Research article Special Issues

Generating functions for circular sums of binomial products

  • Published: 01 December 2025
  • MSC : Primary 11B39, Secondary 05A15, 11B65

  • By means of the recursive construction method, we examine a class of multiple sums (with a free variable "$ x $") for circular products of binomial coefficients. They are first expressed as coefficients of bivariate rational functions. Then the rational generating functions are determined by deftly employing Knuth's bracket calculus, resultants of polynomials, and Hadamard products of rational functions.

    Citation: Marta Na Chen, Wenchang Chu. Generating functions for circular sums of binomial products[J]. AIMS Mathematics, 2025, 10(12): 28182-28206. doi: 10.3934/math.20251239

    Related Papers:

  • By means of the recursive construction method, we examine a class of multiple sums (with a free variable "$ x $") for circular products of binomial coefficients. They are first expressed as coefficients of bivariate rational functions. Then the rational generating functions are determined by deftly employing Knuth's bracket calculus, resultants of polynomials, and Hadamard products of rational functions.



    加载中


    [1] J. P. Allouche, M. Mendé France, Hadamard grade of power series, J. Number Theory, 131 (2011), 2013–2022. https://doi.org/10.1016/j.jnt.2011.04.011 doi: 10.1016/j.jnt.2011.04.011
    [2] A. T. Benjamin, J. A. Rouse, In: F. T. Howard, Recounting binomial Fibonacci identities, Applications of Fibonacci numbers, Springer, 2004, 25–28. https://doi.org/10.1007/978-0-306-48517-6_4
    [3] A. Bostan, P. Flajolet, B. Salvy, É. Schost, Fast computation of special resultants, J. Symbolic Comput., 41 (2006), 1–29. https://doi.org/10.1016/j.jsc.2005.07.001 doi: 10.1016/j.jsc.2005.07.001
    [4] L. Carlitz, The characteristic polynomial of a certain matrix of binomial coefficients, Fibonacci Quart., 3 (1965), 81–89. https://doi.org/10.1080/00150517.1965.12431433 doi: 10.1080/00150517.1965.12431433
    [5] M. N. Chen, W. Chu, Triple symmetric sums of circular binomial products, Mathematics, 12 (2024), 2303. https://doi.org/10.3390/math12152303
    [6] W. Chu, Circular sums of binomial coefficients, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 115 (2021), 92. https://doi.org/10.1007/s13398-021-01039-x
    [7] W. Chu, Alternating circular sums of binomial coefficients, Bull. Aust. Math. Soc., 106 (2022), 385–395. https://doi.org/10.1017/S0004972722000351 doi: 10.1017/S0004972722000351
    [8] I. M. Gessel, I. Kar, Binomial convolutions for rational power series, arXiv, 2023. https://doi.org/10.48550/arXiv.2304.10426
    [9] S. Janson, Resultant and discriminant of polynomials, Preprint, 2007. Available from: https://www2.math.uu.se/svantejs/papers/sjN5.pdf.
    [10] I. Kar, A new method to compute the Hadamard product of two rational functions, Rose-Hulman Undergrad. Math. J., 23 (2022), 3.
    [11] T. Koshy, Fibonacci and Lucas numbers with applications, John Wiley & Sons, 2001. https://doi.org/10.1002/9781118033067
    [12] D. E. Knuth, Bracket notation for the "coefficient of operator", In: A. W. Roscoe, A classical mind: essays in honour of C. A. R. Hoare, Hertfordshire: Prentice Hall International Ltd., 1994,247–258.
    [13] J. Mikic, A proof of the curious binomial coefficient identity which is connected with the Fibonacci numbers, Open Access J. Math. Theor. Phys., 1 (2017), 1–7.
    [14] V. V. Prasalov, Polynomials, Algorithms and Computation in Mathematics, Vol. 11, Springer, 2004. https://doi.org/10.1007/978-3-642-03980-5
    [15] The On-Line Encyclopedia of Integer Sequences (OEIS), accessed on 12 May 2025. Available from: http://oeis.org/.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(691) PDF downloads(36) Cited by(0)

Article outline

Figures and Tables

Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog