The paper considers a class of generalized fractional integral equations with variable-order kernels. By employing estimates based on inequalities for the Gamma function, we establish the existence and uniqueness of solutions to the proposed fractional integral equation. Furthermore, the exponential growth rate of the solution is derived using the classical retarded Gronwall inequality. Moreover, numerical and graphical illustrations of the growth estimates are presented.
Citation: Hamdan Al Sulaimani. On a generalized fractional integral equation of a variable-order[J]. AIMS Mathematics, 2025, 10(12): 28295-28307. doi: 10.3934/math.20251245
The paper considers a class of generalized fractional integral equations with variable-order kernels. By employing estimates based on inequalities for the Gamma function, we establish the existence and uniqueness of solutions to the proposed fractional integral equation. Furthermore, the exponential growth rate of the solution is derived using the classical retarded Gronwall inequality. Moreover, numerical and graphical illustrations of the growth estimates are presented.
| [1] |
H. Abdelhamid, G. Stamov, M. S. Souid, I. Stamova, New results achieved For fractional differential equations with Riemann–Liouville derivatives of nonlinear variable order, Axioms, 12 (2023), 895. https://doi.org/10.3390/axioms12090895 doi: 10.3390/axioms12090895
|
| [2] |
H. Kiskinov, M. Milev, M. Petkova, A. Zahariev, Variable-order fractional linear systems with distributed delays - existence, uniqueness and integral representation of solutions, Fractal Fract., 8 (2024), 156. https://doi.org/10.3390/fractalfract8030156 doi: 10.3390/fractalfract8030156
|
| [3] |
S. Patnaik, J. P. Hollkamp, F. Semperlotti, Applications of variable–order fractional operators: A review, Proc. R. Soc. A, 476 (2020), 20190498. https://doi.org/10.1098/rspa.2019.0498 doi: 10.1098/rspa.2019.0498
|
| [4] | S. Zhang, L. Hu, Some properties of variable–order fractional calculus, J. Fract. Calc. Appl., 11 (2020), 173–185. |
| [5] |
D. Valeiro, M. D. Ortigueira, Variable–order fractional scale calculus, Mathematics, 11 (2023), 4549. https://doi.org/10.3390/math11214549 doi: 10.3390/math11214549
|
| [6] |
R. Almeida, On the variable–order fractional derivatives with respect to another function, Aequat. Math., 99 (2025), 805–822. https://doi.org/10.1007/s00010-024-01082-0 doi: 10.1007/s00010-024-01082-0
|
| [7] |
R. Garrappa, A. Giust, F. Mainardi, Variable–order fractional calculus: A change of perspective, Commun. Nonlinear Sci. Numer. Simulat., 102 (2021), 105904. https://doi.org/10.1016/j.cnsns.2021.105904 doi: 10.1016/j.cnsns.2021.105904
|
| [8] |
S. Naveen, V. Parthiban, Application of Newton's polynomial interpolation scheme for variable order fractional derivative with power-law kernel, Sci Rep., 14 (2024), 16090. https://doi.org/10.1038/s41598-024-66494-z doi: 10.1038/s41598-024-66494-z
|
| [9] |
S. Nemati, P. M. Lima, D. F. M. Torres, Numerical solution of variable-order fractional differential equations using Bernoulli polynomials, Fractal Fract., 5 (2021), 219. https://doi.org/10.3390/fractalfract5040219 doi: 10.3390/fractalfract5040219
|
| [10] |
A. Laforgia, P. Natalimi, Exponential, gamma and polygamma functions: Simple proofs of classical and new inequalities, J. Math. Anal. Appl., 407 (2013), 495–504. https://doi.org/10.1016/j.jmaa.2013.05.045 doi: 10.1016/j.jmaa.2013.05.045
|
| [11] |
G. D. Anderson, S. L. Qiu, A monotoneity property of the Gamma function, Proc. Amer. Math. Soc., 125 (1997), 3355–3362. https://doi.org/10.1090/S0002-9939-97-04152-X doi: 10.1090/S0002-9939-97-04152-X
|
| [12] |
P. Ivdy, A note on a Gamma function inequality, J. Math. Inequal., 3 (2009), 227–236. https://doi.org/10.7153/jmi-03-23 doi: 10.7153/jmi-03-23
|
| [13] |
J. L. Zhao, B. N. Guo, F. Qi, A refinement of a double inequality for the gamma function, Publ. Math. Debrecen, 80 (2012), 333–342. https://doi.org/10.5486/PMD.2012.5010 doi: 10.5486/PMD.2012.5010
|
| [14] |
O. Lipovan, A retarded Gronwall-like inequality and its applications, J. Math. Anal. Appl., 252 (2000), 389–401. https://doi.org/10.1006/jmaa.2000.7085 doi: 10.1006/jmaa.2000.7085
|
| [15] |
R. P. Agarwal, S. Deng, W. Zhang, Generalization of a retarded Gronwall-like inequality and its applications, Appl. Math. Comput., 165 (2005), 599–612. https://doi.org/10.1016/j.amc.2004.04.067 doi: 10.1016/j.amc.2004.04.067
|