ℒℵ

𝑝

2
 if 𝐻ℒ𝑝−𝐼𝐹𝑉(ℒℵ

𝑝

1
) = 𝐻ℒ𝑝−𝐼𝐹𝑉(ℒℵ

𝑝

2
). 

5. Operations on 𝓛𝒑-intuitionistic fuzzy set via 𝓽-norms and 𝓽-conorms 

By applying universal 𝓉 -norms and 𝓉 -conorms, algebraic operations among ℒ𝑝 - 𝐼𝐹𝑆  in 

Definition 10 (vii-x) can be expanded. Note that, for upcoming results, ℵ ∈ [0,1]. 

Definition 17. Let ℒℵ
𝑝

1
= 〈𝜅1, 𝓈1; ℵ1〉 and ℒℵ

𝑝

2
= 〈𝜅2, 𝓈2; ℵ2〉 be two ℒ𝑝-𝐼𝐹𝑆𝑠. Assume that, in the 

context of ℒ𝑝-intuitionistic fuzzy complement, 𝑁(ℏ) = 1 − ℏ with 𝔔 as the norm or conorm, 𝒯 

and 𝒮 as the dual 𝓉-norm and 𝓉-conorm, respectively. The general algebraic operations among ℒ𝑝-

𝐼𝐹𝑆s are defined as follows: 

1) ℒℵ
𝑝

1
⨁𝔔ℒℵ

𝑝

2
= (𝒮(𝜅1, 𝜅2), 𝒯(𝓈1, 𝓈2);𝔔(ℵ1, ℵ2)), 

2) ℒℵ
𝑝

1
⨂𝔔ℒℵ

𝑝

2
= (𝒯(𝜅1, 𝜅2), 𝒮(𝓈1, 𝓈2);𝔔(ℵ1, ℵ2)). 

It is clear that the operations presented in Definition 17 are based on those outlined in Definition 10, 

with particular selections for 𝒯, 𝒮, and 𝔔. 

We now show that the sum and product of two ℒ𝑝-𝐼𝐹𝑆𝑠 also result in ℒ𝑝-𝐼𝐹𝑆𝑠, as stated in the 

following proposition: 

Proposition 5. Let ℒℵ
𝑝

1
= 〈𝜅1, 𝓈1; ℵ1〉 and ℒℵ

𝑝

2
= 〈𝜅2, 𝓈2; ℵ2〉 be two ℒ𝑝-𝐼𝐹𝑆𝑠. Assume that, in the 
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context of intuitionistic fuzzy complement, 𝑁(ℏ) = 1 − ℏ with 𝔔 as the norm or conorm, 𝒯 and 

𝒮 as the dual 𝓉-norm and 𝓉-conorm, respectively. Then ℒℵ
𝑝

1
⨁𝔔ℒℵ

𝑝

2
 and ℒℵ

𝑝

1
⨂𝔔ℒℵ

𝑝

2
 are also ℒ𝑝-

𝐼𝐹𝑆. 

Proof. Sine 𝒮 is a 𝓉-conorm corresponding to intuitionistic fuzzy complement 𝑁, then 𝒮(ℏ, ծ) =
1 − 𝒯(1 − ℏ, 1 − ծ). We know that ℏ ≤ 1 − ծ and 𝒯 is nondecreasing, then we have 

𝒯(ℏ, ծ) + 𝒮(ℏ, ծ) = 𝒯(ℏ, ծ) + 1 − 𝒯(1 − ℏ, 1 − ծ) 

≤ 𝒯(1 − ℏ, 1 − ծ) + 1 − 𝒯(1 − ℏ, 1 − ծ) = 1. 

Furthermore, as the domain of 𝔔 is the unit closed interval, we deduce that ℒℵ
𝑝

1
⨂𝔔ℒℵ

𝑝

2
 is a 

ℒ𝑝-𝐼𝐹𝑆. It can also be demonstrated that ℒℵ
𝑝

1
⨁𝔔ℒℵ

𝑝

2
 is a ℒ𝑝 − 𝐼𝐹𝑉. 

Continuous Archimedean 𝓉-norms and 𝓉-conorm can be stated using their additive generators, 

as demonstrated by Klement et al. [46]. Consequently, one can define some algebraic operations among 

ℒ𝑝 − 𝐼𝐹𝑉s by employing additive generators of strict Archimedean 𝓉-norms and 𝓉-conorms. 

Definition 18. Let 𝜆 > 0 , and assume that ℒ = ⟨𝜅ℒ , 𝓈ℒ; ℵℒ⟩  and 𝔏 = ⟨𝜅𝔏, 𝓈𝔏; ℵ𝔏⟩  are two ℒ𝑝 −
𝐼𝐹𝑉s. Suppose that the additive generator of a continuous Archimedean 𝓉-norm is ǥ: [0,1] → [0,∞], 

and the additive generator of a continuous Archimedean 𝓉-norm or 𝓉-conorm is ʚ: [0,1] → [0,∞], 
with ħ(𝓉) = ǥ(1 − 𝓉). The following definitions describe algebraic operations for ℒ𝑝 − 𝐼𝐹𝑉: 

i. ℒ ⊕ʚ 𝔏 = ⟨ħ
−1(ħ(𝜅ℒ) + ħ(𝜅𝔏)), ǥ

−1(ǥ(𝓈ℒ) + ǥ(𝓈𝔏)); ʚ
−1(ʚ(ℵℒ) + ʚ(ℵ𝔏))⟩, 

ii. ℒ ⊗ʚ 𝔏 = ⟨ǥ
−1(ǥ(𝜅ℒ) + ǥ(𝜅𝔏)), ħ

−1(ħ(𝓈ℒ) + ħ(𝓈𝔏)); ʚ
−1(ʚ(ℵℒ) + ʚ(ℵ𝔏))⟩, 

iii. 𝜆ʚℒ = ⟨ħ
−1(𝜆ħ(𝜅ℒ)), ǥ

−1(𝜆ǥ(𝓈ℒ)); ʚ
−1(𝜆ʚ(ℵℒ))⟩, 

iv. ℒ𝜆ʚ = ⟨ǥ−1(𝜆ǥ(𝜅ℒ)), ħ
−1(𝜆ħ(𝓈ℒ)); ʚ

−1(𝜆ʚ(ℵℒ))⟩. 

The following statement verifies that ℒ𝑝 − 𝐼𝐹𝑉s is also multiplication by constant and power of 

ℒ𝑝 − 𝐼𝐹𝑉s. 

Proposition 6. Let 𝜆 > 0 , and assume that ℒ = ⟨𝜅ℒ , 𝓈ℒ; ℵℒ⟩  and 𝔏 = ⟨𝜅𝔏, 𝓈𝔏; ℵ𝔏⟩  are two ℒ𝑝 −
𝐼𝐹𝑉s. Suppose that the additive generator of a continuous Archimedean 𝓉-norm is ǥ: [0,1] → [0,∞], 
and the additive generator of a continuous Archimedean 𝓉-norm or 𝓉-conorm is ʚ: [0,1] → [0,∞], 
with ħ(𝓉) = ǥ(1 − 𝓉). Then ℒ ⊕ʚ 𝔏, ℒ ⊗ʚ 𝔏, 𝜆ʚℒ and ℒ𝜆ʚ . 

Proof. The Proposition 6 makes it obvious that ℒ ⊕ʚ 𝔏  and ℒ ⊗ʚ 𝔏  are ℒ𝑝 − 𝐼𝐹𝑉 s. It is well 

known that ħ−1(𝓉) = 1 − ǥ−1(𝓉)  and ǥ(𝓉) = ħ(1 − 𝓉) . Now, 𝜅 ≤ 1 − 𝓈  and ħ, ħ−1  are non-

decreasing, then 

0 ≤ ħ−1(𝜆ħ(𝜅ℒ)) + ǥ
−1(𝜆ǥ(𝓈ℒ)) 

≤ ħ−1(𝜆ħ(1 − 𝓈ℒ)) + ǥ
−1(𝜆ǥ(𝓈ℒ)) 

= 1 − ǥ−1(𝜆ħ(1 − 𝓈ℒ)) + ǥ
−1(𝜆ǥ(𝓈ℒ)) 

= 1 − ǥ−1(𝜆ǥ(𝓈ℒ)) + ǥ
−1(𝜆ǥ(𝓈ℒ)) 

= 1. 

Furthermore, as the range of ʚ−1 is the unit closed interval, we deduce that 𝜆ʚℒ is a ℒ𝑝 − 𝐼𝐹𝑉. 

Likewise, it can be demonstrated that ℒ𝜆ʚ  is a ℒ𝑝 − 𝐼𝐹𝑉. 

Example 2. Assume that ǥ, ħ, ʚ, 𝜎: [0,1] → [0,∞]  characterized by 𝜆 > 0 , ǥ(𝓉) = −log 𝓉, ħ(𝓉) = 

−log (1 − 𝓉), ʚ(𝓉) = −log 𝓉 and 𝜎(𝓉) = −log (1 − 𝓉). The algebraic operators are then obtained 
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a) ℒ ⊕ʚ 𝔏 = ⟨𝜅ℒ + 𝜅𝔏 − 𝜅ℒ𝜅𝔏, 𝓈ℒ𝓈𝔏; ℵℒℵ𝔏⟩, 
b) ℒ ⊕𝜎 𝔏 = ⟨𝜅ℒ + 𝜅𝔏 − 𝜅ℒ𝜅𝔏, 𝓈ℒ𝓈𝔏; ℵℒ + ℵ𝔏 − ℵℒℵ𝔏⟩,  

c) ℒ ⊗ʚ 𝔏 = ⟨𝜅ℒ𝜅𝔏, 𝓈ℒ + 𝓈𝔏 − 𝓈ℒ𝓈𝔏; ℵℒℵ𝔏⟩, 
d) ℒ ⊗𝜎 𝔏 = ⟨𝜅ℒ𝜅𝔏, 𝓈ℒ + 𝓈𝔏 − 𝓈ℒ𝓈𝔏; ℵℒ + ℵ𝔏 − ℵℒℵ𝔏⟩, 

e) 𝜆ʚℒ = ⟨1 − (1 − 𝜅ℒ)
𝜆, 𝓈ℒ

𝜆; ℵℒ
𝜆⟩ 

f) 𝜆𝜎ℒ = ⟨1 − (1 − 𝜅ℒ)
𝜆, 𝓈ℒ

𝜆; 1 − (1 − ℵℒ)
𝜆⟩, 

g) ℒ𝜆ʚ = ⟨𝜅ℒ
𝜆, 1 − (1 − 𝓈ℒ)

𝜆; ℵℒ
𝜆⟩, 

h) ℒ𝜆𝜎 = ⟨𝜅ℒ
𝜆, 1 − (1 − 𝓈ℒ)

𝜆; 1 − (1 − ℵℒ)
𝜆⟩. 

Some fundamental features of algebraic operations are provided by the following theorem. 

Theorem 2. Let 𝜆, 𝛾 > 0, and assume that ℒ = ⟨𝜅ℒ , 𝓈ℒ; ℵℒ⟩, 𝔏 = ⟨𝜅𝔏, 𝓈𝔏; ℵ𝔏⟩ and 𝔗 = ⟨𝜅𝔗, 𝓈𝔗; ℵ𝔗⟩ 
are three ℒ𝑝 − 𝐼𝐹𝑉s. Suppose that the additive generator of a continuous Archimedean 𝓉-norm is 

ǥ: [0,1] → [0,∞], and the additive generator of a continuous Archimedean 𝓉-norm or 𝓉-conorm is 

ʚ: [0,1] → [0,∞], with ħ(𝓉) = ǥ(1 − 𝓉). Then, followings hold such that 

1) ℒ ⊕ʚ 𝔏 = 𝔏⊕ʚ ℒ, 

2) ℒ ⊗ʚ 𝔏 = 𝔏⊗ʚ ℒ, 

3) (ℒ ⊕ʚ 𝔏)⊕ʚ 𝔗 = ℒ ⊕ʚ (𝔏⊕ʚ 𝔗), 
4) (ℒ ⊗ʚ 𝔏)⊗ʚ 𝔗 = ℒ ⊗ʚ (𝔏⊗ʚ 𝔗), 
5) 𝜆ʚ(ℒ ⊕ʚ 𝔏) = 𝜆ʚℒ ⊕ʚ 𝜆ʚ𝔏, 

6) (𝜆ʚ + 𝛾ʚ)ℒ = 𝜆ʚℒ ⊕ʚ 𝛾ʚℒ, 

7) (ℒ ⊗ʚ 𝔏)
𝜆ʚ = ℒ𝜆ʚ⊗ʚ 𝔏

𝜆ʚ , 

8) ℒ𝜆ʚ⊗ʚ ℒ
𝛾ʚ = ℒ𝜆ʚ+𝛾ʚ. 

Proof. (1)–(4) hold. For (5), we have 

𝜆ʚ(ℒ ⊕ʚ 𝔏) = 𝜆ʚ〈ħ
−1(ħ(𝜅ℒ) + ħ(𝜅𝔏)), ǥ

−1(ǥ(𝓈ℒ) + ǥ(𝓈𝔏)); ʚ
−1(ʚ(ℵℒ) + ʚ(ℵ𝔏))〉 

= 〈ħ−1 (𝜆ħ (ħ−1(ħ(𝜅ℒ) + ħ(𝜅𝔏)))) , ǥ
−1 (𝜆ǥ (ǥ−1(ǥ(𝓈ℒ)

+ ǥ(𝓈𝔏)))) ; ʚ
−1 (𝜆ʚ (ʚ−1(ʚ(ℵℒ) + ʚ(ℵ𝔏))))〉 

= 〈ħ−1(𝜆ħ(𝜅ℒ) + 𝜆ħ(𝜅𝔏)), ǥ
−1(𝜆ǥ(𝓈ℒ) + 𝜆ǥ(𝓈𝔏)); ʚ

−1(𝜆ʚ(ℵℒ) + 𝜆ʚ(ℵ𝔏))〉 

= 〈
ħ−1 (ħ (ħ−1(𝜆ħ(𝜅ℒ))) + ħ (ħ

−1(𝜆ħ(𝜅𝔏)))) , ǥ
−1(ǥ(ǥ−1(𝜆ǥ(𝓈ℒ))

+ǥ (ǥ−1(𝜆ǥ(𝓈𝔏)))) ; ʚ
−1 (ʚ (ʚ−1(𝜆ʚ(ℵℒ))) + ʚ (ʚ

−1(𝜆ʚ(ℵ𝔏))))
〉 

= 〈ħ−1(ħ(𝜅𝜆ℒ) + ħ(𝜅𝜆𝔏)), ǥ
−1(ǥ(𝓈𝜆ℒ) + ǥ(𝓈𝜆𝔏)); ʚ

−1(ʚ(ℵ𝜆ℒ) + 𝜆ʚ(𝓈𝜆𝔏))〉 

= 𝜆ʚℒ ⊕ʚ 𝜆ʚ𝔏. 

For (6), we have 

(𝜆ʚ + 𝛾ʚ)ℒ = 〈ħ
−1((𝜆 + 𝛾)ħ(𝜅ℒ)), ǥ

−1((𝜆 + 𝛾)ǥ(𝓈ℒ)); ʚ
−1((𝜆 + 𝛾)ʚ(ℵℒ))〉 

= 〈ħ−1(𝜆ħ(𝜅ℒ) + 𝛾ħ(𝜅ℒ)), ǥ
−1(𝜆ǥ(𝓈ℒ) + 𝛾ǥ(𝓈ℒ)); ʚ

−1(𝜆ʚ(ℵℒ) + 𝛾ʚ(ℵℒ))〉  

= 〈
ħ−1 (ħ (ħ−1(𝜆ħ(𝜅ℒ))) + ħ (ħ

−1(𝛾ħ(𝜅ℒ)))) ,

ǥ−1 (ǥ (ǥ−1(𝜆ǥ(𝓈ℒ)))+ǥ (ǥ
−1(𝛾ǥ(𝓈ℒ)))) ; ʚ

−1 (ʚ (ʚ−1(𝜆ʚ(ℵℒ))) + ʚ (ʚ
−1(𝛾ʚ(ℵℒ))))

〉 
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= 〈ħ−1 (ħ(𝜅𝜆ʚℒ) + ħ(𝜅𝛾ʚℒ)) , ǥ
−1 (ǥ(𝓈𝜆ʚℒ) + ǥ(𝓈𝛾ʚℒ)) ; ʚ

−1 (ʚ(ℵ𝜆ʚℒ) + ʚ(ℵ𝛾ʚℒ))〉 

= 𝜆ʚℒ ⊕ʚ 𝛾ʚℒ. 

For (7), we have 

(ℒ ⊗ʚ 𝔏)
𝜆ʚ = ⟨ǥ−1 (𝜆ǥ(𝜅ℒ⊗ʚ𝔏)) , ħ

−1 (𝜆ħ(𝓈ℒ⊗ʚ𝔏)) ; ʚ
−1 (𝜆ʚ(ℵℒ⊗ʚ𝔏))⟩ 

= ⟨ǥ−1 (𝜆ǥ (ǥ−1(ǥ(𝜅ℒ) + ǥ(𝜅𝔏)))) , ħ
−1 (𝜆ħ (ħ−1(ħ(𝓈ℒ) + ħ(𝓈𝔏)))) ; 

ʚ−1 (𝜆ʚ (ʚ−1(ʚ(ℵℒ) + ʚ(ℵ𝔏))))⟩ 

= ⟨ǥ−1(𝜆ǥ(𝜅ℒ) + 𝜆ǥ(𝜅𝔏)), ħ
−1(𝜆ħ(𝓈ℒ) + 𝜆ħ(𝓈𝔏)); ʚ

−1(𝜆ʚ(ℵℒ) + 𝜆ʚ(ℵ𝔏))⟩ 

= ⟨ǥ−1 (ǥ (ǥ−1(𝜆ǥ(𝜅ℒ))) + ǥ (ǥ
−1(𝜆ǥ(𝜅𝔏)))) , ħ

−1 (ħ (ħ−1(𝜆ħ(𝓈ℒ))) 

+ħ(ħ−1(𝜆ħ(𝓈𝔏))) ; ʚ
−1 (ʚ (ʚ−1(𝜆ʚ(ℵℒ))) + ʚ (ʚ

−1(𝜆ʚ(ℵ𝔏)))⟩ 

= ⟨ǥ−1 (ǥ(𝜅ℒ𝜆ʚ) + ǥ(𝜅𝔏𝜆ʚ)) , ħ
−1 (ħ(𝓈ℒ𝜆ʚ) + ħ(𝓈𝔏𝜆ʚ)) ; 

ʚ−1 (ʚ(ℵℒ𝜆ʚ) + ʚ(ℵ𝔏𝜆ʚ))⟩ = ℒ
𝜆ʚ⊗ʚ 𝔏

𝜆ʚ . 

For (8), we have 

ℒ𝜆ʚ+𝛾ʚ = ⟨ǥ−1((𝜆 + 𝛾)ǥ(𝜅ℒ)), ħ
−1((𝜆 + 𝛾)ħ(𝓈ℒ)); ʚ

−1((𝜆 + 𝛾)ʚ(ℵℒ))⟩ 

= ⟨ǥ−1(𝜆ǥ(𝜅ℒ) + 𝛾ǥ(𝜅ℒ)), ħ
−1(𝜆ħ(𝓈ℒ) + 𝛾ħ(𝓈ℒ));ʚ

−1(𝜆ʚ(ℵℒ) + 𝛾ʚ(ℵℒ))⟩ 

= ⟨ǥ−1 (ǥ (ǥ−1(𝜆ǥ(𝜅ℒ))) + ǥ (ǥ
−1(𝛾ǥ(𝜅ℒ)))) , ħ

−1 (ħ (ħ−1(𝜆ħ(𝓈ℒ))) 

+ħ(ħ−1(𝛾ħ(𝓈ℒ)))) ; ʚ
−1 (ʚ (ʚ−1(𝜆ʚ(ℵℒ))) + ʚ (ʚ

−1(𝛾ʚ(ℵℒ))))⟩ 

= ⟨ǥ−1 (ǥ(𝜅ℒ𝜆) + ǥ(𝜅ℒ𝛾)) , ħ
−1 (ħ(𝓈ℒ𝜆) + ħ(𝓈ℒ𝛾)) ; ʚ

−1 (ʚ(ℵℒ𝜆) + ʚ(ℵℒ𝛾))⟩ 

= ℒ𝜆ʚ⊗ʚ ℒ
𝛾ʚ. 

6. Aggregation operators via 𝓛𝒑-𝑰𝑭𝑽s 

Aggregation operators are crucial in converting input values expressed as fuzzy values into a 

single output value. In this section, we present a weighted arithmetic aggregation operator and a 

weighted geometric aggregation operator for ℒ𝑝 − 𝐼𝐹𝑉s, utilizing the algebraic operations outlined in 

Section 3. Note that ℒ𝑝-intuitionistic fuzzy numbers (ℒ𝑝 − 𝐼𝐹𝑉𝑠) on 𝐸 is denoted by ℒ𝑝 − 𝐼𝐹𝑉(𝐸). 

6.1. ℒ𝑝-intuitionistic fuzzy weighted averaging aggregation operators 

Definition 19. Let {ℒ𝑖 = ⟨𝜅ℒ𝑖 , 𝓈ℒ𝑖 , ; ℵℒ𝑖⟩: 𝑖 = 1,… , 𝑛}  be the set of ℒ𝑝 − 𝐼𝐹𝑉 s. Suppose that the 
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additive generator of a continuous Archimedean 𝓉 -norm is ǥ: [0,1] → [0,∞] , and the additive 

generator of a continuous Archimedean 𝓉 -norm or 𝓉 -conorm is ʚ: [0,1] → [0,∞] , with ħ(𝓉) =
ǥ(1 − 𝓉) . Then, ℒ𝑝 -intuitionistic fuzzy weighted averaging aggregation (ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴 ) operator 

with mapping ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴: ℒ𝑝 − 𝐼𝐹𝑉(𝐸) → ℒ𝑝 − 𝐼𝐹𝑉(𝐸) is computed as follows: 

ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴ʚ (ℒ1, ℒ2, ℒ3, ……… , ℒ𝑛) = (ʚ)⨁  𝑛
𝑖=1 𝜛𝑖ʚℒ𝑖, 

with weight vector 𝜛 = (𝜛1, 𝜛2, 𝜛3, … , 𝜛𝑛)
𝑇 with 0 ≤ 𝜛𝑗 ≤ 1 and ∑ 𝜛𝑗 = 1

𝑛
𝑗=1 . 

Theorem 3. Let {ℒ𝑖 = ⟨𝜅ℒ𝑖 , 𝓈ℒ𝑖 , ; ℵℒ𝑖⟩: 𝑖 = 1, … , 𝑛}  be the set of ℒ𝑝 − 𝐼𝐹𝑉 s. Suppose that the 

additive generator of a continuous Archimedean 𝓉 -norm is ǥ: [0,1] → [0,∞] , and the additive 

generator of a continuous Archimedean 𝓉-norm or 𝓉-conorm is ʚ: [0,1] → [0,∞], with ħ(𝓉) =
ǥ(1 − 𝓉). If ℒ𝑝-intuitionistic fuzzy weighted averaging aggregation (ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴) operator is 

defined with the help of this transformation ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴: ℒ𝑝 − 𝐼𝐹𝑉(𝐸) → ℒ𝑝 − 𝐼𝐹𝑉(𝐸) , then 

ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴ʚ (ℒ1, ℒ2, ℒ3, ……… , ℒ𝑖) is ℒ𝑝 − 𝐼𝐹𝑉, and we have 

ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴ʚ (ℒ1, ℒ2, ℒ3, ……… , ℒ𝑛) 

= ⟨ħ−1 (∑  𝑛
𝑖=1  𝜛𝑖ħ(𝜅ℒ𝑖)) , ǥ

−1 (∑  𝑛
𝑖=1  𝜛𝑖ǥ(𝓈ℒ𝑖)) ; ʚ

−1 (∑  𝑛
𝑖=1  𝜛𝑖ʚ(ℵℒ𝑖))⟩, 

with weight vector 𝜛 = (𝜛1, 𝜛2, 𝜛3, … , 𝜛𝑛)
𝑇 with 0 ≤ 𝜛𝑗 ≤ 1 and ∑ 𝜛𝑗 = 1

𝑛
𝑗=1 . 

Proof. As evident from Proposition 7, ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴ʚ (ℒ1, ℒ2, ℒ3, ……… , ℒ𝑛) is a ℒ𝑝 − 𝐼𝐹𝑉. Using 

mathematical induction, it can be demonstrated that the second part also holds true. If 𝑛 = 2, then we 

have 

ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴ʚ (ℒ1, ℒ2) = 𝜛1ʚℒ1⊕ʚ 𝜛2ʚℒ2 

= ⟨ħ−1 (ħ(𝜅𝜛1ʚℒ1) + ħ(𝜅𝜛2ʚℒ2)) , ǥ
−1 (ǥ(𝓈𝜛1ʚℒ1) + ǥ(𝓈𝜛2ʚℒ2)) ʚ

−1 (ʚ(ℵ𝜛1ʚℒ1) + ʚ(ℵ𝜛2ʚℒ2))⟩ 

= ⟨ħ−1 (ħ (ħ−1 (𝜛1ħ(𝜅ℒ1))) + ħ (ħ
−1 (𝜛1ħ(𝜅ℒ1)))); 

ǥ−1 (ǥ (ǥ−1 (𝜛1ǥ(𝓈ℒ1))) + ǥ (ǥ
−1 (𝜛2ǥ(𝓈ℒ2)))); 

ʚ−1 (ʚ (ʚ−1 (𝜛1ʚ(ℵℒ1))) + ʚ (ʚ
−1 (𝜛2ʚ(ℵℒ2)))⟩ 

= ⟨ħ−1 (𝜛1ħ(𝜅ℒ1) + 𝜛2ħ(𝜅ℒ2)) , ǥ
−1 (𝜛1ǥ(𝓈ℒ1) + 𝜛2ǥ(𝓈ℒ2)); 

ʚ−1 (𝜛1ʚ(ℵℒ1) + 𝜛2ǥ(ℵℒ2))⟩ 

= ⟨ħ−1 (∑  2
𝑗=1  𝜛𝑗ħ (𝜅ℒ𝑗)) , ǥ

−1 (∑  2
𝑗=1  𝜛𝑗ǥ (𝓈ℒ𝑗)) ; ʚ

−1 (∑  2
𝑗=1  𝜛𝑗ʚ (ℵℒ𝑗))⟩. 

Let us temporarily assume that the following expression hold, such that 

𝐴𝑛−1 = ℒ
𝑝 − 𝐼𝐹𝑊𝐴𝐴ʚ (ℒ1, … , ℒ𝑛−1) 

= ⟨ħ−1 (∑  𝑛−1
𝑗=1  𝜛𝑗ħ (𝜅ℒ𝑗)) , ǥ

−1 (∑  𝑛−1
𝑗=1  𝜛𝑗ǥ (𝓈ℒ𝑗)) ; ʚ

−1 (∑  𝑛−1
𝑗=1  𝜛𝑗ʚ (ℵℒ𝑗))⟩. 
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We now have 

ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴ʚ (ℒ1, … , ℒ𝑛) = 𝐴𝑛−1⊕ʚ 𝜛𝑛ʚℒ𝑛 

= ⟨ħ−1(∑  

𝑛−1

𝑗=1

 𝜛𝑗ħ (𝜅ℒ𝑗)) , ǥ
−1(∑  

𝑛−1

𝑗=1

 𝜛𝑗ǥ (𝓈ℒ𝑗)) ; ʚ
−1(∑  

𝑛−1

𝑗=1

 𝜛𝑗ʚ (ℵℒ𝑗))⟩ 

⊕ʚ ⟨ħ
−1 (𝜛𝑛(𝜅ℒ𝑛)) , ǥ

−1 (𝜛𝑛ǥ(𝓈ℒ𝑛)) ; ʚ
−1 (𝜛𝑛ʚ(ℵℒ𝑛))⟩ 

= ⟨ħ−1

(

  
 
ħ

(

 
 
ħ−1(∑  

𝑛−1

𝑗=1

 𝜛𝑗ħ (𝜅ℒ𝑗))

)

 
 
+ ħ(ħ−1 (𝜛𝑛ħ(𝜅ℒ𝑛)))

)

  
 
, 

ǥ−1 (ǥ(ǥ−1 (∑  𝑛−1
𝑗=1  𝜛𝑗ǥ (𝓈ℒ𝑗))) + ǥ

−1 (𝜛𝑛ǥ(𝓈ℒ𝑛))));ʚ−1 (ʚ(ʚ−1 (∑  𝑛−1
𝑗=1  𝜛𝑗ʚ(𝓈ℒ𝑗))) +

ʚ (ʚ−1 (𝜛𝑛ʚ(𝓈ℒ𝑛))))⟩ 

= ⟨ħ−1(∑  

𝑛−1

𝑗=1

 𝜛𝑗ħ(𝜅ℒ𝑗) + 𝜛𝑛ħ(𝜅ℒ𝑛)) , ǥ
−1(∑  

𝑛−1

𝑗=1

 𝜛𝑗ǥ (𝓈ℒ𝑗) + 𝜛𝑛ǥ(𝓈ℒ𝑛)) ; 

ʚ−1(∑  

𝑛−1

𝑗=1

 𝜛𝑗ʚ (ℵℒ𝑗) +𝜛𝑛ʚ(ℵℒ𝑛))⟩ = ⟨ħ
−1(∑ 

𝑛

𝑖=1

 𝜛𝑖ħ(𝜅ℒ𝑖)) , ǥ
−1(∑  

𝑛

𝑖=1

 𝜛𝑖ǥ(𝓈ℒ𝑖)) ; ʚ
−1(∑ 

𝑛

𝑖=1

 𝜛𝑖ʚ(ℵℒ𝑖))⟩. 

That concludes the proof. 

Corollary 1. Assume that ǥ, ħ, ʚ, 𝜎: [0,1] → [0,∞]  characterized by, ǥ(𝓉) = −log 𝓉, ħ(𝓉) = 

−log (1 − 𝓉), ʚ(𝓉) = −log 𝓉  and 𝜎(𝓉) = −log (1 − 𝓉) . The algebraic ℒ𝑝 -intuitionistic fuzzy 

weighted averaging aggregation operators are then obtained such that 

ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴ʚ (ℒ1, … , ℒ𝑛) = ⟨1 − ∏  𝑛
𝑖=1   (1 − 𝜅ℒ𝑖

 )
𝜛𝑖
, ∏  𝑛

𝑖=1 𝓈ℒ𝑖
𝜛𝑖;∏  𝑛

𝑖=1  ℵℒ𝑖
𝜛𝑖⟩, 

and 

ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴𝜎 (ℒ1, … , ℒ𝑛) = ⟨1 − ∏  𝑛
𝑖=1   (1 − 𝜅ℒ𝑖

 )
𝜛𝑖
, ∏  𝑛

𝑖=1  𝓈ℒ𝑖
𝜛𝑖; 1 − ∏  𝑛

𝑖=1   (1 − ℵℒ𝑖
 )

𝜛𝑖
⟩. 

6.2. 𝓛𝒑-intuitionistic fuzzy weighted geometric aggregation operators 

Definition 20. Let {ℒ𝑖 = ⟨𝜅ℒ𝑖 , 𝓈ℒ𝑖 , ; ℵℒ𝑖⟩: 𝑖 = 1,… , 𝑛}  be the set of ℒ𝑝 − 𝐼𝐹𝑉 s. Suppose that the 

additive generator of a continuous Archimedean 𝓉 -norm is ǥ: [0,1] → [0,∞] , and the additive 

generator of a continuous Archimedean 𝓉 -norm or 𝓉 -conorm is ʚ: [0,1] → [0,∞] , with ħ(𝓉) =
ǥ(1 − 𝓉) . Then, ℒ𝑝 -intuitionistic fuzzy weighted geometric aggregation (ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴ʚ ) operator 

with mapping ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴: ℒ𝑝 − 𝐼𝐹𝑉(𝐸) → ℒ𝑝 − 𝐼𝐹𝑉(𝐸) is computed as follows 
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ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴ʚ (ℒ1, ℒ2, ℒ3, … , ℒ𝑛) = (ʚ)⨁  𝑛
𝑖=1 ℒ𝑖

𝜛𝑖ʚ, 

with weight vector 𝜛 = (𝜛1, 𝜛2, 𝜛3, … , 𝜛𝑛)
𝑇 with 0 ≤ 𝜛𝑗 ≤ 1 and ∑ 𝜛𝑗 = 1

𝑛
𝑗=1 . 

Theorem 4. Let {ℒ𝑖 = ⟨𝜅ℒ𝑖 , 𝓈ℒ𝑖 , ; ℵℒ𝑖⟩: 𝑖 = 1, … , 𝑛}  be the set of ℒ𝑝 − 𝐼𝐹𝑉 s. Suppose that the 

additive generator of a continuous Archimedean 𝓉 -norm is ǥ: [0,1] → [0,∞] , and the additive 

generator of a continuous Archimedean 𝓉-norm or 𝓉-conorm is ʚ: [0,1] → [0,∞], with ħ(𝓉) =
ǥ(1 − 𝓉). If ℒ𝑝-intuitionistic fuzzy weighted geometric aggregation (ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴ʚ) operator is 

defined with the help of this transformation ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴ʚ: ℒ
𝑝 − 𝐼𝐹𝑉(𝐸) → ℒ𝑝 − 𝐼𝐹𝑉(𝐸), then 

ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴ʚ (ℒ1, ℒ2, ℒ3, … , ℒ𝑛) is ℒ𝑝 − 𝐼𝐹𝑉 and we have 

ℒ𝑝 − 𝐼𝐹𝑊𝐺𝐴ʚ (ℒ1, ℒ2, ℒ3, ……… , ℒ𝑛) 

= ⟨ǥ−1 (∑  𝑛
𝑖=1  𝜛𝑖ǥ(𝜅ℒ𝑖)) , ħ

−1 (∑  𝑛
𝑖=1  𝜛𝑖ħ(𝓈ℒ𝑖)) ; ʚ

−1 (∑  𝑛
𝑖=1  𝜛𝑖ʚ(ℵℒ𝑖))⟩, 

with weight vector 𝜛 = (𝜛1, 𝜛2, 𝜛3, … , 𝜛𝑛)
𝑇 with 0 ≤ 𝜛𝑗 ≤ 1 and ∑ 𝜛𝑗 = 1

𝑛
𝑗=1 . 

Proof. By using the same arguments like Theorem 4, it can be proven. 

Corollary 2. Assume that ǥ, ħ, ʚ, 𝜎: [0,1] → [0,∞]  characterized by, ǥ(𝓉) = −log 𝓉, ħ(𝓉) = 

−log (1 − 𝓉), ʚ(𝓉) = −log 𝓉  and 𝜎(𝓉) = −log (1 − 𝓉) . The algebraic ℒ𝑝 -intuitionistic fuzzy 

weighted geometric aggregation operators are then obtained, such that 

ℒ𝑝 − 𝐼𝐹𝑊𝐺𝐴ʚ (ℒ1, … , ℒ𝑛) = ⟨∏  

𝑛

𝑖=1

𝜅ℒ𝑖
𝜛𝑖 , 1 −∏  

𝑛

𝑖=1

  (1 − 𝓈ℒ𝑖
 )

𝜛𝑖
;∏  

𝑛

𝑖=1

 ℵℒ𝑖
𝜛𝑖⟩, 

and 

ℒ𝑝 − 𝐼𝐹𝑊𝐺𝐴𝜎 (ℒ1, … , ℒ𝑛) = ⟨∏  𝑛
𝑖=1 𝜅ℒ𝑖

𝜛𝑖 , 1 − ∏  𝑛
𝑖=1   (1 − 𝓈ℒ𝑖

 )
𝜛𝑖
; 1 − ∏  𝑛

𝑖=1   (1 − ℵℒ𝑖
 )

𝜛𝑖
⟩. 

7. The 𝑴𝑨𝑫𝑴 framework based on the proposed techniques 

The 𝑀𝐴𝐷𝑀 technique is particularly effective for selecting the most suitable alternative from a 

finite set of options due to its structured framework. To further improve the performance and reliability 

of existing methods, we present a procedure for the 𝑀𝐴𝐷𝑀  technique that incorporates four 

specialized operators: the ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴ʚ   operator, ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴𝜎   operator, ℒ𝑝 −

𝐼𝐹𝑊𝐺𝐴ʚ  operator, and ℒ𝑝 − 𝐼𝐹𝑊𝐺𝐴𝜎   operator. Our aim is to apply this procedure to real-world 

problems and thereby enhance the decision-making process. 

We consider a finite set of alternatives denoted by Ϣ = {Ϣ1,Ϣ2, … ,Ϣ𝑚}. Similarly, we define 

a finite set of attributes as  Õ = {Õ1, Õ2, … , Õ𝑛} , associated with a weight vector 𝜛 =
(𝜛1, 𝜛2, … ,𝜛𝑛)

𝑇, where 𝜛𝑗 > 0 with ∑ 𝜛𝑗 = 1
𝑛
𝑗=1 . To construct the decision matrix for evaluating 

the optimal alternative, ℒ𝑝 − 𝐼𝐹𝑉 values are assigned to each alternative–attribute pair. Here, 𝜅ℒ𝑖 

and 𝓈ℒ𝑖  represent the positive and negative membership degrees, respectively, while 𝛼𝑗  and 𝛽𝑗 

denote reference parameters corresponding to an alternative (Ϣ𝑗) under attribute (Õ𝑗), as specified 

by the decision makers. These values satisfy the conditions 0 ≤ 𝜅ℒ𝑖 + 𝓈ℒ𝑖 ≤ 1  and 0 ≤ ℵℒ𝑖
 ≤ 1 . 

Furthermore, the degree of refusal is given by 𝜋𝑗 = 1 − 𝜅ℒ𝑖 − 𝓈ℒ𝑖. To validate the proposed approach, 

we also consider several real-world applications and demonstrate the evaluation process through the 
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developed theoretical framework. 

7.1. The proposed algorithm 

Our main objective of this subsection is to present a process that illustrates the problem to be 

addressed in the subsequent section. The fundamental steps of the decision-making approach are as 

follows: 

Step 1. Construct the team decision matrix by representing their evaluations in the ℒ𝑝 − 𝐼𝐹𝑉 

form. 

Step 2. When assigning values, two types of criteria are considered: profit and cost. For cost-type 

criteria, normalization is performed as a first priority; for profit-type criteria, normalization is not 

required. 

ℒ𝑖 = {
(〈𝜅ℒ𝑖

 , 𝓈ℒ𝑖
 〉),                same type input data

(〈𝓈ℒ𝑖
 , 𝜅ℒ𝑖

 〉), different type input data.
 

In this case, as the input data for all attributes is uniform, normalization is unnecessary. All alternatives 

and criteria in the given problem share the same characteristics. 

Step 3. Using the four various types of operators" ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴ʚ   operator, ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴𝜎  

operator, ℒ𝑝 − 𝐼𝐹𝑊𝐺𝐴ʚ  operator, and ℒ𝑝 − 𝐼𝐹𝑊𝐺𝐴𝜎   operator,” merge the dataset into a single 

representative set such that 

ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴ʚ (ℒ1, … , ℒ𝑛) = ⟨1 − ∏  𝑛
𝑖=1   (1 − 𝜅ℒ𝑖

 )
𝜛𝑖
, ∏  𝑛

𝑖=1 𝓈ℒ𝑖
𝜛𝑖;∏  𝑛

𝑖=1  ℵℒ𝑖
𝜛𝑖⟩, 

ℒ𝑝 − 𝐼𝐹𝑊𝐴𝐴𝜎 (ℒ1, … , ℒ𝑛) = ⟨1 − ∏  𝑛
𝑖=1   (1 − 𝜅ℒ𝑖

 )
𝜛𝑖
, ∏  𝑛

𝑖=1  𝓈ℒ𝑖
𝜛𝑖; 1 − ∏  𝑛

𝑖=1   (1 − ℵℒ𝑖
 )

𝜛𝑖
⟩, 

ℒ𝑝 − 𝐼𝐹𝑊𝐺𝐴ʚ (ℒ1, … , ℒ𝑛) = ⟨∏  

𝑛

𝑖=1

𝜅ℒ𝑖
𝜛𝑖 , 1 −∏  

𝑛

𝑖=1

  (1 − 𝓈ℒ𝑖
 )

𝜛𝑖
;∏  

𝑛

𝑖=1

 ℵℒ𝑖
𝜛𝑖⟩, 

ℒ𝑝 − 𝐼𝐹𝑊𝐺𝐴𝜎 (ℒ1, … , ℒ𝑛) = ⟨∏  𝑛
𝑖=1 𝜅ℒ𝑖

𝜛𝑖 , 1 − ∏  𝑛
𝑖=1   (1 − 𝓈ℒ𝑖

 )
𝜛𝑖
; 1 − ∏  𝑛

𝑖=1   (1 − ℵℒ𝑖
 )

𝜛𝑖
⟩. 

Step 4. Determine the aggregated theories with respect to different score values, such as 

𝑆ℒ𝑝−𝐼𝐹𝑉(ℒ) =
𝜅−𝓈+2

1
𝑝ℵ(2𝜆−1)

3
, 

where −1 ≤ 𝑆ℒ𝑝−𝐼𝐹𝑉(ℒ) ≤ 1. 

If the score function fails to provide a satisfactory result, the accuracy function is then applied as 

follows: 

𝐻ℒ𝑝−𝐼𝐹𝑉(ℒ) = 𝜅 + 𝓈,  

where 0 ≤ 𝐻ℒ𝑝−𝐼𝐹𝑉(ℒ) ≤ 1. 

Step 5. Our aim is to identify the most suitable alternative by analyzing the ranking results derived 

from the score values. To enhance the reliability of the proposed techniques and to demonstrate their 

practical applicability, several numerical examples are considered, highlighting the effectiveness and 



28333 

AIMS Mathematics  Volume 10, Issue 12, 28308–28346. 

validity of the developed operators. Furthermore, the geometric interpretation of the proposed 

algorithm is illustrated in Figure 11. 

 

Figure 11. Flow chart of the proposed algorithm. 

7.2. Types of agricultural field robots 

Agricultural field robots, often referred to as agribots, are specialized autonomous machines 

designed to perform a variety of tasks in agricultural fields. They are increasingly being used in modern 

farming to improve efficiency, reduce labor costs, and address the growing challenges of food 

production, such as labor shortages, sustainability, and climate change. These robots can handle tasks 

such as planting, watering, weeding, monitoring crop health, and even harvesting. Here are some key 

types and applications of agricultural field robots: 

Ϣ1: Harvesting robots are advanced machines designed to automate the picking and harvesting of 

crops in agriculture. These robots use technologies like artificial intelligence (AI), computer vision, 

and robotic arms to identify, select, and harvest ripe produce with precision. By reducing reliance on 

manual labor, they enhance efficiency, minimize crop damage, and enable around-the-clock operations, 

making them an essential innovation in modern farming. Harvesting robots are transforming modern 

agriculture by boosting productivity, minimizing waste, and addressing labor shortages. 

Ϣ2:  Spraying and irrigation robots are autonomous machines used in agriculture to optimize the 

application of water, fertilizers, and pesticides. These robots are equipped with sensors, GPS, and AI 

technologies to accurately deliver water and chemicals based on the specific needs of crops. They can 

move through fields autonomously, reducing waste, preventing overuse, and ensuring even distribution. 

By improving efficiency and precision, spraying and irrigation robots help conserve resources, protect 

the environment, and support sustainable farming practices. Spraying and irrigation robots are a crucial 

part of precision agriculture, ensuring optimal resource use while supporting crop health and 

sustainability. 

Ϣ3:  Crop monitoring robots are autonomous machines designed to track the health, growth, and 

conditions of crops in real time. These robots are equipped with sensors, cameras, and AI technologies 

to gather data on soil moisture, plant health, pest infestations, and nutrient levels. By providing precise, 

up-to-date information, crop monitoring robots help farmers make informed decisions, optimize 

resource use, and improve crop yields. They are an essential tool in precision agriculture, enabling 

early detection of issues and enhancing overall farm productivity. By offering real-time, accurate data, 

crop monitoring robots are transforming modern agriculture, helping farmers optimize their practices 

and improve sustainability while maximizing yields. 
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Ϣ4: Soil analysis robots are autonomous machines designed to assess soil conditions in agricultural 

fields. Equipped with sensors and sampling tools, these robots measure factors like soil moisture, pH 

levels, nutrient content, and temperature. By providing precise, real-time data, soil analysis robots help 

farmers understand the health of their soil and make informed decisions about irrigation, fertilization, 

and crop management. They are crucial in precision agriculture, enhancing resource efficiency, 

improving crop yields, and supporting sustainable farming practices. Soil analysis robots are 

revolutionizing how farmers manage their soil, providing detailed insights that lead to improved 

productivity, resource conservation, and sustainable agricultural practices. 

Ϣ5: Swarming robots are groups of autonomous machines that work together collaboratively, often 

mimicking the behavior of natural swarms like ants or bees. In agriculture, these robots communicate 

and coordinate to perform tasks such as planting, weeding, harvesting, and monitoring crops. 

Swarming robots rely on decentralized control, AI, and sensor networks to efficiently cover large areas, 

making them ideal for precision farming. Their ability to work in groups enhances productivity, 

reduces labor costs, and increases the overall efficiency of farming operations. 

Selecting the right agricultural robot involves considering a variety of factors to ensure it meets the 

needs of your farm and integrates well into your existing operations so followings are the attributes. 

Here are some key factors to take into account: 

Õ1: Compatibility for an agriculture robot refers to its ability to seamlessly integrate with existing 

farming systems, technologies, and operations. It ensures that the robot can work alongside current 

equipment, software, and infrastructure without issues. Key aspects include: Robot must connect with 

other farm machinery, like tractors or irrigation systems. It should work with farm management 

software, GPS systems, and data platforms for smooth operation and data sharing. The robot must be 

suited to the farm’s specific conditions, such as crop type, soil, and terrain. It should easily adapt to 

the farm's size and operations, whether for small-scale or large-scale farming. Ensuring compatibility 

enhances efficiency, reduces costs, and maximizes the robot’s effectiveness in agricultural tasks. 

Õ2: Technology and Features refer to the advanced tools and capabilities integrated into a robot to 

enhance its performance and efficiency. In the context of robotics, these include: Devices for detecting 

environmental conditions, monitoring crop health, and navigating autonomously. Enables the robot to 

analyze data, adapt to its environment, and improve decision-making over time. GPS, LiDAR, and 

other technologies that enable robots to move and operate independently in fields. Robotic arms, 

sprayers, or harvesting tools that enable accurate and efficient task execution. IoT, Wi-Fi, or Bluetooth 

capabilities that enable communication with other systems and data sharing. These technologies and 

features ensure that robots are capable, efficient, and suited for complex tasks, particularly in sectors 

like agriculture. 

Õ3 : Maintenance and support refer to the ongoing care and services required to keep a robot 

functioning optimally throughout its lifespan. For agricultural robots, this includes: Routine checks to 

ensure the robot's hardware, such as sensors and moving parts, are in good working condition. Keeping 

the robot's software and AI algorithms up to date for improved functionality and bug fixes. Timely 

repairs to address any mechanical or electrical issues that may arise. Access to experts or service teams 

to help troubleshoot problems or provide guidance on usage. Providing operators with manuals, 

tutorials, and support for efficient use and maintenance of the robot. Proper maintenance and support 

ensure the robot’s reliability, extend its lifespan, and prevent costly breakdowns, making it essential 

for sustained operation. 

Õ4 : Regulatory compliance refers to the adherence of agricultural robots to laws, guidelines, and 

standards set by governing bodies. It ensures that the robot operates safely and ethically within legal 

frameworks. Key aspects include: Ensuring the robot meets safety requirements to protect users, 
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workers, and the environment. Complying with laws regarding pesticide use, emissions, and 

sustainable farming practices. Adhering to rules on data collection and storage, especially when robots 

gather information from fields or connected devices. Obtaining necessary approvals and certifications 

from regulatory agencies before the robot is deployed. Meeting regulatory compliance ensures the 

robot is legally permitted for use and operates safely and responsibly in agricultural settings. 

Step 1. Develop the team matrix by embedding their assessments within the ℒ𝑝 − 𝐼𝐹𝑉 representation, 

see Table 1. 

Table 1. Decision matrix of ℒ𝑝 − 𝐼𝐹 information. 

Step 2. When assigning values, two cases are considered: Data of the same type and data of different 

types. If the data are of different types, normalization is applied as the first priority, such that: 

ℒ𝑗 = {
(〈𝜅ℒ𝑖 , 𝓈ℒ𝑖 , ; ℵℒ𝑖〉),                same type input data

(〈𝓈ℒ𝑖 , 𝜅ℒ𝑖 , ; ℵℒ𝑖〉), different type input data.
 

In this case, as the input data for all attributes is of the same type, normalization is unnecessary. All 

alternatives and criteria in the given problem share a uniform nature. 

Step 3. For 𝑝 = 3, the data are aggregated into a singleton set using four operators ℒ3 − 𝐼𝐹𝑊𝐴𝐴ʚ  

operator, ℒ3 − 𝐼𝐹𝑊𝐴𝐴𝜎   operator, ℒ3 − 𝐼𝐹𝑊𝐺𝐴ʚ  operator, and ℒ3 − 𝐼𝐹𝑊𝐺𝐴𝜎   along with the 

weight vector 𝜛 = (0.27, 0.24,0.22,0.17,0.1)𝑇 . The results of this aggregation are presented in 

Tables 2 and 3. 

Table 2. ℒ3 − 𝐼𝐹𝑊𝐴𝐴ʚ  and ℒ3 − 𝐼𝐹𝑊𝐴𝐴𝜎  operators. 

Table 3. ℒ3 − 𝐼𝐹𝑊𝐺𝐴ʚ  and ℒ3 − 𝐼𝐹𝑊𝐺𝐴𝜎  operators. 

Step 3. Refer to Tables 4 and 5 to find the aggregated theory's score values for decision maker’s attitude 

𝜆 = 0.3, such that: 

 Õ𝟏 Õ𝟐 Õ𝟑 Õ𝟒 Õ𝟓 

Ϣ𝟏 ⟨0.5,0.4; 0.8⟩ ⟨0.7,0.2; 0.3⟩ ⟨0.6,0.2; 0.6⟩ ⟨0.3,0.7; 0.9⟩ ⟨0.6,0.1; 1⟩ 

Ϣ𝟐 ⟨0.8,0.2; 0.7⟩ ⟨0.3,0.7; 0.5⟩ ⟨0.5,0.3; 0.8⟩ ⟨0.9,0.1; 0.3⟩ ⟨0.3,0.6; 0.9⟩ 

Ϣ𝟑 ⟨0.7,0.1; 0.4⟩ ⟨0.6,0.3; 1⟩ ⟨0.5,0.2; 0.6⟩ ⟨0.3,0.6; 0.8⟩ ⟨0.4,0.4; 0.4⟩ 

Ϣ𝟒 ⟨0.8,0.2; 0.4⟩ ⟨0.5,0.2; 0.3⟩ ⟨0.3,0.3; 0.7⟩ ⟨0.7,0.3; 0.9⟩ ⟨0.8,0.1; 0.9⟩ 

 𝓛𝟑 − 𝑰𝑭𝑾𝑨𝑨𝓺 
 𝓛𝟑 − 𝑰𝑭𝑾𝑨𝑨𝝈  

Ϣ𝟏 ⟨0.56,0.28; 1⟩ ⟨0.56,0.28; 0.62⟩ 
Ϣ𝟐 ⟨0.67,0.29; 0.68⟩ ⟨0.67,0.29; 0.59⟩ 
Ϣ𝟑 ⟨0.55,0.24; 1⟩ ⟨0.55,0.24; 0.61⟩ 
Ϣ𝟒 ⟨0.65,0.22; 0.67⟩ ⟨0.65,0.22; 0.53⟩ 

 𝓛𝟑 − 𝑰𝑭𝑾𝑮𝑨𝓺 
 𝓛𝟑 − 𝑰𝑭𝑾𝑮𝑨𝝈  

Ϣ𝟏 ⟨0.53,0.37; 0.62⟩ ⟨0.53,0.37; 1⟩ 

Ϣ𝟐 ⟨0.53,0.42; 0.59⟩ ⟨0.53,0.42; 0.69⟩ 
Ϣ𝟑 ⟨0.51,0.31; 0.61⟩ ⟨0.51,0.31; 1⟩ 

Ϣ𝟒 ⟨0.56,0.23; 0.53⟩ ⟨0.56,0.23; 0.70⟩ 
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Table 4. ℒ𝟑 − 𝐼𝐹𝑊𝐴𝐴 score values. 

Table 5. ℒ3 − 𝐼𝐹𝑊𝐺𝐴 score values. 

Step 4. The ranking results are analyzed based on the computed score values to identify the most 

prominent alternative among the four. The detailed results are provided in Tables 6 and 7. 

Table 6. Ranking of ℒ3 − 𝐼𝐹𝑊𝐴𝐴 operators w.r.t. 𝒮ℒ3−𝐼𝐹𝑉. 

Table 7. Ranking of ℒ3 − 𝐼𝐹𝑊𝐴𝐴 operators w.r.t. 𝒮ℒ3−𝐼𝐹𝑉. 

The geometric representation of Table 6, in relation to Table 4, is given as follows (see Figure 12): 

 

Figure 12. Scores of alternatives based on the two ℒ3 − 𝐼𝐹𝑊𝐴𝐴. 

 𝓢𝓛𝟑−𝑰𝑭𝑽 

 𝒮ℒ3−𝐼𝐹𝑉(Ϣ1) 𝒮ℒ3−𝐼𝐹𝑉(Ϣ2) 𝒮ℒ3−𝐼𝐹𝑉(Ϣ3) 𝒮ℒ3−𝐼𝐹𝑉(Ϣ4) 

𝓛𝟑 − 𝑰𝑭𝑾𝑨𝑨𝓺 
 0.01 0.07 0.02 0.09 

𝓛𝟑 − 𝑰𝑭𝑾𝑨𝑨𝝈  0.04 0.08 0.05 0.10 

 𝓢𝓛𝟑−𝑰𝑭𝑽 

 𝒮ℒ3−𝐼𝐹𝑉(Ϣ1) 𝒮ℒ3−𝐼𝐹𝑉(Ϣ2) 𝒮ℒ3−𝐼𝐹𝑉(Ϣ3) 𝒮ℒ3−𝐼𝐹𝑉(Ϣ4) 

𝓛𝟑 − 𝑰𝑭𝑾𝑮𝑨𝓺 
 0.01 −0.01 0.02 0.07 

𝓛𝟑 − 𝑰𝑭𝑾𝑮𝑨𝝈  −0.01 −0.02 −0.03 0.05 

 𝓢𝓛𝟑−𝑰𝑭𝑽 

𝓛𝟑 − 𝑰𝑭𝑾𝑨𝑨𝓺 
 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝓛𝟑 − 𝑰𝑭𝑾𝑨𝑨𝝈  Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

 𝓢𝓛𝟑−𝑰𝑭𝑽 

𝓛𝟑 − 𝑰𝑭𝑾𝑮𝑨𝓺 
 Ϣ4 > Ϣ3 > Ϣ1 > Ϣ2 

𝓛𝟑 − 𝑰𝑭𝑾𝑮𝑨𝝈  Ϣ4 > Ϣ1 > Ϣ2 > Ϣ3 
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The geometric representation of Table 7, in relation to Table 5, is given as follows (see Figure 13): 

 

Figure 13. Scores of alternatives based on the two ℒ3 − 𝐼𝐹𝑊𝐺𝐴. 

It is evident that the most desirable decision is Ϣ4. Moreover, since each operator yields identical 

ranking results, the operators can be considered stable. 

7.3. Advantages of agricultural robots 

• Labor Efficiency: Robots can work around the clock, reducing the need for human labor, which is 

becoming increasingly scarce in rural areas. 

• Precision Agriculture: Robots can perform tasks with high precision, reducing waste of resources 

like seeds, water, and pesticides. 

• Sustainability: By optimizing resource use and reducing chemical inputs, robots contribute to more 

environmentally friendly farming practices. 

• Yield Improvement: Early detection of pests, diseases, or nutrient deficiencies enables timely 

intervention, improving crop yield and quality. 

7.4. Challenges and considerations 

• High Initial Costs: The cost of acquiring and maintaining agricultural robots can be prohibitive for 

small farms. 

• Field Variability: Different crops and field conditions may require tailored robotic solutions, 

limiting the general applicability of a single robot model. 

• Technology Integration: Successful integration of robots into farming requires compatible software 

systems and trained personnel to manage them. 

• Power Supply: Energy efficiency and battery life are limitations for many agricultural robots, 

especially in large-scale operations. 

In the future, AI-powered agribots are expected to play an even bigger role in precision agriculture, 

leveraging machine learning and data analysis to enhance food security and optimize farming in the 

face of climate change and population growth.  
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8. Results and discussion 

The individual overseeing the process evaluates the alternatives, considering the assigned weights. 

The project manager has also determined that all experts are of equal standing, making it suitable to 

apply weights aligned with the proposed model. In the next phase, decision-makers use predefined 

ℒ𝑝 − 𝐼𝐹 language concepts to assess the situation. This section compares the four proposed ℒ𝑝 − 𝐼𝐹 

aggregation operators with the existing operators introduced using 𝐼𝐹. The comparison highlights the 

effectiveness of these operators in addressing uncertain real-world decision-making problems (𝐷𝑀𝑃s). 

A key advantage of this concept is that, through the ℒ𝑝 -space, it gives freedom to take different 

membership functions by varying the value of 𝑝 like ℒ1, ℒ2, …, ℒ∞. Tables 6 and 7 provide the 

rating results of four options using the proposed approach. Individuals should follow agriculture 

experts to select best one robot. The proposed method and the existing approach produced slightly 

different ranking outcomes, though both identified the same top choice. The comparison results are 

shown in Tables 6 and 7. By comparing the results with those found in the literature, it is clear that the 

ℒ𝑝 − 𝐼𝐹𝑆 𝑀𝐴𝐷𝑀 strategy proposed in this study aligns with the outcomes obtained from the 𝐼𝐹𝑆 

𝑀𝐴𝐷𝑀  approach, which has been demonstrated and applied in various contexts. The new model 

introduces variations in the results due to the lambda (𝜆 ) value, representing the decision-maker's 

attitude, and the norm (ℵ) value, reflecting the uncertainty in the decisions. However, as shown in 

Tables 8 and 9, these factors enable the development of a case-specific structure, differentiating it from 

traditional 𝐼𝐹𝑆 𝑀𝐴𝐷𝑀 methods. This flexibility makes the use of ℒ𝑝 − 𝐼𝐹𝑆 numbers in 𝑀𝐴𝐷𝑀 

models highly relevant. 

The ranking values obtained from the score function is examined to determine the most prominent 

alternative among the four, as presented in Table 8. 

Table 8. ℒ𝟑 − 𝐼𝐹𝑊𝐴𝐴 and 𝐼𝐹𝑊𝐺𝐴 score values. 

Table 9. Ranking of 𝐼𝐹𝑊𝐴𝐴 and 𝐼𝐹𝑊𝐺𝐴 operators w.r.t. 𝒮𝐼𝐹𝑉. 

Next, we explore the applicability and flexibility of the developed method for handling diverse 

inputs and outputs. 

Authenticity and ease of use of the suggested approach: We devised a system capable of handling 

any type of input data, and the proposed model effectively addresses uncertainty. This approach 

incorporates 𝐼𝐹𝓈, 𝐼𝑉𝐼𝐹𝑆 and ℒ2 − 𝐼𝐹 or 𝐶 − 𝐼𝐹𝑆 through the addition of the 𝑝𝑡ℎ value of norm 

ℵ . By introducing the 𝑝𝑡ℎ  value, the interpretation of these parameters’ changes, expanding both 

membership and non-membership spaces. While our method can be applied in various contexts, we 

focus on its application to the selection of agriculture robots. The proposed ℒ𝑝 − 𝐼𝐹 model is clear, 

easy to understand, and can be adapted to different outcomes. 

𝓢𝓛𝟑−𝑰𝑭𝑽 

 𝒮ℒ3−𝐼𝐹𝑉(Ϣ1) 𝒮ℒ3−𝐼𝐹𝑉(Ϣ2) 𝒮ℒ3−𝐼𝐹𝑉(Ϣ3) 𝒮ℒ3−𝐼𝐹𝑉(Ϣ4) 
𝑰𝑭𝑾𝑨𝑨   0.29 0.37 0.32 0.43 

𝑰𝑭𝑾𝑮𝑨   0.16 0.11 0.20 0.33 

 𝓢𝑰𝑭𝑽 

𝑰𝑭𝑾𝑨𝑨   Ϣ4 > Ϣ3 > Ϣ2 > Ϣ1 

𝑰𝑭𝑾𝑮𝑨   Ϣ4 > Ϣ3 > Ϣ1 > Ϣ2 
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Score Function's Impact: We begin by generalizing the associated accuracy functions and the types 

score functions that are introduced. Since each score function has its own distinct ordering and 

evaluation procedures due to 𝑝th value of norm ℵ and decision maker’s attitude 𝜆, slight variations 

in results are expected. As shown in Table 10, there are minor differences in the rankings produced by 

new 𝑆𝐹. However, it is important to note that the overall outcome remains largely consistent across 

all score functions. 

Flexibility in aggregation with variable inputs and outputs: This approach is significantly more 

versatile than others, as it can adjust to different conditions in 𝑀𝐴𝐷𝑀 methods and the 𝑝th value of 

norm ℵ, which allows to get membership and non-membership values indifferent shapes. Moreover, 

it can be readily applied to a variety of input and output scenarios. 

Sensitivity analysis: The results of the sensitivity analysis for the proposed models are presented in 

Tables 10–13. Both algorithms yield identical outcomes when 𝜆 variate, then the rank of attributes is 

changes. Although variations in score functions lead to changes in the ranking of alternatives, the 

optimal result remains unchanged. This indicates that both methods are influenced solely by the score 

functions used. The geometrically representation of Table 10 can be seen in Figure 14, we have 

Table 10. Sensitivity analysis for 𝜆 value (ℒ3 − 𝐼𝐹𝑊𝐴𝐴ʚ ). 
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Figure 14. Scores of alternatives based on the ℒ3 − 𝐼𝐹𝑊𝐴𝐴ʚ w.r.t. 𝜆. 

 Ϣ𝟏 Ϣ𝟐 Ϣ𝟑 Ϣ𝟒 Ranking 

𝝀 = 𝟎 −0.32 −0.16 −0.31 −0.14 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝝀 = 𝟎. 𝟏 −0.24 −0.10 −0.23 −0.08 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝝀 = 𝟎. 𝟐 −0.16 −0.05 −0.15 −0.03 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝝀 = 𝟎. 𝟑 −0.07 0.01 −0.06 −0.03 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝝀 = 𝟎. 𝟒 0.1 0.7 0.2 0.9 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝝀 = 𝟎. 𝟓 0.10 0.12 0.11 0.14 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝝀 = 𝟎. 𝟔 0.17 0.18 0.19 0.20 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝝀 = 𝟎. 𝟕 0.26 0.24 0.27 0.25 Ϣ3 > Ϣ1 > Ϣ4 > Ϣ2 

𝝀 = 𝟎. 𝟖 0.35 0.30 0.36 0.31 Ϣ3 > Ϣ1 > Ϣ4 > Ϣ2 

𝝀 = 𝟎. 𝟗 0.43 0.35 0.44 0.37 Ϣ3 > Ϣ1 > Ϣ4 > Ϣ2 

𝝀 = 𝟏 0.52 0.41 0.53 0.42 Ϣ3 > Ϣ1 > Ϣ4 > Ϣ2 
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Through the geometrically representation of Table 11 can be seen in Figure 15, we have 

Table 11. Sensitivity analysis for 𝜆 value (ℒ3 − 𝐼𝐹𝑊𝐴𝐴𝜎 ). 
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Figure 15. Scores of alternatives based on the ℒ3 − 𝐼𝐹𝑊𝐴𝐴𝜎  w.r.t. 𝜆. 

Through the geometrically representation of Table 12 can be seen in Figure 16, we have 

Table 12. Sensitivity analysis for 𝜆 value (𝓛𝟑 − 𝑰𝑭𝑾𝐺𝑨𝓺 
). 

 Ϣ𝟏 Ϣ𝟐 Ϣ𝟑 Ϣ𝟒 Ranking 

𝝀 = 𝟎 −0.16 −0.12 −0.15 −0.08 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝝀 = 𝟎. 𝟏 −0.11 −0.07 −0.10 −0.03 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝝀 = 𝟎. 𝟐 −0.06 −0.02 −0.05 0.01 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝝀 = 𝟎. 𝟑 −0.01 0.03 0.01 0.05 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝝀 = 𝟎. 𝟒 0.04 0.08 0.05 0.10 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝝀 = 𝟎. 𝟓 0.10 0.12 0.11 0.14 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝝀 = 𝟎. 𝟔 0.15 0.17 0.16 0.19 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝝀 = 𝟎. 𝟕 0.20 0.22 0.21 0.23 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝝀 = 𝟎. 𝟖 0.25 0.27 0.26 0.28 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝝀 = 𝟎. 𝟗 0.29 0.32 0.30 0.31 Ϣ2 > Ϣ4 > Ϣ3 > Ϣ1 

𝝀 = 𝟏 0.34 0.37 0.35 0.36 Ϣ2 > Ϣ4 > Ϣ3 > Ϣ1 

 Ϣ𝟏 Ϣ𝟐 Ϣ𝟑 Ϣ𝟒 Ranking 

𝝀 = 𝟎 −0.20 −0.21 −0.19 −0.11 Ϣ4 > Ϣ3 > Ϣ1 > Ϣ2 

𝝀 = 𝟎. 𝟏 −0.15 −0.16 −0.14 −0.07 Ϣ4 > Ϣ3 > Ϣ1 > Ϣ2 

𝝀 = 𝟎. 𝟐 −0.10 −0.11 −0.09 −0.02 Ϣ4 > Ϣ3 > Ϣ1 > Ϣ2 

𝝀 = 𝟎. 𝟑 −0.05 −0.06 −0.04 0.02 Ϣ4 > Ϣ3 > Ϣ1 > Ϣ2 

𝝀 = 𝟎. 𝟒 0.01 −0.01 0.02 0.07 Ϣ4 > Ϣ3 > Ϣ1 > Ϣ2 

𝝀 = 𝟎. 𝟓 0.05 0.04 0.07 0.11 Ϣ4 > Ϣ3 > Ϣ1 > Ϣ2 

𝝀 = 𝟎. 𝟔 0.11 0.09 0.12 0.15 Ϣ4 > Ϣ3 > Ϣ1 > Ϣ2 

𝝀 = 𝟎. 𝟕 0.16 0.14 0.17 0.20 Ϣ4 > Ϣ3 > Ϣ1 > Ϣ2 

𝝀 = 𝟎. 𝟖 0.21 0.19 0.22 0.24 Ϣ4 > Ϣ3 > Ϣ1 > Ϣ2 

𝝀 = 𝟎. 𝟗 0.26 0.24 0.27 0.29 Ϣ4 > Ϣ3 > Ϣ1 > Ϣ2 

𝝀 = 𝟏 0.31 0.29 0.32 0.33 Ϣ4 > Ϣ3 > Ϣ1 > Ϣ2 
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Figure 16. Scores of alternatives based on the ℒ3 − 𝐼𝐹𝑊𝐺𝐴ʚ w.r.t. 𝜆. 

Through the geometrically representation of Table 13 can be seen in Figure 17, we have 

Table 13. Sensitivity analysis for 𝜆 value (ℒ3 − 𝐼𝐹𝑊𝐺𝐴𝜎 ). 
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Figure 17. Scores of alternatives based on the ℒ3 − 𝐼𝐹𝑊𝐺𝐴𝜎 w.r.t. 𝜆. 

 Ϣ𝟏 Ϣ𝟐 Ϣ𝟑 Ϣ𝟒 Ranking 

𝝀 = 𝟎 −0.37 −0.25 −0.35 −0.18 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝝀 = 𝟎. 𝟏 −0.28 −0.20 −0.27 −0.12 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝝀 = 𝟎. 𝟐 −0.20 −0.14 −0.18 −0.07 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝝀 = 𝟎. 𝟑 −0.11 −0.08 −0.10 −0.01 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝝀 = 𝟎. 𝟒 −0.03 −0.02 −0.02 −0.5 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝝀 = 𝟎. 𝟓 0.05 0.04 0.07 0.11 Ϣ4 > Ϣ2 > Ϣ3 > Ϣ1 

𝝀 = 𝟎. 𝟔 0.14 0.10 0.15 0.17 Ϣ4 > Ϣ3 > Ϣ1 > Ϣ2 

𝝀 = 𝟎. 𝟕 0.22 0.15 0.24 0.23 Ϣ3 > Ϣ4 > Ϣ1 > Ϣ2 

𝝀 = 𝟎. 𝟖 0.31 0.21 0.32 0.29 Ϣ3 > Ϣ1 > Ϣ4 > Ϣ2 

𝝀 = 𝟎. 𝟗 0.39 0.27 0.40 0.34 Ϣ3 > Ϣ1 > Ϣ4 > Ϣ2 

𝝀 = 𝟏 0.47 0.33 0.49 0.40 Ϣ3 > Ϣ1 > Ϣ4 > Ϣ2 
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9. Comparative analysis 

In this section, the analytical comparison of ℒ𝑝-𝐼𝐹𝑆𝑠 is discussed in Table 14. 

Table 14. The analytical comparison of ℒ𝑝-𝐼𝐹𝑆𝑠 with alternative fuzzy methodologies. 

These fuzzy sets influence the optimal selection and impose limitations on decision-makers. We 

introduce the innovative concept of ℒ𝑝 - 𝐼𝐹𝑆𝑠 , enabling decision-makers to achieve improved 

outcomes through this advanced approach. 

10. Conclusions 

Our main aim of this paper is to present the concept of ℒ𝑝 −iintuitionistic fuzzy Set (ℒ𝑝 − 𝐼𝐹𝑆), 

where the membership and non-membership degrees are depicted by different ℒ𝑝-shapes with a norm 

ℵ and a center composed of two components. These components must satisfy the condition that the 

sum of their squares is less than or equal to one. In this fuzzy set representation, the membership and 

non-membership degrees are visualized through the circular structure. Circular Intuitionistic Fuzzy 

Sets (𝐶 − 𝐼𝐹𝑆 s) and interval-intuitionistic Fuzzy Sets ( 𝐼𝑉𝐼𝐹𝑆 s) are extended by a ℒ𝑝 − 𝐼𝐹𝑆 . 

Compared to 𝐼𝐹𝑆 , 𝐶 − 𝐼𝐹𝑆 s, and 𝐼𝑉𝐼𝐹𝑆 s, ℒ𝑝 − 𝐼𝐹𝑆  offer decision-makers or specialists a more 

flexible and comprehensive framework for analyzing items. This flexibility makes it possible to modify 

the degrees of membership and non-membership, which makes it easier to communicate doubt and 

promotes more thoughtful decision-making. To establish a novel scoring function and an accuracy 

function that incorporates the decision-makers' attitude (𝜆), the set's optimistic and pessimistic points 

are also defined. When the decision-maker's viewpoint (𝜆) approaches 1, the defuzzification of ℒ𝑝-

𝐼𝐹𝑆 occurs near its optimistic point, while it occurs near its pessimistic point as (𝜆) approaches 0. A 

technique for converting intuitionistic fuzzy values (𝐼𝐹𝑉) into ℒ𝑝 − 𝐼𝐹𝑉 is presented in this study. 

Algebraic operations for ℒ𝑝 − 𝐼𝐹𝑆𝑠 using continuous Archimedean 𝓉-norms and 𝓉-conorms are also 

introduced, as well as basic set-theoretic operations for ℒ𝑝 − 𝐼𝐹𝑆𝑠. A number of weighted aggregation 

procedures for ℒ𝑝 − 𝐼𝐹𝑆𝑠  are presented using these algebraic techniques. Finally, based on the 

concepts discussed, we propose a 𝑀𝐴𝐷𝑀 approach within a ℒ𝑝 −iintuitionistic fuzzy framework, 

applying it to a real-world 𝑀𝐴𝐷𝑀 problem from the literature concerning the selection of the optimal 

agricultural field robots 𝑀𝐴𝐷𝑀  framework. In the future, researchers may explore alternative 

aggregation operators and similarity measures. Additionally, tools like fuzzy integrals or other 

aggregation operators could be utilized when transforming 𝐼𝐹𝑉𝑠  into ℒ𝑝 − 𝐼𝐹𝑉 s. The proposed 

approach could also be applied to 𝑀𝐴𝐷𝑀 problems such as classification, machine learning, pattern 

Collections Remarks ₦⟠ 

𝐹𝑆 [72] Unable to handle non-membership 𝑠(ⱷ) No 

𝐼𝐹𝑆 [9] just deal with the single value  No 

Interval 𝐼𝐹𝑆 [10] cannot deal with the condition value in the ℒ𝑝 -shapes for 2 > 𝑝 > 1 , 

𝑝 > 2 

No 

𝐶𝐼𝐹𝑆 [11] cannot deal with the condition value in the ℒ𝑝 -shapes for 2 > 𝑝 > 1 , 

𝑝 > 2 

No 

𝒟-𝐼𝐹𝑆 [40] cannot deal with the condition value in the ℒ𝑝 -shapes for 2 > 𝑝 > 1 , 

𝑝 > 2 

No 

ℒ𝑝 − 𝐼𝐹𝑆 deal with the condition value in the ℒ𝑝-shapes for 2 > 𝑝 > 1, 𝑝 > 2 Yes 
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recognition, data mining, clustering, and medical diagnostics. 
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