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1. Introduction

Many real-world phenomena exhibit variable fractional-order behavior with respect to time. The
introduction of variable-order fractional differential and integral operators provides greater flexibility
in modeling diverse processes and natural phenomena. In particular, such operators are employed
to describe mechanical behaviors and diffusion processes, enabling the characterization of time-
dependent or concentration-dependent anomalous diffusion. The adaptive nature of variable-order
fractional models makes them especially valuable for capturing dynamic, nonlocal, and memory-
dependent effects. Consequently, variable-order fractional differential and integral equations have
found wide-ranging applications in addressing complex problems across physics, engineering, biology,
medicine, economics, finance, environmental sciences, mathematics, and computational sciences.

Applications of variable-order fractional operators are abundant across scientific and engineering
disciplines. For instance, in anomalous diffusion, they model processes with non-uniform diffusion
rates, such as particle transport in heterogeneous media. In viscoelasticity, they capture materials
with time-dependent mechanical properties by allowing the order to vary with changing relaxation
behaviors. In wave propagation, they describe phenomena in media with spatially or temporally
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varying damping properties. Within control systems, variable-order fractional controllers enhance
stability and performance, particularly in systems with varying inertia or damping. In signal
processing, they facilitate the analysis of signals in systems exhibiting non-stationary behavior. In
neuroscience, they represent memory effects in neural networks where the degree of memory evolves
over time. In financial modeling, they capture complex market dynamics, including memory effects
that vary with economic conditions. For detailed discussions and further applications, see [1–4] and
the references therein.

In the literature, many authors have investigated various formulations of the general Cauchy
problem

CDα(t)x(t) = g(t, x(t)), x(0) = x0,

where CDα(t) denotes the Caputo derivative of variable-order. We highlight a few of the recent
developments on the topic. The authors in [1] investigated an initial value problem (IVP) for fractional
differential equations with nonlinear variable-order derivatives of Riemann–Liouville (R–L) type given
by

D
α(t,x(t))
0+ x(t) = ψ(t, x(t)), t ∈ (0,T ], 0 < T < ∞,

with initial condition x(0) = 0, where Dα(t,x(t)) denotes the R–L fractional derivative of the variable-
order α(t, x(t)), ψ is a given function, and α satisfies 0 < α∗ ≤ α(t, x(t)) ≤ α∗ < 1. In 2023, the authors
in [5] introduced and investigated general variable-order fractional scale derivatives, considering both
the Grünwald–Letnikov (GL) and Hadamard formulations. In [2], the authors considered the retarded
fractional linear system with Caputo-type variable-order derivatives and distributed delays in the
general form:

CDα(t)x(t)a+ =

∫ 0

−h
[dθU(t, θ)]X(t, θ) + Ft.

In a related development, Almeida [6], in 2025, studied a generalized fractional calculus framework in
which the order of the operators is not constant and the integral kernel depends on a given function.
See [3, 4, 7–9] and the references therein for other related discussions and results. Motivated by
these studies and the wide range of real-world applications of variable-order fractional differential and
integral equations, we consider an explicit form of α(t) and analyze a class of generalized fractional
equations with variable-order kernels.

The remainder of this paper is structured as follows. Section 2 introduces the necessary preliminary
concepts and auxiliary results required for the proofs. Section 3 is devoted to the presentation of the
main results. Finally, Section 4 provides a brief summary and concluding remarks.

2. Preliminaries

Let α(.) : [0,T ] ⊂ R+ → (0, 1) be a continuous function and f : [0,T ]→ R:

Definition 2.1 (Variable-order fractional integral). The left and right Riemann–Liouville fractional
integrals of order 0 < α(t) < 1 are defined by

0I
α(t)
t f (t) =

1
Γ(α(t))

∫ t

0
(t − s)α(t)−1 f (s)ds; t > 0,
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and

tI
α(t)
T f (t) =

1
Γ(α(t))

∫ T

t
(s − t)α(t)−1 f (s)ds; t < T.

Definition 2.2 (Variable-order fractional derivative). The left and right Riemann–Liouville
fractional derivatives of order 0 < α(t) < 1 are defined by

0D
α(t)
t f (t) =

1
Γ(1 − α(t))

d
dt

∫ t

0
(t − s)−α(t) f (s)ds; t > 0,

and

tD
α(t)
T f (t) = −

1
Γ(1 − α(t))

d
dt

∫ T

t
(s − t)−α(t) f (s) ds; t < T.

Definition 2.3 (Variable-order Caputo fractional derivative). The left and right Caputo derivatives
of order 0 < α(t) < 1 are defined by

C
0D

α(t)
t f (t) =

1
Γ(1 − α(t))

∫ t

0
(t − s)−α(t) f ′(s)ds; t > 0,

and
C
t D

α(t)
T f (t) =

−1
Γ(1 − α(t))

∫ T

t
(s − t)−α(t) f ′(s) ds; t < T.

Remark 2.4. The fractional integral and differential operators defined above present significant
technical challenges. For instance, the operator 0D

α(t)
t does not, in general, serve as the left inverse

of 0I
α(t)
t ; see [7]. In this paper, our focus is directed toward analyzing the properties of the

Riemann–Liouville fractional integral of variable-order and studying a general class of variable-order
fractional integral equations involving a suitably chosen variable-order function.

2.1. Inequalities for Gamma function

Here, we present some properties and estimates of Gamma functions.

Theorem 2.5. [10] Let γ = 0.577... be the Euler–Mascheroni constant. Then, for 0 ≤ t ≤ 1,

e(1−γ)(t−1) ≤ Γ(t + 1) ≤ 1, (2.1)

where in the lower bound, equality occurs if and only if t = 1.

Theorem 2.6. [11] The function f (t) = logΓ(t+1)
t log t is strictly increasing from [2,∞) onto (1−γ, 1), where

γ is the Euler–Mascheroni constant.
In particular, for t ∈ (1,∞),

t(1−γ)t−1 < Γ(t) < tt−1. (2.2)

Other versions of the double inequalities are as follows:

Theorem 2.7. [12] For 0 ≤ t ≤ 1,

t2 + 1
t + 1

≤ Γ(t + 1) ≤
t2 + 2
t + 2

. (2.3)

The above inequality (2.3) was improved as follows:

Theorem 2.8. [13] Let 0 ≤ t ≤ 1 and γ is the Euler–Mascheroni constant, then( t2 + 1
t + 1

)2(1−γ)

≤ Γ(t + 1) ≤
( t2 + 2

t + 2

)γ
.
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3. Main results

In this paper, we investigate a general class of fractional integral equations of variable order α(.),
where λ and µ are given real parameters, of the form

f (t) = λ
∫ t

0
Kα(t)(t, s)σ(s, f (s))ds + µ

∫ T

t
Kα(t)(s, t)σ(s, f (s))ds. (3.1)

In this work, we focus on a particular case of (3.1), which serves as the basis for our analysis and
results, and let

Kα(t)(t, s) =
(t − s)α(t)−1

Γ(α(t))
, α(t) > 0,∀ s, t ∈ [1,T ], T < ∞

with variable function α(t) = αt, α > 0, ∀ t ∈ [1,T ], T < ∞, and define

f (t) =
λ

Γ(αt)

∫ t

1
(t − s)αt−1σ(s, f (s))ds +

µ

Γ(αt)

∫ T

t
(s − t)αt−1σ(s, f (s))ds. (3.2)

Remark 3.1. The main challenge encountered in this research lies in the absence of a unified inequality
or closed-form estimate capable of bounding the Gamma function over the entire interval [0,∞).
Consequently, we restrict our analysis to the interval of interest [1,T ], with T < ∞. Although the
segment [0, 1] can be estimated using inequality 2.1 of Theorem 2.5, it is treated as a negligible
subinterval for the purposes of this study.

Therefore, the proofs of our results will rely on the estimate for the Gamma function provided by
inequality (2.2) of Theorem 2.6.

Assume that the non-linear function σ is Lipschitz continuous with respect to its second argument:

Assumption 3.2 (Lipschitz continuity). Let 0 < Lipσ < ∞, and f , g : [1,T ]→ R; we assume

|σ(s, f ) − σ(s, g)| ≤ Lipσ| f − g|, ∀ s ∈ [1,T ]. (3.3)

So,
|σ(s, f )| ≤ |σ(s, 0)| + Lipσ| f | ≤ c1 + Lipσ| f |, ∀ s ∈ [1,T ]. (3.4)

Let the supremum norm of the solution be given by

∥ f ∥ = sup
t∈[1,T ]

| f (t)|. (3.5)

3.1. Existence and uniqueness result

We define the operator K as follows:

K f (t) =
λ

Γ(αt)

∫ t

1
(t − s)αt−1σ(s, f (s))ds +

µ

Γ(αt)

∫ T

t
(s − t)αt−1σ(s, f (s))ds, (3.6)

where λ and µ are real numbers, and use the fixed point theorem to show that the fixed point of (3.6)
solves (3.2).
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Lemma 3.3. Let f (t) be the solution of (3.2). Suppose that Assumption 3.2 is satisfied; then one
obtains

∥K f ∥ ≤ c2 + c3Lipσ∥ f ∥, (3.7)

with positive constants c2 := c1
α

[
λTαγT + µTαT ] and c3 := 1

α

[
λTαγT + µTαT ].

Proof. By absolute value of Eq (3.6) to obtain

|K f (t)| ≤
λ

Γ(αt)

∫ t

1
(t − s)αt−1|σ(s, f (s))|ds +

µ

Γ(αt)

∫ T

t
(s − t)αt−1|σ(s, f (s))|ds.

Then by Eq (3.4) of Assumption 3.2, one obtains

|K f (t)| ≤
λ

Γ(αt)

∫ t

1
(t − s)αt−1(c1 + Lipσ| f (s)|)ds +

µ

Γ(αt)

∫ T

t
(s − t)αt−1(c1 + Lipσ| f (s)|)ds

≤ (c1 + Lipσ sup
s∈[1,t]
| f (s)|)

λ

Γ(αt)

∫ t

1
(t − s)αt−1ds + (c1 + Lipσ sup

s∈[t,T ]
| f (s)|)

µ

Γ(αt)

∫ T

t
(s − t)αt−1ds.

Evaluating the integrals, we have

|K f (t)| ≤ (c1 + Lipσ sup
s∈[1,t]
| f (s)|)

λ

Γ(αt)
(t − 1)αt

αt
+ (c1 + Lipσ sup

s∈[t,T ]
| f (s)|)

µ

Γ(αt)
(T − t)αt

αt

≤ (c1 + Lipσ sup
s∈[1,t]
| f (s)|)

λ

Γ(αt)
tαt

αt
+ (c1 + Lipσ sup

s∈[t,T ]
| f (s)|)

µ

Γ(αt)
Tαt

αt
.

Choose α > 0 such that αt ∈ (1,∞) for all t ∈ (1,∞). Then by (2.2) of Theorem 2.6, one arrives at
(αt)(1−γ)αt−1 < Γ(αt), and thus,

|K f (t)| ≤
1
Γ(αt)

[
λ(c1 + Lipσ sup

s∈[1,t]
| f (s)|)

tαt

αt
+ µ(c1 + Lipσ sup

s∈[t,T ]
| f (s)|)

Tαt

αt

]
≤ (αt)1−(1−γ)αt

[
λ(c1 + Lipσ sup

s∈[1,t]
| f (s)|)

tαt

αt
+ µ(c1 + Lipσ sup

s∈[t,T ]
| f (s)|)

Tαt

αt

]
= (αt)−(1−γ)αt

[
λ(c1 + Lipσ sup

s∈[1,t]
| f (s)|)tαt + µ(c1 + Lipσ sup

s∈[t,T ]
| f (s)|)Tαt

]
= α−(1−γ)αt

[
λ(c1 + Lipσ sup

s∈[1,t]
| f (s)|)tαγt + µ(c1 + Lipσ sup

s∈[t,T ]
| f (s)|)t−(1−γ)αtTαt

]
.

For t ≥ 1 and α > 0, then −α(1 − γ)t ≤ −1 and α−α(1−γ)t ≤ 1
α
. In the same vein, t−α(1−γ)t ≤ 1

t ≤ 1, since
t ≥ 1, and therefore,

|K f (t)| ≤
1
α

[
λ(c1 + Lipσ sup

s∈[1,t]
| f (s)|)tαγt + µ(c1 + Lipσ sup

s∈[t,T ]
| f (s)|)Tαt

]
.

Now, take the supremum of both sides for t ∈ [1,T ] and Eq (3.5) to arrive at

∥K f ∥ ≤
1
α

(c1 + Lipσ∥ f ∥)
[
λTαγT + µTαT ] = c2 + c3Lipσ∥ f ∥.

□
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Lemma 3.4. Suppose that f and g are the solutions of (3.2). Given that Assumption 3.2 holds, then
one obtains

∥K f − Kg∥ ≤ c3Lipσ∥ f − g∥. (3.8)

Proof. Take the absolute value of both sides of Eq (3.6) and by Eq (3.3) of Assumption 3.2 to get

|K f (t) − Kg(t)| ≤
λ

Γ(αt)

∫ t

1
(t − s)αt−1|σ(s, f (s)) − σ(s, g(s))|ds

+
µ

Γ(αt)

∫ T

t
(s − t)αt−1|σ(s, f (s)) − σ(s, g(s))|ds

≤
λ

Γ(αt)

∫ t

1
(t − s)αt−1Lipσ| f (s) − g(s)|ds +

µ

Γ(αt)

∫ T

t
(s − t)αt−1Lipσ| f (s) − g(s)|ds

≤
λ

Γ(αt)
Lipσ sup

s∈[0,t]
| f (s) − g(s)|

∫ t

0
(t − s)αt−1ds

+
µ

Γ(αt)
Lipσ sup

s∈[t,T ]
| f (s) − g(s)|

∫ T

t
(s − t)αt−1ds.

Therefore, by Eq (2.1), one arrives at

|K f (t) − Kg(t)| ≤
Lipσ
Γ(αt)

[
λ sup

s∈[1,t]
| f (s) − g(s)|

(t − 1)αt

αt
+ µ sup

s∈[t,T ]
| f (s) − g(s)|

(T − t)αt

αt

]
≤ Lipσ

1
α

[
λ sup

s∈[1,t]
| f (s) − g(s)|tαγt + µ sup

s∈[t,T ]
| f (s) − g(s)|Tαt

]
.

Take the supremum of both sides over t ∈ [1,T ] and use Eq (3.5) to write

∥K f − Kg∥ ≤
1
α

(
λTαγT + µTαT )Lipσ∥ f − g∥. (3.9)

□

One now establishes the existence and uniqueness of the solution to the fractional integral equation
by employing the above Lemma(s).

Theorem 3.5. If Assumption 3.2 holds, then there is a constant 0 < Lipσ <
1
c3

such that (3.2) has a
unique solution f .

Proof. By the fixed point theorem we have K f = f , then from (3.7) of Lemma 3.3

∥ f ∥ ≤ c2 + c3Lipσ∥ f ∥,

and ∥ f ∥ [1 − c3Lipσ] ≤ c2. Thus, ∥ f ∥ < ∞ if and only if c3Lipσ < 1. Also, suppose by contradiction
that (3.2) has the following solutions: f , g, then by (3.8) of Lemma 3.4, one gets

∥ f − g∥ ≤ c3Lipσ∥ f − g∥.

This gives ∥ f − g∥[1 − c3Lipσ] ≤ 0, and since 1 − c3Lipσ > 0, it must follow that ∥ f − g∥ ≤ 0. Hence,
∥ f − g∥ = 0 by the property of a norm, and consequently, f − g = 0, contradicting the assumption that
f , g. □
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3.2. Growth estimate

To establish this result, one first introduces the following variant of a Gronwall-type inequality:

Proposition 3.6. [14] Let x, g, h ∈ C([t0,T ),R+), and w ∈ C(R+,R+) be nondecreasing with w(x) > 0
for x > 0, and b ∈ C1([t0,T ), [t0,T )) be nondecreasing with b(t) ≤ t on [t0,T ). If

x(t) ≤ k +
∫ t

t0
g(s)w(x(s))ds +

∫ b(t)

b(t0)
h(s)w(x(s))ds, t0 ≤ t < T,

where k is a nonnegative constant, then for t0 ≤ t < t1,

x(t) ≤ G−1
(
G(k) +

∫ t

t0
g(s)ds +

∫ b(t)

b(t0)
h(s)ds

)
,

with G(r) =
∫ r

1

ds
w(s)

, r > 0 and t1 ∈ (t0,T ) chosen so that the right-hand side is well-defined.

Remark 3.7. The above Proposition 3.6 is not sufficient to obtain the desired result, as the functions
g(s) and h(s) must depend on two variables.

Consequently, in 2005, Agarwal et al., in [15], generalized the above retarded Gronwall-type
inequality to:

x(t) ≤ a(t) +
n∑

i=1

∫ bi(t)

bi(t0)
gi(t, s)wi(x(s))ds, t0 ≤ t < t1. (3.10)

Theorem 3.8 (Theorem 2.1 of [15]). Suppose that the hypotheses of (Theorem 2.1 of [15]) hold and
x(t) is a continuous and nonnegative function on [t0, t1) satisfying (3.10). Then

x(t) ≤ W−1
n

[
Wn(rn(t)) +

∫ bn(t)

bn(t0)
max
t0≤τ≤t

gn(τ, s)ds
]
, t0 ≤ t ≤ T1,

where rn(t) is determined recursively by

r1(t) := a(t0) +
∫ t

t0
|a′(s)|ds,

ri+1 := W−1
i

[
Wi(ri(t)) +

∫ bi(t)

bi(t0)
max
t0≤τ≤t

gi(τ, s)ds
]
, i = 1, ..., n − 1,

and Wi(x, xi) :=
∫ x

xi

dz
wi(z)

.

Remark 3.9. Now, consider the case where n = 2 in (3.10): if

x(t) ≤ a(t) +
∫ b1(t)

b1(t0)
g1(t, s)w1(x(s))ds +

∫ b2(t)

b2(t0)
g2(t, s)w2(x(s))ds,

then

x(t) ≤ W−1
2

[
W2(r2(t)) +

∫ b2(t)

b2(t0)
max
t0≤τ≤t

g2(τ, s)ds
]
,
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with r2(t) = W−1
1

[
W1(r1(t)) +

∫ b1(t)

b1(t0)
max
t0≤τ≤t

g1(τ, s)ds
]
.

In what follows, we take w1(x(s)) = w2(x(s)) = x(s), b1(t0) = 1, b1(t) = b2(t0) = t, and b2(t) = T to
get the inequality

x(t) ≤ a(t) +
∫ t

1
g1(t, s)x(s)ds +

∫ T

t
g2(t, s)x(s)ds.

Next, one establishes the growth bound for a solution to (3.2).

Theorem 3.10. Suppose that Assumption 3.2 holds; then there exists α > 0 such that the solution to
Eq (3.2) satisfies the growth bound

| f (t)| ≤
c1µ

α
Tαt exp

[1
α

(
λLipσtαγt + µLipσTαt

)]
,

for all t ∈ [1,T ], T < ∞, and some positive constant c1.

Proof. Following the proof of Lemma 3.3,

| f (t)| ≤ c1
λ

Γ(αt)

∫ t

1
(t − s)αt−1ds + Lipσ

λ

Γ(αt)

∫ t

1
(t − s)αt−1| f (s)|ds

+ c1
µ

Γ(αt)

∫ T

t
(s − t)αt−1ds + Lipσ

µ

Γ(αt)

∫ T

t
(s − t)αt−1| f (s)|ds

= c1
λ

Γ(αt)
(t − 1)αt

αt
+ Lipσ

λ

Γ(αt)

∫ t

1
(t − s)αt−1| f (s)|ds

+ c1
µ

Γ(αt)
(T − t)αt

αt
+ Lipσ

µ

Γ(αt)

∫ T

t
(s − t)αt−1| f (s)|ds

≤
c1

α

[
λtαγt + µTαt

]
+ Lipσ

λ

Γ(αt)

∫ t

1
(t − s)αt−1| f (s)|ds + Lipσ

µ

Γ(αt)

∫ T

t
(s − t)αt−1| f (s)|ds.

Define Φ(t) = | f (t)| for all t ∈ [1,T ] so that

Φ(t) ≤
c1

α

[
λtαγt + µTαt

]
+
λLipσ
Γ(αt)

∫ t

1
(t − s)αt−1Φ(s)ds +

µLipσ
Γ(αt)

∫ T

t
(s − t)αt−1Φ(s)ds

≤
c1

α

[
λ + µTαt

]
+
λLipσ
Γ(αt)

∫ t

1
(t − s)αt−1Φ(s)ds +

µLipσ
Γ(αt)

∫ T

t
(s − t)αt−1Φ(s)ds.

To apply Theorem 3.8 to the our inequality, let x(t) = Φ(t), and a(t) = c1
α

[
λ + µTαt

]
so that a′(t) =

c1µTαt ln(T ), and therefore,

r1(t) = c1µ ln(T )
∫ t

1
Tαsds = c1µ ln(T )

Tαt − Tα

α ln(T )
=

c1µ

α
(Tαt − Tα).

For W2, one obtains that

W2(x, x2) =
∫ x

x2

dz
z
= ln(x) − ln(x2).
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We take x2 = 1 for convenience and W2(x) = ln(x) with the inverse W−1
2 (x) = ex. Similarly, W1(x) = ln x

with its inverse W−1
1 (x) = ex.

Next, define non-negative functions g1, g2 : [1,T ] × [1,T ]→ R+ for a fixed t as follows:

g1(τ, s) :=


λLipσ
Γ(αt) (τ − s)αt−1, 1 ≤ s < τ

λLipσ
Γ(αt) (s − τ)αt−1, 1 ≤ τ < s,

and

g2(τ, s) :=


µLipσ
Γ(αt) (τ − s)αt−1, s ≤ τ < T

µLipσ
Γ(αt) (s − τ)αt−1, t ≤ τ < s.

Note that the Gamma function is strictly positive and increasing. That is, Γ(t) is decreasing on (0, t0)
and increasing on (t0,∞, ) where 1 < t0 < 2. Now, consider two cases.

• Case 1: Consider when 1 ≤ s < τ. Not that Γ(ατ) is increasing, so g1 is continuous and increasing
(continuously increasing); hence,

max
1≤τ≤t

g1(t, s) =
λLipσ
Γ(αt)

(t − s)αt−1,

and we have

r2(t) = exp
[

ln
(c1µ

α
(Tαt − Tα)

)
+
λLipσ
Γ(αt)

∫ t

1
(t − s)αt−1ds

]
= exp

[
ln
(c1µ

α
(Tαt − Tα)

)
+
λLipσ
Γ(αt)

(t − 1)αt

αt

]
.

Consider also, t ≤ τ < s. Given that g2 is continuously increasing, and

max
t≤τ≤s

g2(τ, s) =
µLipσ
Γ(αt)

(s − t)αt−1.

Thus,

Φ(t) ≤ exp
[

ln(r2(t)) +
µLipσ
Γ(αt)

∫ T

t
(s − t)αt−1ds

]
= exp

[
ln
(c1µ

α
(Tαt − Tα)

)
+
λLipσ
Γ(αt)

(t − 1)αt

αt
+
µLipσ
Γ(αt)

(T − t)αt

αt

]
=

(c1µ

α
(Tαt − Tα)

)
exp
[λLipσ
Γ(αt)

(t − 1)αt

αt
+
µLipσ
Γ(αt)

(T − t)αt

αt

]
.

• Case 2: For 1 ≤ τ < s, one follows similar steps as in case 1, which gives that g1 is continuously
increasing and

max
1≤s≤t

g1(τ, s) =
λLipσ
Γ(αt)

(t − τ)αt−1.
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Hence,

r2(t) = exp
[

ln
(c1µ

α
(Tαt − Tα)

)
+
λLipσ
Γ(αt)

∫ t

1
(t − τ)αt−1dτ

]
= exp

[
ln
(c1µ

α
(Tαt − Tα)

)
+
λLipσ
Γ(αt)

(t − 1)αt

αt

]
.

On the other hand, g2 is continuously increasing, and

max
s≤τ≤T

g2(τ, s) =
µLipσ
Γ(αt)

(T − s)αt−1.

Therefore,

Φ(t) ≤ exp
[

ln(r2(t)) +
µLipσ
Γ(αt)

∫ T

t
(T − s)αt−1ds

]
= exp

[
ln
(c1µ

α
(Tαt − Tα)

)
+
λLipσ
Γ(αt)

(t − 1)αt

αt
+
µLipσ
Γ(αt)

(T − t)αt

αt

]
=

(c1µ

α
(Tαt − Tα)

)
exp
[λLipσ
Γ(αt)

(t − 1)αt

αt
+
µLipσ
Γ(αt)

(T − t)αt

αt

]
≤

c1µ

α
Tαt exp

[λLipσ
Γ(αt)

tαt

αt
+
µLipσ
Γ(αt)

Tαt

αt

]
≤

c1µ

α
Tαt exp

[1
α

(
λLipσtαγt + µLipσTαt

)]
,

and this completes the proof. □

Example 3.11. Let α = 3
2 and the Lipschitz functionσ : R→ R be given byσ(t, f (t)) = sin( f (t)), ∀ t ∈

[1,T ] with Lipσ = 1. The fractional integral equation becomes

f (t) =
λ

Γ( 3
2 t)

∫ t

1
(t − s)

3
2 t−1 sin( f (s))ds +

µ

Γ( 3
2 t)

∫ T

t
(s − t)

3
2 t−1 sin( f (s))ds.

For convenience, let c1 = µ = λ = 1 and γ = 6
10 to obtain the estimate on the growth bound as

| f (t)| ≤
2
3

T
3
2 t exp

[2
3

(
t

9
10 t + T

3
2 t
)]
, ∀ t ∈ [1,T ].

Next, we present graphical representations of the growth estimates of the solution for various values
of t. The plots in Figure 1 below indicate that the solution exhibits standard exponential growth for
small values of t, and as t increases or the interval [1,T ] becomes larger, the growth behavior becomes
progressively steeper.
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(a) (b)

(c) (d)

Figure 1. Exponential growth behavior of the solution for values of t ∈ [1,T ].

4. Conclusions

Variable-order fractional differential and integral equations play a significant role in modeling
complex biological and financial phenomena. In this paper, we established existence and uniqueness
results for a class of fractional integral equations with variable-order kernels and, moreover, derived
the exponential growth rate of their solutions. Lastly, we presented some numerical examples and
graphical representations of the growth estimates. Future research may focus on analyzing the behavior
of solutions under specific choices of kernel functions and exploring broader applications in real-world
systems.
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