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1. Introduction and motivation

By examining the characteristic polynomial of a certain binomial matrix, Carlitz [4] discovered, in
1965, the following beautiful identity for the multiple sum of binomial circular products:

Fmn+m

Fm
=

∑
0≤k1,k2,··· ,km≤n

m∏
ı=1

(
n − kı
kı+1

)
, km+1 := k1

where Fm denotes the usual Fibonacci number. Due to the cyclic property, it seems that this is the
unique deep result among the known multiple binomial sums (see for example [3]). Up to now, there are
three alternative proofs. The first one is due to Benjianmin and Rouse [2], who offered a combinatorial
proof by counting domino–tillings. Recently, Mikic [13] furnished an analytic proof based on the
induction principle. By introducing “the recursive construction” method, the second author [6,7] found
a more transparent proof for Carlitz’ formula, and established analogous identities for the alternating
multiple sums.
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Motivated by these works, this paper will investigate the following product sums of circular
binomial coefficients with free variable “x”:

Ωm(n) := Ωm(n|x) =
∑

0≤k1,k2,··· ,km≤n

m∏
ı=1

(
1 + n + kı
1 + 2kı+1

)
xkı . km+1 := k1

In Section 2 (see Theorem 1), we shall show, by means of “the recursive construction” method, that this
multiple sum can be expressed as the coefficient of T n(2m−1) extracted from a bivariate rational function
in T and x. By combining artfully Knuth’s bracket calculus, the resultant of two polynomials, and the
Hadamard product of two formal power series, the generating function of Ωm(n) for any specific m
is theoretically determined (see Theorem 5) to be a bivariate rational function in x and y (and proper
in y). Two special numerical sums corresponding to x = ±1 will be examined in Sections 4 and 5,
respectively. Finally, the paper will end with Section 6, where conclusive comments will be presented
briefly.

2. Ωm(n) as coefficients of rational functions

By means of the recursive construction method, we are going to show that the multiple sums Ωm(n)
can be expressed as coefficients of rational functions.

Theorem 1. Letting Λm and Θm be defined as below, then

Ωm(n) := Ωm(n|x) = [T (2m−1)n]
(1 + T )1+n

Θm(T, x)

∏m−2
=1 Λ2+2n



xn(2m−m−1) .

Throughout the paper, two sequences of bivariate polynomials Λk := Λk(T, x) and Θk := Θk(T, x)
are introduced that will play a crucial role in realizing the “recursive construction” process. First, the
Λm-polynomials are defined by the quadratic recurrence relation of the first order

Λm = Λ2
m−1 − (T x)2m/

x with Λ0 = 1.

The initial terms read explicitly as

Λ1 = 1 − T 2x,

Λ2 = 1 − 2T 2x + T 4x2 − T 4x3,

Λ3 = 1 − 4T 2x + 6T 4x2 − 2T 4x3 − 4T 6x3 + 4T 6x4 + T 8x4 − 2T 8x5 + T 8x6 − T 8x7.

It is almost obvious that polynomial Λm(T, x) has degree 2m in variable “T” and degree 2m − 1 in
variable “x”. Then, we have another polynomial sequence Θm := Θm(T, x) defined by

Θm = Λm − (T x)2m−1 with Θ0 = 0,

which satisfies also the quadratic relation as below

Θm =
(
Θm−1 + (T x)2m−1−1

)2
− (T x)2m−1(1 + T ).
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The initial terms are recorded as follows:

Θ1 = 1 − T x − T 2x,

Θ2 = Θ1(1 + T x − T 2x + T 2x2),

Θ3 = Θ1

(
1 + T x − 3T 2x + T 2x2 − 2T 3x2 + T 3x3 + 3T 4x2 − 3T 4x3

+ T 4x4 + T 5x3 − 2T 5x4 + T 5x5 − T 6x3 + 2T 6x4 − T 6x5 + T 6x6
)
.

The polynomial Θm(T, x) has the same degrees as Λm(T, x) in both “T and x”. As will be shown in the
Appendix, this polynomial sequence is highly decomposable, i.e., for the two natural numbers m and
d with d|m, we always have that Θd(T, x) divides Θm(T, x): Θd(T, x)|Θm(T, x) . This property will be
useful subsequently in reducing computations for evaluating the resultant of two polynomials.

Proof of Theorem 1. Observing that

xk1

(
1 + n + k1

1 + 2k2

)
= [T 2n+2k1]

T 4k2 x2k2−n

(1 − T 2x)2+2k2
,(

1 + n + km

1 + 2k1

)
= [T n+km−2k1](1 + T )1+n+km ,

we can express the sum with respect to k1 in Ωm(n) as

Ω1
m =

n∑
k1=0

xk1

(
1 + n + km

1 + 2k1

)(
1 + n + k1

1 + 2k2

)
= [T 3n+km]

(1 + T )1+n+km

xnΛ2
1

T 4k2 x2k2

Λ
2k2
1

,

from which we deduce further

Ω2
m =

n∑
k2=0

Ω1
m

(
1 + n + k2

1 + 2k3

)
xk2 y =

T 4x3

Λ2
1

= [T 3n+km]
(1 + T )1+n+km

xnΛ2
1

∞∑
k2=0

(
1 + n + k2

1 + 2k3

)
yk2

= [T 3n+km]
(1 + T )1+n+km

xnΛ2
1

y2k3−n

(1 − y)2+2k3

= [T 7n+km]
(1 + T )1+n+kmΛ2+2n

1

x4nΛ2
2

T 8k3 x6k3

Λ
2k3
2

,

where for the summation with respect to k2 in the second line, the upper limit “n” is replaced by “∞”.
This is justified by the fact that

[T 3n+km]yk2 = [T 3n+km]
(T 4x3

Λ2
1

)k2

= 0 for k2 > n ≥ km.

The same change for the upper limit of subsequent sums will be applied without further explanation.
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Then, we can deal with the sum with respect to k3 in Ωm(n)

Ω3
m =

n∑
k3=0

Ω2
m

(
1 + n + k3

1 + 2k4

)
xk3 y =

T 8x7

Λ2
2

= [T 7n+km]
(1 + T )1+n+kmΛ2+2n

1

x4nΛ2
2

∞∑
k3=0

(
1 + n + k3

1 + 2k4

)
yk3

= [T 7n+km]
(1 + T )1+n+kmΛ2+2n

1

x4nΛ2
2

y2k4−n

(1 − y)2+2k4

= [T 15n+km]
(1 + T )1+n+km(Λ1Λ2)2+2n

x11nΛ2
3

T 16k4 x14k4

Λ
2k4
3

,

and the next one with respect to k4 in Ωm(n)

Ω4
m =

n∑
k4=0

Ω3
m

(
1 + n + k4

1 + 2k5

)
xk4 y =

T 16x15

Λ2
3

= [T 15n+km]
(1 + T )1+n+km(Λ1Λ2)2+2n

x11nΛ2
3

∞∑
k4=0

(
1 + n + k4

1 + 2k5

)
yk4

= [T 15n+km]
(1 + T )1+n+km(Λ1Λ2)2+2n

x11nΛ2
3

y2k5−n

(1 − y)2+2k5

= [T 31n+km]
(1 + T )1+n+km(Λ1Λ2Λ3)2+2n

x26nΛ2
4

T 32k5 x30k5

Λ
2k5
4

.

Iterating this process, we can show that the sum with respect to km−1 in Ωm(n) results in the following
expression:

Ωm−1
m =

n∑
km−1=0

Ωm−2
m

(
1 + n + km−1

1 + 2km

)
xkm−1

= [T (2m−1)n]
(1 + T )1+n

Λ4+2n
m−1

∏m−1
=1 Λ2+2n



xn(2m−m−1)

(1 + T )km

Λ
2km
m−1

(T x)(2m−1)km

xkm
.

Finally, by summing over km, we arrive at the formula for Ωm(n):

Ωm(n) = Ωm
m =

n∑
km=0

Ωm−1
m xkm y =

1 + T
Λ2

m−1

(T x)2m−1

= [T (2m−1)n]
(1 + T )1+n

Λ4+2n
m−1

∏m−1
=1 Λ2+2n



xn(2m−m−1)

∞∑
km=0

ykm

= [T (2m−1)n]
(1 + T )1+n

Λ4+2n
m−1

∏m−1
=1 Λ2+2n



xn(2m−m−1)

/{
1 −

1 + T
Λ2

m−1

(T x)2m−1
}

= [T (2m−1)n]
(1 + T )1+n

Λm − (T x)2m−1

∏m−2
=1 Λ2+2n



xn(2m−m−1) .

�
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3. Rational generating functions for Ωm(n)

In order to determine the generating functions for Ωm(n), we have to review basic facts about
Knuth’s bracket calculus, the resultant of two polynomials, and the Hadamard product of two formal
power series.

3.1. Knuth’s bracket calculus

Let F(x) and G(x) be two formal power series:

F(x) =

∞∑
n=0

fnxn, G(x) =

∞∑
n=0

gnxn.

Write [xn]G(x) for the coefficient of xn in G(x). As an alternative generalization, Knuth [12] introduced
[F(x)]G(x), which is a linear function of both F and G

[F(x)]G(x) =

∞∑
n=0

fngn.

Suppose that H(x) is a third formal power series. Knuth’s bracket calculus satisfies the following
important properties: [

F(x)
]
G(x) =

[
G(x)

]
F(x),[

F(x)
]
G(x)H(x) =

[
F(x)G(x−1)

]
H(x),[

F(x)G(x)
]
H(x) =

[
F(x)

]
G(x−1)H(x).

3.2. The resultant of two polynomials

Given two polynomials

P(T ) =

m∑
i=0

aiT i = am

m∏
i=1

(T − αi), am , 0

Q(T ) =

n∑
j=0

b jT j = bn

n∏
j=1

(T − β j), bn , 0;

their resultant with respect to the variable T may be defined by

RS
{
P(T ),Q(T ) : T

}
= an

mbm
n

m∏
i=1

n∏
j=1

(αi − β j).

It is well known (cf. [9] and [14, §1.3]) that the resultant can alternatively be expressed by the
determinant of the Sylvester matrix of order n + m:

AIMS Mathematics Volume 10, Issue 12, 28182–28206.
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RS
{
P(T ),Q(T ) : T

}
= det



am am−1 · · · a1 a0

am am−1 · · · a1 a0
. . .

. . .
. . .

. . .
. . .

am am−1 · · · a1 a0

bn bn−1 · · · b1 b0

bn bn−1 · · · b1 b0
. . .

. . .
. . .

. . .
. . .

bn bn−1 · · · b1 b0


,

which consists of n-shifted rows formed by the coefficients of P(T ) and m-shifted rows by the
coefficients of Q(T ).

• Symmetry:
RS

{
P(T ),Q(T ) : T

}
= (−1)mnRS

{
Q(T ), P(T ) : T

}
.

• Reciprocity:
RS

{
Q(T ), P(T ) : T

}
= RS

{
T m × P(T−1),T n × Q(T−1) : T

}
.

• Factorization:

RS
{
P(T ) × P(T ),Q(T ) : T

}
= RS

{
P(T ),Q(T ) : T

}
× RS

{
P(T ),Q(T ) : T

}
,

RS
{
P(T ),Q(T ) × Q(T ) : T

}
= RS

{
P(T ),Q(T ) : T

}
× RS

{
P(T ),Q(T ) : T

}
.

• Bezout’s formula: When P(0) = a0 = 1 and
Q(T )
P(T )

=
∑
k≥0

dkT k, we have

RS
{
P(T ),Q(T ) : T

}
= det

m×m



dn dn+1 · · · dn+m−2 dn+m−1

dn−1 dn · · · dn+m−3 dn+m−2

...
... · · ·

...
...

dn−m+1 dn−m+2 · · · dn−1 dn


.

3.3. Hadamard product of rational power series

The Hadamard product of the power series

F(T ) =

∞∑
n=0

fnT n and G(T ) =

∞∑
n=0

gnT n

is defined by

F ?G(T ) =

∞∑
n=0

fngnT n =
[
F(x)

]
G(T x) =

[
F(T x)

]
G(x).

AIMS Mathematics Volume 10, Issue 12, 28182–28206.
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There is an integral representation

F ?G(T ) =
1

2πi

∮
L

F(z)
z

G
(T

z

)
dz =

∑
τ

Res
z=τ

{F(z)
z

G
(T

z

)}
.

The residue sum runs over all the poles τ inside L, where the integral path L is the circle |z| = (α +

|T |/β)/2 with α and β being convergence radii of F(T ) and G(T ), respectively.
When F(T ) and G(T ) are rational power series with their respective denominators Qf(T ) =

∏m
i=1(1−

Tαi) and Qg(T ) =
∏n

j=1(1 − Tβ j), we have the following useful properties (cf. [1, 8, 10]):

• If F(T ) and G(T ) are proper, then so is F ?G(T ).

• The Hadamard product F ? G(T ) is also a rational power series that may be written with
denominator

∏m
i=1

∏n
j=1(1 − αiβ jT ).

• There is an explicit expression in terms of resultant

m∏
i=1

n∏
j=1

(1 − λαiβ j) = RS
{
Qf(T ),Qg(Tλ) : T

}
= RS

{
Qg(T ),Qf(Tλ) : T

}
;

where the two reciprocal polynomials are defined by

Qf(T ) = T m × Qf
(
T−1) and Qg(T ) = T n × Qg

(
T−1).

Summing up, for two parametric rational functions

F(T ) := F(T |x, y) =
Pf(T )
Qf(T )

, G(T ) := G(T |x, y) =
Pg(T )
Qg(T )

;

their bracket
[
F(T )

]
G(T ) equals Hadamard product

[
F(T )]G(T ) = F ?G(T ) at T = 1, and hence is a

bivariate rational function in “x and y”, whose denominator divides the resultant RS
{
Qf(T ),Qg(T ) : T

}
.

Armed with these algebraic machineries, we are now ready to examine (ordinary) generating
functions for the multiple sums Ωm(n) in accordance with Theorem 1.

m = 1 By means of the bracket calculus, we can proceed with

∞∑
n=0

Ω1(n)yn =

∞∑
n=0

yn[T n] (1 + T )n+1

Λ1 − T x

=

∞∑
n=0

[
yn(1 + T )n] 1 + T

1 − T x − T 2x

=
[ 1
1 − y − yT

] 1 + T
1 − T x − T 2x

.

Then, the denominator of the diagonal series results in

Q
1
f (T ) = T − y − Ty and Q1

g(T ) = 1 − T x − T 2x,

AIMS Mathematics Volume 10, Issue 12, 28182–28206.
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Q1(y) := RS
{
Q

1
f (T ),Q1

g(T ) : T
}

= 1 − (2 + x)y + y2.

Consequently, we can formally write the generating function as

∞∑
n=0

Ω1(n)yn =
P1(y)
Q1(y)

⇐⇒ P1(y) = Q1(y) ×
∞∑

n=0

Ω1(n)yn,

where P1(y) is a linear function in y, and can be shown to be P1(y) = 1. In fact, this can be done by
comparing the coefficients of y0 and y in the rightmost equation and keeping in mind the initial values
Ω1(0) = 1 and Ω1(1) = 2 + x.

Proposition 2 (Generating function for Ω1(n)).

∞∑
n=0

Ω1(n)yn =
1

1 − (2 + x)y + y2 .

Alternatively, by making use of the partial fraction decomposition

1
1 − T x − T 2x

=
1

α − γ

{
α

1 − Tα
−

γ

1 − Tγ

}
: α, γ =

x ±
√

x2 + 4x
2

,

we can also compute the generating function directly as follows:

∞∑
n=0

Ω1(n)yn =

∞∑
k=0

yk

(1 − y)k+1

[
T k

] 1 + T
1 − T x − T 2x

=
1

α − γ

∞∑
k=0

yk

(1 − y)k+1

[
T k

]{α(1 + T )
1 − Tα

−
γ(1 + T )
1 − Tγ

}
=

∞∑
k=0

yk

(1 − y)k+1

(1 + α)αk − (1 + γ)γk

α − γ

=
1

(1 − y)(α − γ)

{
1 + α

1 − yα
1−y

−
1 + γ

1 − yγ
1−y

}
=

1
1 − (2 + x)y + y2 . �

m = 2 Express the generating function in terms of the bracket calculus

∞∑
n=0

Ω2(n)yn =

∞∑
n=0

yn[T 3n] (1 + T )n+1x−n

Λ2 − (T x)3

=

∞∑
n=0

[
(y/x)nT 2n(1 + T )n] 1 + T

(1 − T x − T 2x)(1 + T x − T 2x + T 2x2)

=
[ 1
1 − T 2(1 + T )y/x

] 1 + T
(1 − T x − T 2x)(1 + T x − T 2x + T 2x2)

.

AIMS Mathematics Volume 10, Issue 12, 28182–28206.
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Then, the denominator of the generating function can be determined by

Q
2
f (T ) = T 3 − (1 + T )y/x,

Q2
g(T ) = (1 − T x − T 2x)(1 + T x − T 2x + T 2x2),

Q2(y) := RS
{
Q

2
f (T ),Q2

g(T ) : T
}

=
{
1 − (1 − x)2y

}2(
1 − (2 + 4x + x2)y + y2

)
.

Thus, the generating function can be written as

∞∑
n=0

Ω2(n)yn =
P2(y)
Q2(y)

⇐⇒ P2(y) = Q2(y) ×
∞∑

n=0

Ω2(n)yn;

where P2(y) is a polynomial of degree ≤ 3 in y, and can be shown to be

P2(y) = 1 − 2x2y − y2 + 4xy2 − 4x2y2 + x4y2

=
{
1 − (1 − x)2y

}(
1 + (1 − 2x − x2)y

)
.

In fact, this can be done by comparing the coefficients of {yn}0≤n≤3 and taking into account the initial
values

{
Ω2(n)

}
0≤n≤3:{

1, 4 + x2, 9 + 8x + 16x2 + x4, 16 + 40x + 100x2 + 40x3 + 36x4 + x6
}
.

Proposition 3 (Generating function for Ω2(n)).

∞∑
n=0

Ω2(n)yn =
1 + (1 − 2x − x2)y{

1 − (1 − x)2y
}(

1 − (2 + 4x + x2)y + y2) .
m = 3 The generating function can be manipulated by the bracket calculus

∞∑
n=0

Ω3(n)yn =

∞∑
n=0

yn[T 7n] (1 + T )n+1x−4nΛ2+2n
1

Λ3 − (T x)7

=

∞∑
n=0

yn[(T/x2)2n(1 + T )n(T 2 − x)2n] (1 + T )(1 − T 2x)2

(1 − T x − T 2x)P3(T, x)

=

[ 1
1 − T 2(1 + T )(T 2 − x)2y/x4

] (1 + T )(1 − T 2x)2

(1 − T x − T 2x)P3(T, x)
,

where P3(T, x) is a bivariate polynomial

P3(T, x) = 1 + T x − 3T 2x + T 2x2 − 2T 3x2 + T 3x3 + 3T 4x2 − 3T 4x3

+ T 4x4 + T 5x3 − 2T 5x4 + T 5x5 − T 6x3 + 2T 6x4 − T 6x5 + T 6x6,

Θ3(T, x) = Λ3 − (T x)7 = Λ2
2 − T 8x7 − T 7x7

= (1 − 2T 2x + T 4x2 − T 4x3)2 − T 8x7 − T 7x7

= (1 − T x − T 2x)P3(T, x).
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Then, we can compute the denominator of the generating function

Q
3
f (T ) = T 7 − (1 + T )(1 − T 2x)2y/x4,

Q3
g(T ) = (1 − T x − T 2x)P3(T, x),

Q3(y) := RS
{
Q

3
f (T ),Q3

g(T ) : T
}

=
(
1 − (2 + x)(1 + 4x + x2)y + y2

)
×

(
1 − (2 − 3x − 2x2 + 2x3)y + (1 − 2x + x2 − x3)2y2

)3
.

Thus, the generating function can formally be written as
∞∑

n=0

Ω3(n)yn =
P3(y)
Q3(y)

⇐⇒ P3(y) = Q3(y) ×
∞∑

n=0

Ω3(n)yn;

where P3(y) is a polynomial of degree ≤ 7 in y, and can be shown to be

P3(y) = 1 − 6x3y − 3
(
3 − 8x − 4x2 + 16x3 − 5x6

)
y2

+ 4
(
4 − 18x + 18x2 + 15x3 − 12x4 − 36x5 + 32x6 − 5x9

)
y3

− 3
(
3 − 20x + 51x2 − 60x3 + 19x4 + 48x5 − 94x6 + 96x7 − 72x8 + 32x9 − 5x12

)
y4

+ 6
(
2x2 − 16x3 + 54x4 − 107x5 + 152x6 − 169x7 + 140x8

− 86x9 + 40x10 − 8x11 − x15
)
y5

+
(
1 − 12x + 63x2 − 196x3 + 420x4 − 684x5 + 885x6 − 912x7 + 747x8

− 468x9 + 183x10 − 73x12 + 72x13 − 36x14 + 16x15 + x18
)
y6

=
(
1 − (2 − 3x − 2x2 + 2x3)y + (1 − 2x + x2 − x3)2y2

)2

×
{
1 + 2(2 − 3x − 2x2 − x3)y + (1 − 4x + 3x2 + 2x4 + 4x5 + x6)y2

}
.

Proposition 4 (Generating function for Ω3(n)).

∞∑
n=0

Ω3(n)yn =
1 + 2

(
2 − 3x − 2x2 − x3

)
y +

(
1 − 4x + 3x2 + 2x4 + 4x5 + x6

)
y2(

1 − (2 + x)(1 + 4x + x2)y + y2) (1 − (
2 − 3x − 2x2 + 2x3) y +

(
1 − 2x + x2 − x3)2 y2

) .
m > 3 The generating function corresponding to m > 3 can be reformulated via Theorem 1 as

∞∑
n=0

Ωm(n)yn =

∞∑
n=0

yn[T (2m−1)n]
(1 + T )1+n

Λm − (T x)2m−1

∏m−2
=1 Λ2+2n



xn(2m−1−m)

=

∞∑
n=0

yn

[( (1 + T )
∏m−2

=1 Λ2


(T x)2m−1x−m

)n∣∣∣∣
T→T−1

] (1 + T )
∏m−2

=1 Λ2


Λm − (T x)2m−1

=

[
1

1 − y
( (1+T )

∏m−2
=1 Λ2



(T x)2m−1 x−m

)∣∣∣∣
T→T−1

] (1 + T )
∏m−2

=1 Λ2


Λm − (T x)2m−1 .

Hence, we can express the denominator of the generating function.
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Theorem 5. The (ordinary) generating function for Ωm(n) is a rational function with its denominator
dividing Qm(y), defined by

Qm(y) := RS
{
Q

m
f (T ),Qm

g (T ) : T
}
,

where

Q
m
f (T ) = T 2m−1 − yx1+m−2m

(1 + T )
m−2∏
=1

Λ2
 ,

Qm
g (T ) = Θm(T ) = Λm − (T x)2m−1.

The related polynomial degrees are determined by

δ
(
Qm(y)

)
= δ

(
Qm

g (T )
)

= 2m and δ
(
Q

m
f (T )

)
= 2m − 1.

Thus, sequence
{
Ωm(n)

}
n≥0 satisfies a linear recurrence relation of order “ 2m” with the coefficients

being determined by Qm(y).

Since the generating function is a proper rational function

∞∑
n=0

Ωm(n)yn =
Pm(y)
Qm(y)

⇐⇒ Pm(y) = Qm(y) ×
∞∑

n=0

Ωm(n)yn.

The numerator polynomial Pm(y) can be determined by comparing the initial coefficients across the
rightmost equality. Theoretically, for any given natural number m, we can find the corresponding
rational generating function for Ωm(n).

However, for m > 5 it practically becomes difficult to calculate the related generating functions,
since Ωm(n) = Ωm(n|x) is a large polynomial in “x” of degree “mn”. For example, to determine
the generating function with m = 5, we have to explicitly figure out the polynomials Ω5(n) with
0 ≤ n ≤ 32 = 25. Among them, Ω5(25) is shown (by numerical computations according to the
definition) to have 125 terms with the maximum coefficient ≈ 55.3822185 × 1050. We record three
further generating functions for “m = 4, 5, 6”. They are the best possible results that we are able to
obtain by employing Wolfram Mathematica (version 11) with our personal computers.

m = 4 According to Theorem 5, we first compute the resultant

Q
4
f (T ) = T 15 − (1 + T )Λ2

1Λ
2
2y/x11,

Q4
g(T ) = Λ4 − (T x)15,

Q4(y) := RS
{
Q

4
f (T ),Q4

g(T ) : T
}

=
(
1 − (1 − x)4y

)2(
1 − (2 + 16x + 20x2 + 8x3 + x4)y + y2

)
×

{
1 − (1 + x)(3 − 5x − 3x2 + 3x3)y + (3 − 8x − x2 + 14x3 − 19x4

+ 24x5 − 4x6 + 3x8)y2 − (1 − 3x + 3x2 − 3x3 + 2x4 + x6)2y3
}4
.

Then, the generating function is given as in the proposition below.
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Proposition 6 (Generating function for Ω4(n)).

∞∑
n=0

Ω4(n)yn =
P4(y)
Q4(y)

,

where the rational function is proper and irreducible defined by

P4(y) = 1 + 2(5 − 5x − 9x2 − 2x3 − 2x4)y + x(14 − 67x + 86x2 − 23x3 − 6x4

+ 34x5 + 12x6 + 6x7)y2 − (10 − 66x + 154x2 − 142x3 + 27x4 + 54x5

− 108x6 + 16x7 + 120x8 − 26x9 + 14x10 + 12x11 + 4x12)y3

− (1 − 10x + 41x2 − 92x3 + 132x4 − 136x5 + 94x6 − 22x7 − 19x8

+ 24x9 − 23x10 + 6x11 − 5x12 + 10x13 + 2x14 − 4x15 − x16)y4,

Q4(y) =
(
1 − (1 − x)4y

)(
1 − (2 + 16x + 20x2 + 8x3 + x4)y + y2

)
×

{
1 − (1 + x)(3 − 5x − 3x2 + 3x3)y + (3 − 8x − x2 + 14x3 − 19x4

+ 24x5 − 4x6 + 3x8)y2 − (1 − 3x + 3x2 − 3x3 + 2x4 + x6)2y3
}
.

m = 5 The resultant Q5(y) is a polynomial of degree 32 = 25 in “y”:

Q5(y) =
(
1 − (2 + x)(1 + 12x + 19x2 + 8x3 + x4)y + y2)

×
{
1 − (1 + x)(6 − 11x + x2 − 8x3 + 6x4)y + (15 − 36x − 29x2 + 80x3 + 70x4 − 258x5

+ 242x6 + 34x7 − 23x8 − 10x9 + 15x10)y2 − (20 − 94x + 74x2 + 271x3 − 602x4 + 415x5

+ 124x6 − 437x7 + 58x8 + 527x9 − 590x10 + 94x11 + 148x12 − 22x13 − 20x14 + 20x15)y3

+ (15 − 116x + 315x2 − 200x3 − 862x4 + 2698x5 − 3968x6 + 2836x7 + 1366x8 − 6588x9

+ 9871x10 − 9752x11 + 6667x12 − 2898x13 + 361x14 + 670x15 − 516x16 + 140x17 + 2x18

− 20x19 + 15x20)y4 − (6 − 69x + 342x2 − 943x3 + 1470x4 − 644x5 − 3264x6 + 11151x7

− 21578x8 + 30796x9 − 34952x10 + 32275x11 − 24038x12 + 13787x13 − 4758x14 − 1303x15

+ 3972x16 − 4255x17 + 3310x18 − 1923x19 + 896x20 − 321x21 + 22x22 + 13x23 − 10x24

+ 6x25)y5 + (1 − 8x + 28x2 − 60x3 + 94x4 − 116x5 + 114x6 − 94x7

+ 69x8 − 44x9 + 26x10 − 14x11 + 5x12 − 2x13 + x14 − x15)2y6
}5
.

Proposition 7 (Generating function for Ω5(n)).

∞∑
n=0

Ω5(n)yn =
P5(y)
Q5(y)

,

where Q5(y) is of degree “8” and consists of the two distinct factors in Q5(y), and

P5(y)=1 + (24 − 20x − 40x2 − 28x3 − 8x4 − 6x5)y + (15 + 4x − 194x2 + 160x3

+ 300x4 − 248x5 − 78x6 + 144x7 + 132x8 + 40x9 + 15x10)y2 − (80 − 344x

+ 24x2 + 1516x3 − 1752x4 + 560x5 − 736x6 − 572x7 − 312x8 + 2332x9 + 1160x10
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− 176x11 + 208x12 + 248x13 + 80x14 + 20x15)y3 + (15 − 156x + 765x2 − 2290x3

+ 4393x4 − 5262x5 + 3482x6 + 26x7 − 3039x8 + 3122x9 − 834x10 − 652x11 + 637x12

+ 432x13 − 1084x14 + 920x15 − 36x16 + 160x17 + 232x18 + 80x19 + 15x20)y4

+ (24 − 276x + 1328x2 − 3472x3 + 5340x4 − 4516x5 − 236x6 + 7914x7 − 13772x8

+ 13074x9 − 7988x10 + 1440x11 + 3908x12 − 3782x13 + 3188x14 − 3272x15 + 488x16

− 550x17 + 120x18 + 1308x19 + 464x20 − 44x21 − 72x22 − 108x23 − 40x24 − 6x25)y5

+ (1 − 16x + 115x2 − 498x3 + 1482x4 − 3296x5 + 5793x6 − 8278x7 + 9707x8 − 9374x9

+ 7373x10 − 4448x11 + 1686x12 + 230x13 − 1302x14 + 1572x15 − 1354x16 + 1006x17

− 507x18 + 194x19 − 101x20 − 17x22 + 16x24 + 2x26 + 16x27 + 20x28 + 8x29 + x30)y6.

m = 6 The resultant Q6(y) is a polynomial of degree 64 = 26 in “y”:

Q6(y) =
{
1 − (2 + 4x + x2)(1 + 16x + 20x2 + 8x3 + x4)y + y2

}
×

{
1 − (1 − x)6y

}2

×
{
(1 − (2 − 4x + x2)(1 − 6x2 + 4x3 + 2x4)y + (1 − 2x + x2 − x3)4y2

}3

×

{
1 − (9 − 2x − 17x2 − 28x3 − 5x4 + 2x5 + 9x6)y + 2(18 − 20x − 81x2 + 3x3 + 226x4 − 9x5

− 402x6 + 478x7 + 173x8 − 44x9 − 16x10 + 8x11 + 18x12)y2 − (84 − 224x − 434x2 + 1298x3

+ 986x4 − 4542x5 + 4655x6 − 1214x7 − 4090x8 + 5460x9 − 4758x10 + 3950x11 − 3298x12

+ 376x13 + 1658x14 + 56x15 − 84x16 + 56x17 + 84x18)y3 + (126 − 616x − 10x2 + 4566x3

− 7155x4 − 4800x5 + 27752x6 − 43750x7 + 33817x8 − 1630x9 − 4816x10 − 33514x11

+ 83367x12 − 105444x13 + 71918x14 − 17206x15 − 11543x16 + 12550x17 + 1976x18

− 6956x19 + 2514x20 + 616x21 − 112x22 + 112x23 + 126x24)y4 − (126 − 980x + 1980x2

+ 4026x3 − 25115x4 + 43762x5 − 14900x6 − 82702x7 + 184551x8 − 123542x9 − 225870x10

+ 738096x11 − 1085481x12 + 955694x13 − 319000x14 − 439048x15 + 888856x16 − 860596x17

+ 466077x18 − 65206x19 − 131671x20 + 147874x21 − 54773x22 − 6714x23 + 15588x24 − 12420x25

+ 1000x26 + 1120x27 − 70x28 + 140x29 + 126x30)y5 + (84 − 952x + 4058x2 − 5630x3 − 16714x4

+ 97046x5 − 221948x6 + 255604x7 + 52681x8 − 888614x9 + 2076873x10 − 2992438x11

+ 2888589x12 − 1423140x13 − 967233x14 + 3265958x15 − 4582858x16 + 4616466x17

− 3715214x18 + 2569282x19 − 1638319x20 + 1070602x21 − 813376x22 + 649304x23

− 492950x24 + 336112x25 − 160826x26 + 45346x27 + 9422x28 − 30742x29 + 14236x30

− 6172x31 − 1042x32 + 952x33 + 112x35 + 84x36)y6 − (36 − 560x + 3778x2 − 13946x3

+ 26400x4 + 4742x5 − 196445x6 + 691290x7 − 1471297x8 + 2083964x9 − 1525918x10

− 1420738x11 + 7408981x12 − 15752078x13 + 24274021x14 − 30112252x15 + 31067449x16

− 26640272x17 + 18205420x18 − 8288062x19 − 562978x20 + 6616716x21 − 9315122x22

+ 9163668x23 − 7242143x24 + 4699510x25 − 2408957x26 + 786280x27 + 131542x28 − 485354x29

+ 500409x30 − 380058x31 + 226884x32 − 111984x33 + 49184x34 − 11158x35 + 1274x36 + 936x37

− 1114x38 + 392x39 + 28x40 + 56x41 + 36x42)y7 + (9 − 184x + 1746x2 − 10206x3 + 40969x4
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− 117908x5 + 238784x6 − 276794x7 − 175152x8 + 1925448x9 − 6100963x10 + 13730528x11

− 25068946x12 + 38992142x13 − 52895355x14 + 63323458x15 − 67133828x16 + 62660344x17

− 50340467x18 + 32548908x19 − 12786262x20 − 5384788x21 + 19274176x22 − 27582730x23

+ 30413906x24 − 28905292x25 + 24667807x26 − 19265394x27 + 13905121x28 − 9321462x29

+ 5811960x30 − 3367500x31 + 1804618x32 − 881580x33 + 381176x34 − 136334x35 + 30851x36

+ 6460x37 − 14394x38 + 12318x39 − 8299x40 + 4130x41 − 1776x42 + 1036x43 − 282x44 + 56x45

+ 16x46 + 16x47 + 9x48)y8 − (1 − 13x + 78x2 − 293x3 + 792x4 − 1672x5 + 2892x6 − 4219x7

+ 5313x8 − 5892x9 + 5843x10 − 5258x11 + 4346x12 − 3310x13 + 2331x14 − 1525x15 + 927x16

− 536x17 + 298x18 − 155x19 + 76x20 − 35x21 + 17x22 − 7x23 + 3x24 − x25 − x26 − x27)2y9
}6

.

Proposition 8 (Generating function for Ω6(n)).

∞∑
n=0

Ω6(n)yn =
P6(y)
Q6(y)

.

where Q6(y) is of degree “14” and consists of the four distinct factors in Q6(y), and

P6(y) =1 + (50 − 24x − 92x2 − 96x3 − 46x4 − 4x5 − 12x6)y − (76 − 656x + 1284x2 + 542x3 − 1742x4

− 2198x5 + 2444x6 + 560x7 + 17x8 − 692x9 − 454x10 − 44x11 − 66x12)y2 − (650 − 776x

− 10732x2 + 23868x3 + 16188x4 − 70098x5 + 41855x6 − 618x7 − 3480x8 − 42068x9

+ 26746x10 + 68540x11 + 15446x12 − 2888x13 − 2958x14 + 1896x15 + 2010x16

+ 220x17 + 220x18)y3 + (2325 − 13704x + 7918x2 + 101902x3 − 246715x4 + 134902x5

+ 142101x6 − 311984x7 + 524554x8 − 362598x9 − 71967x10 − 412858x11 + 748133x12

− 267112x13 + 319156x14 − 102786x15 − 336125x16 + 26502x17 + 100304x18 − 2496x19

− 11973x20 + 1764x21 + 5250x22 + 660x23 + 495x24)y4 − (2652 − 28416x + 112868x2

− 144344x3 − 337294x4 + 1557056x5 − 2396574x6 + 1524332x7 − 464149x8 + 2842162x9

− 9379227x10 + 15586276x11 − 16348067x12 + 13242852x13 − 11957290x14 + 12513534x15

− 9436046x16 + 804816x17 + 4626124x18 − 1401360x19 − 2012410x20 + 1936212x21

− 285840x22 − 647248x23 + 153372x24 + 11248x25 − 21696x26 − 2784x27 + 8940x28

+ 1320x29 + 792x30)y5 − (8496x − 121876x2 + 720076x3 − 2127014x4 + 2449476x5

+ 3800510x6 − 18179436x7 + 24844972x8 + 5370958x9 − 82220121x10 + 164074940x11

− 177538677x12 + 96335378x13 + 15259868x14 − 66681992x15 + 31677747x16

+ 27103450x17 − 33751409x18 − 177422x19 + 16116272x20 + 3806516x21

− 36084124x22 + 38128432x23 − 9498873x24 − 8537580x25 + 8535634x26

− 2130288x27 − 2188024x28 + 1403380x29 + 25832x30 − 34720x31 + 19026x32

+ 10584x33 − 10332x34 − 1848x35 − 924x36)y6 + (2652 − 36096x + 166876x2

− 7216x3 − 3201710x4 + 15256636x5 − 33449804x6 + 19853092x7 + 101373461x8

− 365333278x9 + 638955843x10 − 607932130x11 + 13308676x12 + 998644558x13
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− 1819325081x14 + 1837093706x15 − 1045084001x16 + 141536192x17 + 82853974x18

+ 515159016x19 − 1340770205x20 + 1664955776x21 − 1278817948x22 + 569157474x23

− 31802209x24 − 130898048x25 + 38705816x26 + 64956662x27 − 75658298x28

+ 32390540x29 + 12903088x30 − 18997604x31 + 1881578x32 + 4476772x33 − 4048900x34

+ 901304x35 + 297764x36 − 44016x37 + 3108x38 + 15120x39 − 8148x40 − 1848x41

− 792x42)y7 − (2325 − 45024x + 377384x2 − 1704492x3 + 3696668x4 + 2980636x5

− 50403706x6 + 186300736x7 − 399403626x8 + 486121126x9 + 2354687x10

− 1549569394x11 + 4223867125x12 − 7368475312x13 + 9889546994x14 − 11072095778x15

+ 11165672434x16 − 11057479248x17 + 11273541940x18 − 11355136130x19

+ 10382226949x20 − 8104422620x21 + 5363644951x22 − 3377919542x23

+ 2698028232x24 − 2874668668x25 + 3101908881x26 − 2969132826x27 + 2525470636x28

− 1964270434x29 + 1394672289x30 − 838507222x31 + 378601906x32 − 112154980x33

+ 16744298x34 − 4970372x35 + 3412967x36 + 7216108x37 − 10153550x38 + 6120760x39

− 1714202x40 − 209820x41 + 311664x42 − 29312x43 − 9822x44 + 12504x45 − 4260x46

− 1320x47 − 495x48)y8 + (650 − 16296x + 189520x2 − 1349208x3 + 6498776x4 − 21796924x5

+ 48234882x6 − 45198292x7 − 145507165x8 + 875399722x9 − 2646541635x10

+ 5822816380x11 − 10140421571x12 + 14373912340x13 − 16666697980x14

+ 15691108854x15 − 12030821179x16 + 8614213966x17 − 9393699612x18

+ 16765086910x19 − 29450799825x20 + 42544067844x21 − 49958248318x22

+ 47754892842x23 − 36202777201x24 + 19410471038x25 − 3029301975x26

− 8410455730x27 + 13085324963x28 − 11912838320x29 + 7441517898x30

− 2397495170x31 − 1357824897x32 + 3174545270x33 − 3368880221x34 + 2667613728x35

− 1740314143x36 + 983929980x37 − 506794438x38 + 253785758x39 − 132841014x40

+ 71098224x41 − 33887648x42 + 12818288x43 − 3671938x44 + 242084x45

+ 727936x46 − 428912x47 + 119146x48 − 9464x49 − 9972x50 + 6336x51 − 1350x52

− 660x53 − 220x54)y9 + (76 − 2016x + 23856x2 − 158742x3 + 556060x4 + 170542x5

− 14843150x6 + 103553244x7 − 460887219x8 + 1556529798x9 − 4246647079x10

+ 9654708120x11 − 18597939017x12 + 30576936562x13 − 42848208274x14

+ 50513000588x15 − 48335064285x16 + 33931347164x17 − 10631069603x18

− 12199538324x19 + 22447976824x20 − 10974174596x21 − 23268652618x22

+ 71712298596x23 − 119278283133x24 + 150534313088x25 − 155793004677x26

+ 134365308574x27 − 93864920490x28 + 46413567166x29 − 3829525588x30

− 26081276914x31 + 40923768742x32 − 42847936258x33 + 36427479602x34

− 26493837004x35 + 16705540865x36 − 9052475520x37 + 4064538718x38

− 1350341588x39 + 162744193x40 + 198278034x41 − 210867637x42 + 130685578x43

− 60760412x44 + 23592108x45 − 10995092x46 + 8301520x47 − 6302277x48
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+ 3891236x49 − 2289538x50 + 1324670x51 − 507054x52 + 99742x53 − 2028x54 + 528x55

+ 4259x56 − 1884x57 + 190x58 + 220x59 + 66x60)y10 − (50 − 1720x + 28376x2 − 299340x3

+ 2271694x4 − 13229874x5 + 61579817x6 − 235464866x7 + 753723901x8

− 2044365354x9 + 4724099757x10 − 9268513286x11 + 15141574834x12

− 19370622298x13 + 15071878951x14 + 8961061770x15 − 66311163224x16

+ 168094187678x17 − 316356596418x18 + 498620364616x19 − 687019868911x20

+ 843950086408x21 − 933027152667x22 + 931175360844x23 − 836678136657x24

+ 669757213794x25 − 465679091739x26 + 263578909256x27 − 95545344535x28

− 20320375634x29 + 81343554186x30 − 96976138604x31 + 82971827683x32

− 55525390454x33 + 27180672087x34 − 5178899442x35 − 8115789095x36

+ 13637596484x37 − 13831897958x38 + 11278434780x39 − 7938633980x40

+ 4947973000x41 − 2747312666x42 + 1343943026x43 − 554798849x44

+ 165501540x45 − 3584158x46 − 45346994x47 + 47084217x48 − 34301376x49

+ 20600776x50 − 10383590x51 + 4190178x52 − 1144706x53 + 40805x54

+ 169478x55 − 128006x56 + 55560x57 − 1262x58 − 13860x59 + 6478x60

− 424x61 + 802x62 − 280x63 − 14x64 + 44x65 + 12x66)y11 − (1 − 40x + 774x2

− 9670x3 + 87865x4 − 620262x5 + 3549271x6 − 16962408x7 + 69234732x8

− 245586888x9 + 767680238x10 − 2138868344x11 + 5361591638x12 − 12187378412x13

+ 25286587778x14 − 48155413716x15 + 84570182427x16 − 137510754872x17

+ 207712381436x18 − 292287226982x19 + 384028914465x20 − 471928779246x21

+ 543055182415x22 − 585407131836x23 + 590898738347x24 − 557494949408x25

+ 489784493342x26 − 397827167146x27 + 294702383922x28 − 193570372050x29

+ 105111314945x30 − 35961138820x31 − 11641948295x32 + 39176151474x33

− 50542987667x34 + 50641988574x35 − 44190551968x36 + 34983642454x37

− 25608304866x38 + 17506805168x39 − 11235959880x40 + 6783776580x41

− 3849567592x42 + 2044080644x43 − 1005403705x44 + 448488480x45

− 172811200x46 + 49487862x47 − 2102501x48 − 11197718x49 + 11440087x50

− 8111556x51 + 4838951x52 − 2576544x53 + 1259792x54 − 574818x55 + 246508x56

− 99658x57 + 38271x58 − 13846x59 + 4166x60 − 564x61 − 214x62 + 22x63 + 181x64

− 158x65 + 64x67 − 39x68 + 12x69 + 6x70 − 4x71 − x72)y12.

Observe that these generating functions
Pm(y)
Qm(y)

are irreducible fractions. The degrees of numerator

and denominator polynomials in “y” are tabulated as below (see Table 1):
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Table 1. Degrees of Pm(y) and Qm(y).

m 1 2 3 4 5 6
δ
(
Pm(y)

)
0 1 2 4 6 12

δ
(
Qm(y)

)
2 3 4 6 8 14

• The degrees of numerator polynomialsPm(y) result in the Möbius transform of Fibonacci numbers
(cf. [15, A007436]):

M f (m) =
∑
d|m

µ
(m

d

)
× Fd :

{
M f (m)

}9
m=1 =

{
1, 0, 1, 2, 4, 6, 12, 18, 32

}
.

• The degrees of denominator polynomials Qm(y) coincide with the number of m-bead necklaces
(cf. [15, A000031]) with two colors when turning over is not allowed:

Lg(m) =
∑
d|m

φ
(m

d

)
×

2d

m
:

{
Lg(m)

}9
m=1 =

{
2, 3, 4, 6, 8, 14, 20, 36, 60

}
.

4. Reduced generating functions xı = 1 : 1 ≤ ı ≤ n

The corresponding positive sum becomes

Um(n) := Ωm(n|x = 1) =
∑

0≤k1,k2,··· ,km≤n

m∏
ı=1

(
1 + n + kı
1 + 2kı+1

)
. km+1 := k1

The initial values are illustrated in the Table 2:

Table 2. Initial values of Ωm(n|x = 1).

m\n 1 2 3 4 5 6 7
1 3 8 21 55 144 377 987
2 5 34 233 1597 10946 75025 514229
3 9 176 3153 56569 1015104 18215297 326860233
4 17 962 44833 2105649 98927362 4647459713 218331680913
5 33 5328 646721 79519585 9781368384 1203017770497 147961426640417

Their rational generating functions are given explicitly as follows (where Fn stands for the usual
Fibonacci number):

• Generating function for U1(n):

∞∑
n=0

U1(n)yn =
1

1 − 3y + y2 : U1(n) = F2n+2.
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• Generating function for U2(n):
∞∑

n=0

U2(n)yn =
1 − 2y

1 − 7y + y2 : U2(n) = F4n+1.

• Generating function for U3(n):
∞∑

n=0

U3(n)yn =
1 − 8y + 7y2(

1 − 18y + y2) (1 + y + y2) .
• Generating function for U4(n):

∞∑
n=0

U4(n)yn =
1 − 26y + 56y2 − 69y3 + 2y4(

1 − 47y + y2) (1 + 4y + 12y2 − y3) .
• Generating function for U5(n):

∞∑
n=0

U5(n)yn =
1−78y+290y2−2336y3+926y4+462y5+31y6

(1−123y+y2)(1+12y+100y2+14y3+36y4+12y5+y6) .

• Generating function for U6(n):
∞∑

n=0

U6(n)yn =
Pu

6(y)
Qu

6(y)
, where

Pu
6(y) = 1 − 224y + 929y2 − 64021y3 − 24352y4 − 61811y5 − 406887y6

− 567648y7 − 352045y8 − 7943y9 + 28512y10 − 641y11 + 2y12,

Qu
6(y) = (1 − 322y + y2)(1 + y + y2)

{
1 + 32y + 704y2 − 19y3

+ 1888y4 − 928y5 − 5357y6 − 2560y7 + 96y8 − y9}.
Denote by L2m and F2m the bisection Lucas and Fibonacci numbers (cf. [11]):{

L2m
}9
m=1 =

{
3, 7, 18, 47, 123, 322, 843, 2207, 5778

}
,{

F2m
}9
m=1 =

{
1, 3, 8, 21, 55, 144, 377, 987, 2584

}
.

These generating functions contain quadratic polynomial factors in denominators 1 − yL2m + y2

characterized by bisection Lucas numbers.

Observe that these generating functions
Pu

m(y)
Qu

m(y)
are irreducible fractions. The degrees of numerator

and denominator polynomials in “y” are tabulated as below (see Table 3):

Table 3. Degrees of Pu
m(y) and Qu

m(y).

m 1 2 3 4 5 6
δ
(
Pu

m(y)
)

0 1 2 4 6 12

δ
(
Qu

m(y)
)

2 2 4 5 8 13
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• The degrees of numerator polynomialsPu
m(y) are the same asPm(y), and correspond to the Möbius

transform of Fibonacci numbers, as described previously.

• The degrees of denominator polynomials Qu
m(y) coincide with the first difference of pn (cf. [15,

A116084 and A116085]), where pn counts partitions “1” into distinct reduced fractions i/ j with
j ≤ n. For example,

p6 = 6 =

{1
2

+
1
3

+
1
6
,

1
3

+
2
3
,

1
4

+
3
4
,

1
5

+
4
5
,

2
5

+
3
5
,

1
6

+
5
6

}
.

The initial terms are illustrated by{
pn

}12
n=3 =

{
1, 2, 4, 6, 10, 15, 23, 36, 47, 70

}
,{

∆pn
}12
n=3 =

{
1, 2, 2, 4, 5, 8, 13, 11, 23, 17

}
.

• Observing that for 1 ≤ m ≤ 6, the denominator Qu
m(y) can be decomposed into linear factors of

form (1 − yα). Among these α’s, there is a unique (real)

αm := ρ2m =
1
2

(L2m + F2m

√
5) with ρ =

1 +
√

5
2

,

which takes the maximum of |α|’s. According to partial fractions, we have the following
asymptotic expansion:

Pu
m(y)
Qu

m(y)
≈

1
1 − yαm

× lim
y→1/αm

(1 − yαm)Pu
m(y)

Qu
m(y)

.
n → ∞

1 ≤ m ≤ 6

From this, we deduce, as n→ ∞, the asymptotic formulae below

U1(n) ≈
αn

1

10

(
5 + 3

√
5
)
,

U2(n) ≈
αn

2

10

(
5 +
√

5
)
,

U3(n) ≈
αn

3

95

(
25 + 12

√
5
)
,

U4(n) ≈
αn

4

290

(
65 + 27

√
5
)
,

U5(n) ≈
αn

5

550

(
95 + 43

√
5
)
.

In a recent paper by the authors [5], triple sums of similar binomial products were examined,
where the generating functions were determined by first detecting “recurrence relations” through
computational experiments and then verifying the “presumably corresponding (guessed) generating
functions”. Instead, the approach via ”Resultant/Hadamard product of polynomials” is more
advantageous, both in theory and practice, since it affirms that the generating functions of the circular
sums treated in this paper are rational ones prior to numerical tests.
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5. Reduced generating functions xı = −1 : 1 ≤ ı ≤ n

The corresponding alternating sum is denoted by

Vm(n) := Ωm(n|x = −1) =
∑

0≤k1,k2,··· ,km≤n

m∏
ı=1

(−1)kı

(
1 + n + kı
1 + 2kı+1

)
. km+1 := k1

The initial values are illustrated in Table 4:

Table 4. Initial values of Ωm(n|x = −1).

m\n 1 2 3 4 5 6 7
1 1 0 -1 -1 0 1 1
2 5 18 73 293 1170 4681 18725
3 7 -24 -193 401 5232 -4799 -135593
4 17 162 2593 36305 562626 8753185 138298769
5 31 -360 -11521 110849 5106960 -30977279 -2276827169

Their rational generating functions are displayed explicitly as follows:

• Generating function for V1(n):
∞∑

n=0

V1(n)yn =
1

1 − y + y2 .

• Generating function for V2(n):

∞∑
n=0

V2(n)yn =
1 + 2y

(1 − 4y)(1 + y + y2)
.

• Generating function for V3(n):

∞∑
n=0

V3(n)yn =
1 + 8y + 7y2(

1 + 2y + y2) (1 − y + 25y2) .
• Generating function for V4(n):

∞∑
n=0

V4(n)yn =
1 + 2y − 156y2 − 373y3 − 446y4

(1 − 16y)
(
1 + y + y2) (1 − 48y2 − 169y3) .

• Generating function for V5(n):

∞∑
n=0

V5(n)yn =
1+30y+90y2+4832y3+8166y4−14958y5+45799y6

(1−y+y2)(1+480y2+1562y3+26496y4+157152y5+458329y6) .
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• Generating function for V6(n):
∞∑

n=0

V6(n)yn =
Pv

6(y)
Qv

6(y)
,

where

Pv
6(y) = 1 + 25y − 4022y2 − 111891y3 + 2279373y4 + 97808874y5 + 584738787y6 − 8898122085y7

− 132822555378y8 − 445275404497y9 − 1246731704449y10 + 5166241027262y11,

Qv
6(y) = (1 − y)(1 − 64y)(1 + 49y + 625y2)

{
1 − 24y − 960y2 + 10413y3 + 394032y4

+ 598080y5 − 15123549y6 − 118340376y7 − 235909248y8 − 2100663889y9}.
Observe that these generating functions

Pv
m(y)
Qv

m(y)
are irreducible fractions. The degrees of numerator

and denominator polynomials in “y” are tabulated as below (see Table 5):

Table 5. Degrees of Pv
m(y) and Qv

m(y).

m 1 2 3 4 5 6
δ
(
Pv

m(y)
)

0 1 2 4 6 11

δ
(
Qv

m(y)
)

2 3 4 6 8 13

• The degrees of denominator polynomials Qv
m(y) coincide with the known sequence “A000029”

recorded in [15]: the number of m-bead necklaces with two colors allowing turning over.

δ
(
Qv

m(y)
)

=
∑
d|m

φ
(m

d

)
×

2d

2m
+

 2
m−1

2 , m ≡2 1,
3
4 × 2

m
2 , m ≡2 0.

• The degrees of numerator polynomials Pv
m(y) coincide with sequence “A056342” recorded

in [15]: the number of m-bead necklaces with exactly two different colors.

δ
(
Pv

m(y)
)

= δ
(
Qv

m(y)
)
− 2.

6. Conclusions and further comments

By means of recursive construction, the preliminary Theorem 1 is established that expresses the
multiple sums Ωm(n|x) as coefficients of bivariate rational functions in T and x. Then, algebraic
machinery (Knuth’s bracket calculus, resultants of polynomials, and Hadamard products of rational
formal power series) is deliberately utilized to determine theoretically ordinary generating functions
for Ωm(n|x) in Theorem 5. However, the problem is not resolved in practice for larger m ≥ 7, since to
work out explicitly the related generating functions involves a huge quantity of computations. It would
be desirable to have some efficient algorithm to handle this problem.

Apart from the observations (made previously) about polynomial degrees, there remains another
intriguing question concerns the resultant Qm(y) (which is a multiple of the denominator of the
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reduced generating function Pm(y)
Qm(y) ), containing the mth power of a big polynomial factor. Instead,

the denominator Qm(y) is reduced drastically from Qm(y) and turns to be the product of only distinct
factors appearing in Qm(y). It seems that there are more mysteries hidden behind these nontrivial facts.
The interested reader is encouraged to make further exploration.
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Appendix. Divisibility of Θm

Let Λm := Λm(T, x) and Θm := Θm(T, x) be defined as in Section 2. Then, we can express Θm in
terms of Θm−1 as follows:

Θm = Λm − (T x)2m−1 = Λ2
m−1 − (T x)2m

{1
x

+
1

T x

}
=

(
Θm−1 + (T x)2m−1−1

)2
− (T x)2m

{1
x

+
1

T x

}
= Θ2

m−1 + 2Θm−1(T x)2m−1−1 + (T x)2m
{ 1

T 2x2 −
1
x
−

1
T x

}
.

• Θ1|Θm This is justified by the recurrence relation

Θm =
Θ1

(T x)2 (T x)2m
+

Θm−1

T x

{
T xΘm−1 + 2(T x)2m−1}

=
Θ1

(T x)2 (T x)2m
+

Θm−1

T x
θ1(m − 1);

where θ1(m) =
{
T xΘm + 2(T x)2m}

.

• 2|m =⇒ Θ2|Θm This is justified by the recurrence relation

Θm =
Θ2

(T x)4 (T x)2m
+

Θm−2

(T x)3

{
T xΘm−2 + 2(T x)2m−2}

×
{
(T x)2m−1(

1 − 2T 2x
)

+
(
T xΘm−2 + (T x)2m−2)2

}
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=
Θ2

(T x)4 (T x)2m
+

Θm−2

(T x)3 θ1(m − 2)θ2(m − 2);

where θ2(m) =
{
(T x)2m+1(

1 − 2T 2x
)

+
(
T xΘm + (T x)2m)2

}
.

• 3|m =⇒ Θ3|Θm This is justified by the recurrence relation

Θm =
Θ3

(T x)8 (T x)2m
+

Θm−3

(T x)7

{
T xΘm−3 + 2(T x)2m−3}

×
{
(T x)2m−2(

1 − 2T 2x
)

+
(
T xΘm−3 + (T x)2m−3)2

}
×

{
(T x)2m−1(

1 − 2T 2x + 2T 4x2 − 2T 4x3)
− 2T 2x(T x)2m−2(

T xΘm−3 + (T x)2m−3)2

+
(
T xΘm−3 + (T x)2m−3)4

}
=

Θ3

(T x)8 (T x)2m
+

Θm−3

(T x)7 θ1(m − 3)θ2(m − 3)θ3(m − 3);

where θ3(m) =
{
(T x)2m+2(

1 − 2T 2x + 2T 4x2 − 2T 4x3)
− 2T 2x(T x)2m+1(

T xΘm + (T x)2m)2
+

(
T xΘm + (T x)2m)4

}
.

• 4|m =⇒ Θ4|Θm This is justified by the recurrence relation

Θm =
Θ4

(T x)16 (T x)2m
+

Θm−4

(T x)15 θ1(m − 4)θ2(m − 4)θ3(m − 4)θ4(m − 4);

where θ4(m − 4) = (T x)2m+3(
1 − 4T 2x + 6T 4x2 − 2T 4x3

− 4T 6x3 + 4T 6x4 + 2T 8x4 − 4T 8x5 + 2T 8x6 − 2T 8x7)
− 4T 6x3(1 − x)(T x)3·2m+1(

T xΘm + (T x)2m)2

+ 2T 4x2(3 − x)(T x)2m+2(
T xΘm + (T x)2m)4

− 4T 2x(T x)2m+1(
T xΘm + (T x)2m)6

+
(
T xΘm + (T x)2m)8

.

• d|m =⇒ Θd|Θm Numerical experiments suggest that for m ≤ 6, we have Θd|Θm when d|m. The
recurrence relation below provides a possible explanation for this phenomenon:

Θm =
Θd

(T x)2d (T x)2m
+

Θm−d

(T x)2d−1

d∏
k=1

θk(m − d).

In fact, we have shown that

θ1(m) = T xΘm + 2(T x)2m
,

θ2(m) =
(
T xΘm + (T x)2m)2

+ (T x)21+m
(1 − 2T 2x),
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θ3(m) =
((

T xΘm + (T x)2m)2
− T 2x(T x)21+m)2

+ (T x)22+m(
(1 − T 2x)2 − 2T 4x3

)
.

In general, we can express
θk(m) = φk(m) + ψk(m) × (T x)2m+k−1

,

where the two sequences φk(m) and ψk(m) are defined by

φ1(m) = T xΘm + (T x)2m
, ψ1(m) = 1,

φk+1(m) = φ2
k(m) −

1
x

(T x)2k(1+2m), ψk+1(m) = ψ2
k(m) −

1
x

(T x)2k
.

Then, we can construct recursively

θ1(m) = T xΘm + 2(T x)2m
,

θ2(m) =
(
T xΘm + (T x)2m)2

+ (T x)21+m (
1 − 2T 2x

)
,

θ3(m) =

((
T xΘm + (T x)2m)2

− T 2x(T x)21+m
)2

+ (T x)22+m
((

1 − T 2x
)2
− 2T 4x3

)
,

θ4(m) =

(((
T xΘm + (T x)2m)2

− T 2x(T x)21+m
)2
− T 4x3(T x)22+m

)2

+ (T x)23+m

(((
1 − T 2x

)2
− T 4x3

)2
− 2T 8x7

)
,

θ5(m) =

(((T xΘm + (T x)2m)2
− T 2x(T x)21+m

)2
− T 4x3(T x)22+m

)2

− T 8x7(T x)23+m

2

+ (T x)24+m

(((1 − T 2x
)2
− T 4x3

)2
− T 8x7

)2

− 2T 16x15

 ,
θ6(m) =

(((T xΘm + (T x)2m)2
− T 2x(T x)21+m

)2
− T 4x3(T x)22+m

)2

− T 8x7(T x)23+m

2

− T 16x15(T x)24+m


2

+ (T x)25+m

(((1 − T 2x
)2
− T 4x3

)2
− T 8x7

)2

− T 16x15

2

− 2T 32x31

 ,
θ7(m) =


(((T xΘm + (T x)2m)2

− T 2x(T x)21+m
)2
− T 4x3(T x)22+m

)2

− T 8x7(T x)23+m

2

− T 16x15(T x)24+m


2

− T 32x31(T x)25+m


2

+ (T x)26+m


(((1 − T 2x

)2
− T 4x3

)2
− T 8x7

)2

− T 16x15

2

− T 32x31


2

− 2T 64x63

 .
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