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1. Introduction and motivation

By examining the characteristic polynomial of a certain binomial matrix, Carlitz [4] discovered, in
1965, the following beautiful identity for the multiple sum of binomial circular products:

!

0<ky ko, Jky<n 1=1

where F,, denotes the usual Fibonacci number. Due to the cyclic property, it seems that this is the
unique deep result among the known multiple binomial sums (see for example [3]). Up to now, there are
three alternative proofs. The first one is due to Benjianmin and Rouse [2], who offered a combinatorial
proof by counting domino-tillings. Recently, Mikic [13] furnished an analytic proof based on the
induction principle. By introducing “the recursive construction” method, the second author [6,7] found
a more transparent proof for Carlitz’ formula, and established analogous identities for the alternating
multiple sums.
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Motivated by these works, this paper will investigate the following product sums of circular
binomial coefficients with free variable “x”:

o= =Y ([0

0<ky ko, Jkp<n 1=1

In Section 2 (see Theorem 1), we shall show, by means of “the recursive construction” method, that this
multiple sum can be expressed as the coefficient of 7"?"~D extracted from a bivariate rational function
in T and x. By combining artfully Knuth’s bracket calculus, the resultant of two polynomials, and the
Hadamard product of two formal power series, the generating function of €,(n) for any specific m
is theoretically determined (see Theorem 5) to be a bivariate rational function in x and y (and proper
in y). Two special numerical sums corresponding to x = +1 will be examined in Sections 4 and 5,
respectively. Finally, the paper will end with Section 6, where conclusive comments will be presented
briefly.

2. Q,.(n) as coefficients of rational functions

By means of the recursive construction method, we are going to show that the multiple sums Q,,(n)
can be expressed as coefficients of rational functions.
Theorem 1. Letting A, and ®,, be defined as below, then
(1 + T+ [T A2
Ou(T,x) @m0

Q,(n) := Q,(nlx) = [T*" "]

Throughout the paper, two sequences of bivariate polynomials Ay := Ax(7, x) and O, := Ok(T, x)
are introduced that will play a crucial role in realizing the “recursive construction” process. First, the
A,,-polynomials are defined by the quadratic recurrence relation of the first order

Aw=AL = (T [x with Ap=1.

The initial terms read explicitly as

A =1-T2%x,
Ay =1 =2T%x+T*x* - T*%°,

A3 =1 -4T%x + 6T*x> = 2T*x® — 4TOx> + 4T0x* + T8x* — 2T8x° + T8x° — T8x'.

It is almost obvious that polynomial A, (7, x) has degree 2" in variable “7”" and degree 2" — 1 in
variable “x”. Then, we have another polynomial sequence ®,, := 0,,(T, x) defined by

O, =A,—(Tx" " with =0,
which satisfies also the quadratic relation as below
112 -
@ = (O + (T ) = (T A+ 7).
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The initial terms are recorded as follows:

0, =1-Tx-Tx,
0, = 0(1 + Tx—T?x + T?x),
0; = @1(1 +Tx=3T*x+T*x* - 2T°x* + T°X° + 3T*x* - 3T*%°
+ T4+ 7% = 2T3x* + T9x° = T8x% + 2T5x* — T5X° + T6x6).
The polynomial ®,,(7, x) has the same degrees as A,,(T, x) in both “T" and x”. As will be shown in the
Appendix, this polynomial sequence is highly decomposable, i.e., for the two natural numbers m and

d with d|m, we always have that @,(T, x) divides ©,,(T x): |©4(T, x)|®,,(T, x)|. This property will be
useful subsequently in reducing computations for evaluating the resultant of two polynomials.

Proof of Theorem 1. Observing that

(1 +n+k) ok T4k2 x2ka=n
1+2k ) (1 — T2x)2+2k’
1l+n+k
my _ Tn+km—2k1 1+T 1+n+k,,
(172 ) e e

we can express the sum with respect to k; in €,,(n) as

b

Q,iq = Z xk1(1 +n+ km)(l +n+ kl) _ [T3n+km](1 + T)1+n+km T4k2x2k2

“= 1+ 2k, 1+ 2k, xﬂAf Asz

from which we deduce further

= X =
n T 1 2k Y

— [T3n+km]m i 1 tn+ k2 ykz
x"A% Py 1+ 2k3
(1 + T)1+n+k’" y2k3—n
wAT (-
(1 + T)l+n+kmA%+2n T8k3x6k3
XA ASE

— [T3n+k,,,]

— [T7n+km ]

o

where for the summation with respect to k, in the second line, the upper limit “n” is replaced by “co”.
This is justified by the fact that

4x3

T4x*\k
[T+ yhe = [T3"+km]( ) =0 for ky >n>k,.

Al
The same change for the upper limit of subsequent sums will be applied without further explanation.
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Then, we can deal with the sum with respect to k3 in €,,(n)

- 1+n+k; T8x7
Q=) K =
m ;} m( 1+ 2k, ) Sy

(1 + T)l+n+kmA%+2n ) (1 i+ k3) .
nA2
x* A2 k20 1+ 2k4
(1 + T)1+n+k,,,A%+2n y2k4—n
x4n A% (1 _ y)2+2k4
(1 + T)1+n+km(A1A2)2+2n T16k4x14k4
xl 1nA§ A§k4

— [T7n+km]

— [T7n+km ]

— [T 15n+k,, ]

b

and the next one with respect to k4 in Q,,(n)

- l+n+k T10x15
Q4 — Q3 ky —
m k;) '"( 1+ ks )x YTTA

_ [T15n+km](1 + T)l+n+km(AlA2)2+2n i (1 +n+ k4) “

nA2
xlnA2 A\ 1+ 2%s
(1 + T)1+n+km(A1A2)2+2n y2k5—n
x””A% (1 _ y)2+2k5
(1 + T)l+n+km(A1A2A3)2+2n T32k5x30k5

261 A2 2ks
XAy A

— [T15n+km]

— [T31I’l+km]

Iterating this process, we can show that the sum with respect to k,,,_; in €,,,(n) results in the following
expression:

. l+n+k,
Qm—l — Qm72 m ka—l
" Z " ( 1+ 2k, )

kin-1=0
m—1 A 2+2n m Y
_ [T(Z’"—l)n](l + T+ HF] AJ (1 + Tk (Tx)*" D
- 442 2m—m—1) 2k ko :
AT xre AT X

Finally, by summing over k,,, we arrive at the formula for €,,(n):

n

_ 1+T m_
Qumy= Q= > Qi Jy= (T
k=0 m—1

— [T(Zm—l)n]

m—=1 A242n oo

A+ 15 A Z o
4+2n n(2"—-m—1)

Am—l X k=0

— [T(zm_l)n]

(1+ 1) I A5+2n/ {1 L+ 7

4+2n n(2"m—m—1) 2
Am—l X Am—l

(Tx)2'"—1}

(1 " T)l+n 1—[71:—12 A§+2n
Am _ (TX)Z’"—I x@m-m=1) °

— [T(zm_l)n]

O
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3. Rational generating functions for Q,,(n)

In order to determine the generating functions for €,(n), we have to review basic facts about
Knuth’s bracket calculus, the resultant of two polynomials, and the Hadamard product of two formal
power series.

3.1. Knuth’s bracket calculus

Let F(x) and G(x) be two formal power series:

F(x) = i JuX", G(x) = i gnx".
n=0 n=0

Write [x"]G(x) for the coefficient of x" in G(x). As an alternative generalization, Knuth [12] introduced
[F(x)]G(x), which is a linear function of both F and G

[FOIG®) = ) fugn:
n=0

Suppose that H(x) is a third formal power series. Knuth’s bracket calculus satisfies the following
important properties:

[F(0)]G(x) = [G(x)]F(x),
[F(0)|G(x)H(x) = [F(x)G(x"")]H(x),
[F()G(x)]H(x) = [F(x0)]G(x)H(x).

3.2. The resultant of two polynomials

Given two polynomials

P(T) = zm: aT' =a, ﬁ(T — @), a,#0
i=0 i=1

QT)= > bT =b, | |(T =B, bu#0;
=0 =1
their resultant with respect to the variable 7 may be defined by

RS(P(), Q) : T) = by | | [ [ (@i - 8.

i=1 j=1

It is well known (cf. [9] and [14, §1.3]) that the resultant can alternatively be expressed by the
determinant of the Sylvester matrix of order n + m:

AIMS Mathematics Volume 10, Issue 12, 28182-28206.
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ap Q-1 **+ dp Qo
ap Ap-1-"+ dip Ao
Ay Ap-1 -+ Ay Qo

RS{P(T), Q(T) : T} = det b, b, i -+ by b

bn bn—l"' bl bO

bn bn—l bl bO‘

which consists of n-shifted rows formed by the coefficients of P(T) and m-shifted rows by the

coeflicients of Q(T).

e Symmetry:
RS{P(T),Q(T) : T} = (-1)"RS{Q(T), P(T) : T}.

e Reciprocity:
RS{Q(T),P(T) : T} =RS{T" x P(T™"), T" x Q(T™") : T}.

e Factorization:

RS{P(T) x P(T), O(T) : T} = RS{P(T), Q(T) : T} x RS{P(T), (T) : T},
RS{P(T), O(T) x QT) : T} = RS{P(T), O(T) : T} x RS{P(T),QT) : T}.

o)

e Bezout’s formula: When P(0) = ay = 1 and
P(T)

= Z dka, we have
k>0
dn dn+1 e dn+m—2 dn+m—1 ]

dn—l dn e dn+m—3 dn+m—2
RS{P(T), O(T) : T} = det
mxm

_dn—m+1 dn—m+2 e dn—l dn

3.3. Hadamard product of rational power series

The Hadamard product of the power series

F(T) = i fT" and G(T) = i g.T"
n=0 n=0

is defined by

FxG(T) =) figaT" = [F®IGTx) = [FT0]GX).
n=0

AIMS Mathematics Volume 10, Issue 12, 28182-28206.



28188

There is an integral representation

R L RL LN

The residue sum runs over all the poles 7 inside £, where the integral path £ is the circle |z| = (o +
|T|/B)/2 with @ and 8 being convergence radii of F(T') and G(T), respectively.

When F(T) and G(T) are rational power series with their respective denominators Q¢(7") = []2,(1 -
Ta;) and Qu(T) = H;f: (1 = T8;), we have the following useful properties (cf. [1,8, 10]):

o If F(T) and G(T) are proper, then so is F x G(T).

e The Hadamard product F x G(T) is also a rational power series that may be written with
denominator [T, [T)_;(1 — aiB;T).

e There is an explicit expression in terms of resultant

[ [0 = 20i8)) = R${QUT), Qu(T ) : T} = RS[Qu(T), Qu(T ) : T};

i=1 j=1

— =

where the two reciprocal polynomials are defined by
QT)=T"XQT™") and QuT)=T"xQu(T™").

Summing up, for two parametric rational functions

PH(T) Po(T)
G(T) = G(Tlx,y) =
Qi(T)’ Qu(T)’
their bracket [F(T)]G(T) equals Hadamard product [F(T)|G(T) = F * G(T) at T = 1, and hence is a
bivariate rational function in “x and y”, whose denominator divides the resultant RS{Gf(T), Qu(T) : T}.
Armed with these algebraic machineries, we are now ready to examine (ordinary) generating
functions for the multiple sums €,,(n) in accordance with Theorem 1.

F(T) := F(T|x,y) =

m = 1| By means of the bracket calculus, we can proceed with

1 Tn+l
Zﬂl(n)y =S o

n=0
- 1+T
=N A+ T
;[y( )]1_TX_T2x
_[ 1 ] 1+T
i —y—yrh1i—Tx-T2x

Then, the denominator of the diagonal series results in
QT)=T—-y—Ty and QUT)=1-Tx~-T’x,

AIMS Mathematics Volume 10, Issue 12, 28182-28206.



28189

Q) :=RS{QU(1).QUT) : T} = 1 - 2+ 1)y + ¥,

Consequently, we can formally write the generating function as

) -
Q' = 2 )= iy x S iy,
Z | ) | | ZO |

where P;(y) is a linear function in y, and can be shown to be P;(y) = 1. In fact, this can be done by

comparing the coefficients of y° and y in the rightmost equation and keeping in mind the initial values
Q(0)=1and Q(1) =2 + x.

Proposition 2 (Generating function for Q,(n)).

N 1
Q "= :
; 1)y 1 -2+ x)y+y?

Alternatively, by making use of the partial fraction decomposition

1 1 { a y } x+ Vx?+4x
= — L a = ’
1-Tx-T>x a-y\1-Ta 1-Ty 4 2

we can also compute the generating function directly as follows:
[e9) [ee) k
" y ‘ 1+T
Q T
; 1)y Z(l—y)"“[ Iy “Tx-T%x

a1+T) y(1+T)
Z(; y)k+1 { 1-Ta 1—Ty}

k

:i A +@et -+ yp

— y)k+l —

(1 =y @—y
B 1 {1+a 1+y}
I-a-Nll-5 1-3F

1
1=+ x)y+y?

Express the generating function in terms of the bracket calculus

> ey = Yy S
n=0

e Ay — (Tx)?
B 0 o \ 1+7T
_ Z O T+ D o s Te - TP 7 120

[ ] 1+T
1- T2(1 +T)y/xI(1 = Tx—T2x)(1 + Tx — T?x + T?x?)’

AIMS Mathematics Volume 10, Issue 12, 28182-28206.
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Then, the denominator of the generating function can be determined by

QI(T) =T~ 1+ Ty/x,
QN =1 -Tx-Tx)(1 +Tx—T’x + T°x),

Q) = RS[Qu(T). QXT) : T} = {1 (1 - x)zy}z(l — 2+ 4x+ D)y +y7).

Thus, the generating function can be written as

Z%() s = Pal) = Q) X ) Qaly's
n=0

where P,(y) is a polynomial of degree < 3 in y, and can be shown to be

PZ(Y) =1- 2x2y — )72 + 4xy2 _ 4x2y2 + x4y2
= {1 —(1- x)zy}(l +(1-2x- XZ)y).

In fact, this can be done by comparing the coefficients of {y"}o<,<3 and taking into account the initial
values {Q,(n)}

0<n<3-
{1,4 + 259+ 8x + 1652 + x*, 16 + 40x + 10022 + 40x° + 36x* + x6}.

Proposition 3 (Generating function for {,(n)).

wQ I = 1+(1-2x—-x%)y
;f Y = A T oD = 2+ dx + Dy 30

m = 3| The generating function can be manipulated by the bracket calculus

00 00 (1 + T)n+1x—4nA2+2n
Q no_ n T7n 1
nz=(; 3(n)y % y'IT™] A (Ta)

(1+ 7)1 -T?x)?
(1 =Tx—T?*x)Ps(T, x)
3 [ 1 (1+ 7)1 —=T?x)?

1= T2(1 + T)(T% = )%/ (1 = Tx — T2x)P5(T, x)’

= > YL+ Ty (TP - )]
n=0

where P5(7, x) is a bivariate polynomial
Py(T,x) =1 + Tx = 3T*x + T?x* = 2T3x% + T°x> + 3T*x* = 37*%°
+ T+ T3 2T X + T = T3 +2T6x* = T6x° + T6x5,

O3(T,x) = Ay — (Tx) = A5 - T8 - T"%
=(1=2T*x+T*x* - T*)? = T8 = T’
= (1 - Tx - T*x)P5(T, x).

AIMS Mathematics Volume 10, Issue 12, 28182-28206.
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Then, we can compute the denominator of the generating function

QUT) =T7 — (1 + T)(1 - T%x)y/x%,
QXT) = (1 - Tx - T*x)P5(T, x),

Q:(y) := RS{Q?(T), QUT) : T} =(1- @2+ +4x+x)y+y?)
X (1 —(2-3x-2x"+ 2x3)y +(1—-2x+x° — x3)2y2)3.

Thus, the generating function can formally be written as

2930”— o = P = Qx> Q'

) pr
where P5(y) is a polynomial of degree < 7 in y, and can be shown to be
P;(y) = 1 - 62y = 3(3 = 8x — 4x” + 16x” — 5x°)y”
+4(4 - 18x + 18x7 + 1527 — 12x* - 36x° + 32x° - 5x°)y”
— 3(3 = 20x + 5122 — 60x% + 19x* + 48x5 — 94x® + 96x7 — 725" + 32:° — 5x12)y*
+ 6(2x2 —16x + 54x* = 107x° + 152x° — 169x” + 140x*
— 86x° +40x'% — 8x!! — xls)y5
+ (1 —12x + 63x% — 196x” + 420x* — 684x° + 885x° — 912x" + 747x*
—468x7 + 183x'% — 73x"% + 72413 — 36x™* + 16x1 + xlg)y6
—(1-@=-3x=22+ 2+ (1 - 2x + 2 = Py2)
X {1+22 = 3x =207 = )y + (1 —4x + 327 + 2¢* + 427 + x0)y?).
Proposition 4 (Generating function for Q;(n)).
. 1+2(2—3x—2xz—x3)y+(1—4x+3x2+2x4+4xs+)66)y2
;Q3(n)y T (1= Q2+ 0+ dx+ D)y +32)(1-(2-3x-2x2 +23) y + (1 - 2x + 2 = ¥) y2)

m > 3| The generating function corresponding to m > 3 can be reformulated via Theorem 1 as

0 00 1+n m=2 A2+2n
no_ n (2»1_1)}1 (1 + T) HJZI ]
2 )y = Zy A e o e

(1+T) [T A

((1+T)H’" 2A2)

Ms°

Y

oy (Tx)zm lx—m T—T-1 A _ (T )2’" 1
1 (1+T) [T A
B [ m - (Tx)zm b

1 ((1+T) n’;’jAﬁ)

(Tx)zm—l x—m

T—T-!

Hence, we can express the denominator of the generating function.
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Theorem 5. The (ordinary) generating function for Q,,(n) is a rational function with its denominator
dividing Q,,(y), defined by

Q. () := RS{Q (T), QD) : T,

where

m—2
Q) =T"" =y 2"+ 1) [ | AL
J=1
Q(T) = ©,(T) = A, — (T
The related polynomial degrees are determined by
§(Qu() = 8(QN(T) =2" and 6(Q; (1)) =2"-1.
Thus, sequence {Q,,(n)},., satisfies a linear recurrence relation of order “ 2"” with the coefficients
being determined by Q,, ().
Since the generating function is a proper rational function

Z 0,0y = U = Po9) = Qur) X )" Quli)y
n=0

The numerator polynomial P, (y) can be determined by comparing the initial coefficients across the
rightmost equality. Theoretically, for any given natural number m, we can find the corresponding
rational generating function for Q,,(n).

However, for m > 5 it practically becomes difficult to calculate the related generating functions,
since Q,(n) = Q,(n|x) is a large polynomial in “x” of degree “mn”. For example, to determine
the generating function with m = 5, we have to explicitly figure out the polynomials Qs(n) with
0 < n < 32 = 2° Among them, Q5(25) is shown (by numerical computations according to the
definition) to have 125 terms with the maximum coefficient ~ 55.3822185 x 10°°. We record three
further generating functions for “m = 4,5,6”. They are the best possible results that we are able to
obtain by employing Wolfram Mathematica (version 11) with our personal computers.

According to Theorem 5, we first compute the resultant

Qi(T) = T — (1 + THA2AZy/x",
Qu(T) = Ay — (Tx)®,
Qu(») := RS[Q{(7). QY(T) : T}
=(1-a- x)4y)2(1 — 2+ 16x + 2027 + 8 + x*)y + )?)
X {1 —(1+ 03B =5x=3x+3x)y + (3 — 8x — x* + 14x° — 19x*
+24x° —4x° +3x%)y? — (1 = 3x +3x% = 3x° + 2x* + x6)2y3}4.

Then, the generating function is given as in the proposition below.

AIMS Mathematics Volume 10, Issue 12, 28182-28206.
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Proposition 6 (Generating function for Qy(n)).

[ee)

Pa(y)
Q "= ,
HZ:; 4(n)y Q)

where the rational function is proper and irreducible defined by

Puy) = 1+2(5-5x—9x% = 2x° = 2x*)y + x(14 — 67x + 86x* — 23x° — 6x*
+34x° + 1225 + 6x)y? — (10 — 66x + 154x% — 142x° + 27x* + 54%°
— 108x° + 16x7 + 120x® — 26x° + 14x'% + 12x" + 4x'%)y°
— (1= 10x +41x* = 92x7 + 132x* — 136x° + 94x° — 22x" — 19x®
+24x7 = 23x"0 + 6x' — 5x12 + 10x" 4+ 2xM — 4x"> — x10)y*,

Qi) = (1 = (1= 0%)(1 = 2+ 16x+20x" + 8x* + x*)y +y?)
x{l —(1+x)B=5x=3x+3)y+ (3 —-8x—x* + 14x> — 19x*

+ 2457 = 4x® 4+ 3x)y? - (1= 3x + 327 = 32 + 20* + 207},

[TKIN

m =5| The resultant Qs(y) is a polynomial of degree 32 = 2° in “y”:

Qs(») = (1 = 2+ x)(1 + 12x + 1927 + 8x> + x )y +y?)
X {1 —(1+x)(6— 11x+ x> — 8% + 6x*)y + (15 — 36x — 2922 + 80x> + 70x* — 258"

+ 2425 + 34x7 — 23x% — 1047 + 15x'%)y? — (20 — 94x + 74x* + 271x° — 602x* + 415x°
+ 124x5% — 437x7 + 58x% + 527x° — 590x'° + 94x!! + 148x'? — 22x1 — 20x™* + 20x'%)y’
+ (15 = 116x + 315x* — 200x° — 862x* + 2698x° — 3968x° + 2836x" + 1366x® — 6588x°
+9871x'° = 9752x'! + 6667x'* — 2898x" + 361x™ + 670x"° — 516x'° + 140x"7 + 2x'®
—20x" + 15x°)y* — (6 — 69x + 342x% — 943 x> + 1470x* — 644x° — 3264x° + 11151x7
— 21578 + 30796x° — 34952x'0 + 32275x!" — 24038x'% + 13787x"% — 4758x'* — 1303x"
+3972x'% — 4255x"7 + 3310x"® — 1923x" + 896x%° — 321x%" + 22x% + 13x% — 10x*
+6x7)y° + (1 — 8x + 28x% — 60x° + 94x* — 116x° + 114x° — 9447

5
+69x% — 44x° +26x'0 — 14x" 4+ 5512 — 2x13 4+ 4™ - x15)2y6} .

Proposition 7 (Generating function for Qs(n)).

N Ps(y)
Q "= ,
HZ:(; s(n)y Q)

where Qs(y) is of degree “8” and consists of the two distinct factors in Qs(y), and

Ps(y)=1 + (24 — 20x — 40x* — 28x° — 8x* — 6x°)y + (15 + 4x — 194x* + 160x°
+300x* — 248x° — 78x° + 144x" + 132x% + 40x° + 15x'%)y* — (80 — 344x
+24x% + 1516x° — 1752x* + 560x° — 736x° — 572x" — 312 + 2332x° + 1160x°

AIMS Mathematics Volume 10, Issue 12, 28182-28206.
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— 176x" + 208x'% + 248x"% + 80x'* + 20x")y® + (15 — 156x + 765x* — 2290x°
+4393x* — 5262x° + 3482x° + 26x7 — 3039x® + 3122x° — 834x'0 — 652x"! + 637x!
+432x" — 1084x™ + 920x'° — 36x'® + 160x!7 + 232x'% + 80x" + 15x%)y*

+ (24 — 276x + 1328x% — 3472x° + 5340x* — 4516x° — 236x° + 7914x" — 13772x

+ 13074x — 7988x' + 1440x" + 3908x'? — 3782x"3 + 3188x'* — 3272x"° + 488x'°
—550x'7 + 120x"® + 1308x'7 + 464x%° — 44x*" — 72x%% — 108x> — 40x** — 6x%)°

+ (1 = 16x + 115x% — 498x° + 1482x* — 3296x° + 5793x° — 8278x” + 9707x® — 9374x°
+7373x'0 — 4448x" + 1686x" +230x" — 1302x"* + 1572x" — 1354x'® + 1006x"”
—507x"8 + 194x" — 101x%° — 17x%% + 16x** + 2x%0 + 16x%" + 20x% + 8x% + x*0))S.

LIS TIR T

m = 6| The resultant Qg(y) is a polynomial of degree 64 = 2° in “y”:

Qs(y) = {1 = @ +4x+ 2)(1 + 16x + 2027 + 8 + x*)y + 3} x {1 = (1 = )%’
3
) {(1= 2= 4x+ )1 = 627 + 42 + 2y + (1 - 2x + &7 = )y’
X {1 — (9 —2x—17x% = 28x% = 5x* + 2x° + 9x%)y + 2(18 — 20x — 81x% + 3x> + 226x* — 9X°

—402x° + 478x7 + 173x% — 44x° — 16x'0 + 8x'! + 18x'%)y* — (84 — 224x — 434x* + 1298%°
+986x" — 4542x° + 4655x° — 1214x7 — 4090x® + 5460x° — 4758x'° + 3950x'" — 32982
+376x" + 1658x™ + 56x'° — 84x'® + 56x'7 + 84x'®)y + (126 — 616x — 10x* + 4566x°

— 7155x* — 4800x° + 27752x° — 43750x7 + 33817x% — 1630x° — 4816x'° — 33514x!"
+83367x'% — 105444x" + 71918x' — 17206x"° — 11543x'° + 12550x!7 + 1976x"®

— 6956x" +2514x%° + 616x*" — 112x%% + 112x% + 126x**)y* — (126 — 980x + 1980x°

+4026x> — 25115x* + 43762x° — 14900x° — 82702x7 + 184551x® — 123542x° — 225870x"°
+738096x'" — 1085481x'? + 955694x" — 319000x'* — 439048x"° + 888856x'® — 860596x'”
+466077x'® — 65206x" — 131671x%° + 147874x*" — 54773x** — 6714x% + 15588x** — 12420x%
+1000x%° + 1120x%7 — 70x%® + 140x% + 126x°%)y° + (84 — 952x + 4058x* — 5630x° — 16714x*
+97046x° — 221948x° + 255604x" + 52681x® — 888614x° + 2076873x'" — 2992438 x!!
+2888589x'2 — 1423140x"* — 967233x' + 3265958x"> — 4582858x'® + 4616466x'’
—3715214x" + 2569282x" — 1638319x*° + 1070602x*' — 813376x% + 649304x*
—492950x** + 336112x% — 160826x%° + 45346x%7 + 9422x%% — 30742x%° + 14236x°

— 6172 — 1042x% + 952x% + 112x% + 84x°%)y — (36 — 560x + 3778x% — 13946x°
+26400x* + 4742x° — 196445x° + 691290x" — 1471297x® + 2083964x° — 1525918x'°

— 1420738x'"" + 7408981x'? — 15752078x"% + 24274021x" — 30112252x"° + 31067449x"°
—26640272x" + 18205420x'® — 8288062x" — 562978x* + 6616716x*' — 9315122x*
+9163668x> — 7242143x** + 4699510x% — 2408957 x%° + 786280x%" + 131542x%® — 485354x%°
+500409x*" — 380058x>! + 226884x*2 — 111984x> + 49184x* — 11158x> + 1274x%° + 936x°7
— 1114x°% + 392x% + 28x* + 56x* + 36x*)y” + (9 — 184x + 1746x* — 10206x° + 40969x*
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— 117908x° + 238784x° — 276794x" — 175152 + 1925448x° — 6100963x'° + 13730528 x"!
—25068946x'? + 38992142x!% — 52895355x'* + 63323458x!% — 67133828x'® + 62660344x"”
— 50340467 x'8 + 32548908x"° — 12786262x%° — 5384788x%! + 19274176x** — 27582730x%
+30413906x>* — 28905292x% + 24667807x*° — 19265394x*" + 13905121x*® — 9321462x*
+5811960x™ — 3367500x°" + 1804618x° — 881580x°% + 381176x>* — 136334x>> + 30851x°°
+6460x°7 — 14394x%8 + 12318x% — 8299x™ + 4130x* — 1776x** + 1036x* — 282x* + 56x%
+ 16x% + 162" + 9x*)y® — (1 — 13x + 78x% — 293x° + 792x* — 1672x° + 2892x° — 42197
+5313x% — 5892x” + 5843x'0 — 5258x"! + 4346x'* — 3310x" + 2331x™ — 1525x"% + 927x'°

6
—536x!7 +298x" — 155x" + 76x%° — 35x2! + 17x%2 — 7x® +3x% — x¥ — x* - x27)2y9} .

Proposition 8 (Generating function for Qg (n)).

S Ps(y)
Q "= .
ZO] M = 3

where Qq(y) is of degree “14” and consists of the four distinct factors in Qg(y), and

Pe(y) =1 + (50 — 24x — 92x> — 96x° — 46x* — 4x° — 12x5)y — (76 — 656x + 1284x° + 542x° — 1742x*
—2198x° +2444x° + 560x" + 17x% — 692x° — 454x'0 — 44x" — 66x'%)y* — (650 — 776x
— 10732x% + 23868x° + 16188x* — 70098x° + 41855x°% — 618x7 — 3480x® — 42068x°
+26746x'% + 68540x'" + 15446x'> — 2888x"° — 2958x!* + 1896x'° + 2010x'°
+220x" +220x"%)y? + (2325 — 13704x + 7918x% + 101902x> — 246715x* + 134902x°
+142101x5% — 311984x7 + 524554x% — 362598x° — 71967x'° — 412858x!! + 748133x"2
—267112x" +319156x" — 102786x" — 336125x'% + 26502x'7 + 100304x'® — 2496x"°
— 11973x% + 1764x*" + 5250x** + 660x> + 495x**)y* — (2652 — 28416x + 112868x>
— 144344x° — 337294x* + 1557056x° — 2396574x° + 1524332x" — 464149x® + 2842162x°
—9379227x'" + 15586276x!" — 16348067x'> + 13242852x'3 — 11957290x'* + 12513534x"
— 9436046x'° + 804816x'7 + 4626124x'® — 1401360x'° — 2012410x%° + 1936212x*!
— 285840x* — 647248x% + 153372x% + 11248x% — 21696x°° — 2784x*" + 8940x?®
+1320x% + 792x%)y — (8496x — 121876 + 720076x° — 2127014x* + 2449476x°
+3800510x° — 18179436x" + 24844972x% + 5370958x° — 82220121x'% + 164074940x"!
— 177538677x" + 96335378x" + 15259868x'* — 66681992x'> + 31677747 x'°
+27103450x" — 33751409x"® — 177422x" + 16116272x%° + 3806516x°"
—36084124x* + 38128432x% — 9498873x** — 8537580x> + 8535634x%¢
—2130288x*7 — 2188024x% + 1403380x% + 25832x%° — 34720x%" + 19026x%
+10584x% — 10332x°* — 1848x> — 924x°°)y® + (2652 — 36096x + 166876x>
—7216x° — 3201710x* + 15256636x° — 33449804x° + 19853092x7 + 101373461x%
—365333278x° + 638955843x'% — 607932130x!'! + 13308676x'? + 998644558x"?
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— 1819325081 x™ + 1837093706x" — 1045084001x'® + 141536192x"" + 82853974x'®
+515159016x" — 1340770205x* + 1664955776x*" — 1278817948x** + 569157474x%
—31802209x** — 130898048x> + 38705816x% + 64956662x>" — 75658298x*®
+32390540x* + 12903088x°" — 18997604x" + 1881578x% + 4476772x>* — 4048900x**
+901304x% +297764x% — 44016x%" + 3108x™® + 15120x%° — 8148x* — 1848x*!

— 792x*)y” — (2325 — 45024x + 377384x* — 1704492x> + 3696668x* + 2980636x°
—50403706x° + 186300736x — 399403626x® + 486121126x° + 2354687x'°

— 1549569394x'" + 4223867125x"* — 7368475312x"° + 9889546994x'* — 11072095778x"
+ 11165672434x'° — 11057479248x"" + 11273541940x'® — 11355136130x"°

+ 10382226949x%° — 8104422620x%' + 5363644951x** — 3377919542x%
+2698028232x%* — 2874668668x* + 3101908881x° — 2969132826x°7 + 2525470636x%
— 1964270434x% + 1394672289x — 838507222x! + 378601906x> — 112154980x°°

+ 16744298x** — 4970372x%° + 3412967x°¢ + 7216108x*7 — 10153550x™® + 6120760x*°
— 1714202x* — 209820x*" + 311664x** — 29312x* — 9822x* + 12504x* — 4260x*

— 1320x*7 — 495x*)y® + (650 — 16296x + 189520x% — 1349208x° + 6498776x* — 21796924 x
+48234882x° — 45198292x" — 145507165x® + 875399722x° — 2646541635x'°
+5822816380x!! — 10140421571x'? + 14373912340x" — 16666697980x'*
+15691108854x" — 12030821179x"'® + 8614213966x'" — 93936996128
+16765086910x" — 29450799825x%° + 42544067844x*" — 499582483 18x*
+47754892842x% — 36202777201x** + 19410471038x% — 3029301975x%

— 8410455730x%" + 13085324963 x — 11912838320x%° + 7441517898x°
—2397495170x°" — 1357824897 x%% + 3174545270x> — 3368880221x* + 2667613728
— 1740314143x°° + 983929980x7 — 506794438x°% + 253785758x* — 132841014x*
+71098224x* — 33887648x* + 12818288x% — 3671938x* + 242084x*

+727936x* — 428912x*7 + 119146x* — 9464x™ — 9972x°° + 6336x°" — 1350x°>

— 660x> = 220x°*)y’ + (76 — 2016x + 23856x — 158742x> + 556060x* + 170542x°

— 14843150x° + 103553244x" — 460887219x® + 1556529798x° — 4246647079x"°
+9654708120x"" — 18597939017x'% + 30576936562x'% — 42848208274x'
+50513000588x"> — 48335064285x"'® + 33931347164x"7 — 10631069603 '8

— 12199538324 x'? + 22447976824x*° — 10974174596x*' — 23268652618x*
+71712298596x% — 119278283133x** + 150534313088x% — 155793004677 x%¢

+ 134365308574x*7 — 93864920490 + 46413567166x*° — 3829525588x*°
—26081276914x" + 40923768742x°* — 42847936258x>% + 36427479602x>*

— 26493837004x>° + 16705540865x%° — 9052475520x°7 + 4064538718x

— 1350341588x>° + 162744193x* + 198278034x* — 210867637x* + 130685578x*

— 60760412x* +23592108x™ — 10995092x* + 8301520x*" — 6302277 x*
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+3891236x% — 2289538x° + 1324670x°" — 507054x°% + 99742x°* — 2028x>* + 528x>°
+4259x7 — 1884x°" + 190x°% + 220x%° + 66x)y'0 — (50 — 1720x + 28376x% — 299340x°
+2271694x* — 13229874x° + 61579817x° — 235464866x" + 753723901 x
—2044365354x° + 4724099757 x'° — 9268513286x!" + 15141574834x"2
—19370622298x"% + 15071878951 x'* + 8961061770x" — 66311163224 x"°
+168094187678x'7 — 316356596418x'® + 498620364616x" — 687019868911x%

+ 843950086408x>! — 933027152667x* + 931175360844x* — 836678136657 x**
+669757213794x% — 465679091739x% + 263578909256x%" — 95545344535x%
—20320375634x% + 81343554186x*° — 96976138604x"" + 82971827683 x>

— 55525390454x> + 27180672087 x> — 5178899442x% — 8115789095x%¢
+13637596484x*" — 13831897958x% + 11278434780x*° — 7938633980x*
+4947973000x*" — 2747312666x* + 1343943026x* — 554798849x*

+ 165501540x* — 3584158x* — 45346994x*7 + 47084217x*® — 34301376x%
+20600776x° — 10383590x°" + 4190178x>% — 1144706x> + 40805x*

+169478x> — 128006x°° + 55560x°7 — 1262x°® — 13860x>° + 6478x%°

— 424X +802x%% — 280x% — 14x%* + 44x55 + 12x)y!'! — (1 — 40x + 77457

—9670x° + 87865x* — 620262x° + 3549271x° — 16962408x" + 69234732x%

— 245586888x” + 767680238x'" — 2138868344x'! + 5361591638x'% — 12187378412x"3
+25286587778x" — 48155413716x" + 84570182427x'® — 137510754872x""
+207712381436x'® — 292287226982x' + 384028914465x%° — 471928779246x*!
+543055182415x** — 585407131836x> + 590898738347 x** — 557494949408 x%
+489784493342x*° — 397827167146x*" + 294702383922x%® — 193570372050x%
+105111314945x*° — 35961138820x°" — 11641948295x* + 39176151474x>

— 50542987667x* + 50641988574x> — 44190551968x°® + 34983642454x"
—25608304866x°% + 17506805168x*° — 11235959880x*" + 6783776580x*

— 3849567592x* + 2044080644x* — 1005403705x* + 448488480x*

— 172811200x* + 49487862x* — 2102501x* — 11197718x* + 11440087x°

— 8111556x°" + 4838951x°% — 2576544x7 + 1259792x°* — 574818x> + 246508x°°
—99658x°7 + 38271x°% — 13846x°° + 4166x°° — 564x%" — 214x%% + 22x% + 181x%
—158x% + 64x%7 = 39x% + 12x% + 6x0 — 4x"" — x"H)y'2.

Pu(y)
. Qn(y)

and denominator polynomials in “y” are tabulated as below (see Table 1):

Observe that these generating functions are irreducible fractions. The degrees of numerator
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Table 1. Degrees of ,,(y) and Q,,(y).

m 1 2 3 4 5 6
S(Pn(y)) 0 1 2 4 6 12
(@ (»)) 2 3 4 6 8 14

e The degrees of numerator polynomials #,,(y) result in the Mobius transform of Fibonacci numbers
(cf. [15, A007436]):

My(m) = Z,u(g) X Fyt AMm)Y_, =1{1,0,1,2,4,6,12,18,32}.

dim

e The degrees of denominator polynomials Q,,(y) coincide with the number of m-bead necklaces
(cf. [15, A0O00031]) with two colors when turning over is not allowed:

2d
Lm) =) ¢(%) X (Lm))) _, =1{2,3,4,6,8, 14,20, 36, 60}.

dlm

4. Reduced generating functions

x,=1: 151511‘

The corresponding positive sum becomes
"l +n+k,
Ui === > [](1357%)
0<ky ko, kp<n 1=1
The initial values are illustrated in the Table 2:

Table 2. Initial values of Q,,(n|x = 1).

m\n 1 2 3 4 5 6 7

1 3 8 21 55 144 377 987

2 5 34 233 1597 10946 75025 514229

3 9 176 3153 56569 1015104 18215297 326860233

4 17 962 44833 2105649 98927362 4647459713 218331680913

5 33 5328 646721 79519585 9781368384 1203017770497 147961426640417

Their rational generating functions are given explicitly as follows (where F, stands for the usual
Fibonacci number):

e Generating function for U;(n):

N 1
U "= ———: U = Fopio.
; 1(n)y 1—3y+y? 1(n) 2n+2
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e Generating function for U,(n):
Z Uy = 75 y2 : Us(n) = Fagur.

e Generating function for Us(n):

- . 1 -8y +7y?
Z;‘U3(n)y S (1-18y+y) (1 +y+y?Y)

o Generating function for Uy(n):

- 1—26+562—693+24
3 Uiy = 20O

o — 47y +y2) (1 + 4y + 12y — y3)’

e Generating function for Us(n):

1-78y+290y*—2336y> +926y* +462y° +31y°
ZUS(”))’ > 6
(1-123y+y2 ) (1+12y+100y2+14y3+36y*+12y7+y°)

6()

Q)

Pi(y) = 1 — 224y + 929y — 64021y’ — 24352y* — 61811y’ — 406887y°
— 567648y’ — 352045y% — 7943y + 28512y'0 — 641y + 2y'2,

where

e Generating function for Ug(n): Z Ug(n)y" =
n=0

Q) = (1 =322y + y*)(1 +y + yH{1 + 32y + 704y* — 19y’
+ 1888y* — 928y° — 5357y° — 2560y" + 96y® —y°}.
Denote by L,,, and F»,, the bisection Lucas and Fibonacci numbers (cf. [11]):

(Lo, = {3.7,18,47,123,322,843,2207, 5778},
{Faul_, =1{1,3,8, 21, 55, 144,377, 987,2584}.

These generating functions contain quadratic polynomial factors in denominators |1 — yL,, + y*
characterized by bisection Lucas numbers.

u

. Q.0)

and denominator polynomials in *“y” are tabulated as below (see Table 3):

Observe that these generating functions are irreducible fractions. The degrees of numerator

Table 3. Degrees of P (y) and Q" ().

m 1 2 3 4 5 6
S(P () 0 1 2 4 6 12
(@) 2 2 4 5 8 13
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e The degrees of numerator polynomials %, (y) are the same as #,,(y), and correspond to the Mobius
transform of Fibonacci numbers, as described previously.

e The degrees of denominator polynomials Q% (y) coincide with the first difference of p, (cf. [15,
A116084 and A116085]), where p, counts partitions “1” into distinct reduced fractions i/j with
J < n. For example,

+
Wl &
TIRN
+
| W
=
+
N W
8/_/

| =

—6—{1+1+1 1+2 1+3
Pe=2= 63 34" %
The initial terms are illustrated by

(pali2; = 1{1,2,4,6,10,15,23,36,47,70},
{Apn}:[i?, = {17 2a2a4’ 5, 8, 13, 11, 23, 17}

e Observing that for 1 < m < 6, the denominator Q% (y) can be decomposed into linear factors of
form (1 — ya). Among these a’s, there is a unique (real)

1+ 15
2 b

1
= p2’" = E(Lzm + Fop \/5) with p =

which takes the maximum of |e|’s. According to partial fractions, we have the following
asymptotic expansion:

P 1 % lim (1 = ya,)P,,(») n — oo
Q:tn(y) - 1 =y, y=llam Q:tn(y) ' 1<m<6

From this, we deduce, as n — oo, the asymptotic formulae below

U(n) ~ (5 +35),
Uy(n) ~ (5 +V5),
Us(n) ~ (25 +12 «F)

Uy(n) ~ ﬂ(65 +27 «/_)

Us(n) ~ —0(95+43 V5).

In a recent paper by the authors [5], triple sums of similar binomial products were examined,
where the generating functions were determined by first detecting “recurrence relations” through
computational experiments and then verifying the “presumably corresponding (guessed) generating
functions”.  Instead, the approach via “Resultant/Hadamard product of polynomials” is more
advantageous, both in theory and practice, since it affirms that the generating functions of the circular
sums treated in this paper are rational ones prior to numerical tests.
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5. Reduced generating functions |x, = —-1: 1 <1< n‘

The corresponding alternating sum is denoted by

V() = Qunlx=-D = ﬁ(—nkt

0<ky kp, - Jkm<n 1=1

(1+n+k,

!

The initial values are illustrated in Table 4:

Table 4. Initial values of Q,,(n|x = —1).

m\n 1 2 3 4 5 6 7

1 I 0 -1 -1 0 1 1

2 5 18 73 293 1170 4681 18725

3 7 24 -193 401 5232 -4799 -135593

4 17 162 2593 36305 562626 8753185 138298769

5 31 -360 -11521 110849 5106960 -30977279 -2276827169

Their rational generating functions are displayed explicitly as follows:

e Generating function for V(n):

- 1
2V =

n=0

e Generating function for V,(n):

iV(n)"— 1+2y
LY T A vy 0

e Generating function for V3(n):

Z.O:V(n)”— 1 + 8y + 7y?
L T Ty ) (1 -y + 255

e Generating function for V4(n):

N . 1 +2y — 156y — 373y° — 446y*
D Vamy" = . : |
=0 (I -16y) (1 +y+y?) (1 —48y> — 169y3)

o Generating function for Vs(n):

(o]
1+30y+90y2 +4832y3 +8166y* — 14958y +45799y°

J —y+y2) (1+480y2+1562y3 +26496y*+157152)5+458329y0 ) °
n=l
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e Generating function for V¢(n):

S Pi0)
V no_ 6 ,
,,Z(; 6(n)y Qg ")

where

Pr(y) = 1 + 25y — 4022y — 111891y° + 2279373y" + 97808874y° + 584738787y° — 8898122085y’
— 132822555378y® — 445275404497y’ — 1246731704449y'° + 5166241027262y'!,

Q) = (1 — y)(1 — 64y)(1 + 49y + 625y*){1 — 24y — 960y* + 10413y* + 394032y*
+598080y° — 15123549y° — 118340376y’ — 235909248y® — 2100663889y°}.

1%
Observe that these generating functions :” are irreducible fractions. The degrees of numerator

. Q.0)

and denominator polynomials in “y” are tabulrgted as below (see Table 5):

Table 5. Degrees of #},(y) and Q),(y).

m 1 2 3 4 5 6
o(#,,(») 0 1 2 4 6 11
8(Q, () 2 3 4 6 8 13

e The degrees of denominator polynomials Q) (y) coincide with the known sequence “A000029”
recorded in [15]: the number of m-bead necklaces with two colors allowing turning over.

d mel =
6(Q;1(y)):z¢(§)x22—m+{2x2jrg’ m =p 1’

3 _
dim 4 m =, 0.

e The degrees of numerator polynomials #) (y) coincide with sequence “A056342” recorded
in [15]: the number of m-bead necklaces with exactly two different colors.

5(P,) = 8(@,) - 2
6. Conclusions and further comments

By means of recursive construction, the preliminary Theorem 1 is established that expresses the
multiple sums €, (n|x) as coefficients of bivariate rational functions in 7 and x. Then, algebraic
machinery (Knuth’s bracket calculus, resultants of polynomials, and Hadamard products of rational
formal power series) is deliberately utilized to determine theoretically ordinary generating functions
for Q,,(n|x) in Theorem 5. However, the problem is not resolved in practice for larger m > 7, since to
work out explicitly the related generating functions involves a huge quantity of computations. It would
be desirable to have some efficient algorithm to handle this problem.

Apart from the observations (made previously) about polynomial degrees, there remains another
intriguing question concerns the resultant Q,,(y) (which is a multiple of the denominator of the
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reduced generating function g’"(y;), containing the mth power of a big polynomial factor. Instead,

the denominator @Q,,(y) is reduced drastically from Q,,(y) and turns to be the product of only distinct
factors appearing in Q,,(y). It seems that there are more mysteries hidden behind these nontrivial facts.
The interested reader is encouraged to make further exploration.
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Appendix. Divisibility of ©,,

Let A,, := A, (T, x) and ©,, := 0,,(T, x) be defined as in Section 2. Then, we can express ®,, in
terms of ®,,_; as follows:

. (1 1
On=Ay—Tx)" ' =A2_ | - (Tx)* {— + —}
x T

= (@ + (T - (Tx)zm{i + i}

m- m 1 1 1
= @2 +20, (Tx)*" ' +(Tx)? { X _}

T2x* x Tx
° This is justified by the recurrence relation

— G)l
 (Tx)?

where  8,(m) = {Tx®m + 2(Tx)?

n ®m— m— @ m ®m_
(T + =2 {Tx0,1 + 2T | = —(Tx)" + —=6,(m - 1);

Q,, =
Tx (T x)? Tx

° ‘ 2lm = 0,|0,, ‘This is justified by the recurrence relation

0 . O
= (T;)4(Tx)2 - ﬁ{ﬁ@m_z + 2T

x (T (1= 2T%0) + (Tx0@, 5 + (Tx)" )}

O
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® O
- (T;)4(Tx)2 T )2301(m 2)65(m - 2);

where  0,(m) = {(Tx)*"" (1 - 2T2x) + (Tx0,, + (Tx)*")’}.

. ‘ 3im = 05|06, ‘This is justified by the recurrence relation

mﬂgwﬁw T
x {(Tx?" (1 = 2T2%x) + (Tx@,5 + (Tx)*" )’}
X {(Tx)zm l(1 —2T%x +2T%%* = 2T*%%)
2T X(Tx)* (TxO,s + (Tx)")
+(TxO,_3 + (Tx)*"" )4}

CF w0,
:(T);)S(Tx)2 (Tx )3761(’" 3)6,(m — 3)03(m — 3);

where  f5(m) = {(Tx)*"" (1 - 2T7x + 2T*x* - 2T*x°)
= 2T x(Tx)" (TxO,, + (Tx)”") + (Tx0,, + (Tx)™")*}.

(Tx0,, 3 + 2(Tx)”" }

2111+]

. ‘ 4m = 040, ‘This is justified by the recurrence relation

04

T+ s
where  O4m —4) = (Tx)?" (1 — 4T%x + 6T*x* — 2T*%°
—4TOx% + 4T%x* + 2T8x* — 4T8x° + 2T%x° - 2T%x7)
— AT (1 = X)N(Tx)* 2" (Tx®,, + (Tx)*")
+ 2743 — (T (TxO,, + (T
— AT X(Tx)*" (Tx®,, + (Tx)*")°
+ (Tx0,, + (Tx)*")*.

0, = 61(m — 4)0,(m — 4)03(m — 4)64(m — 4);

< 6, we have 0,|0,, when d|m. The
recurrence relation below provides a possible explanation for this phenomenon:

. ‘dlm = G)dl@m‘ Numerical experiments suggest that for m <

9, o
O = T (TW]ijd)

In fact, we have shown that

0,(m) = Tx®,, + 2(Tx)*",
0>(m) = (Tx®,, + (Tx)*") + (Tx)

21+m

(1-2T"%x),
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0 = (130, + (T — T
(- T -2,

In general, we can express
2m+k—]

Oc(m) = ¢p(m) + i (m) X (Tx)”
where the two sequences ¢, (m) and ¥ (m) are defined by
¢1(m) = Tx®,, + (T, Yi(m) = 1,
Beaalm) = B0m) — (T, Ve m) = vm) ~ <7
Then, we can construct recursively
61(m) = Tx®,, + 2(Tx)*",
6>(m) = (Tx@)m + (Tx)Z’”)2 + (T2 (1 - 2T2x),
03(m) = ((Tx@m +(T0”) - sz(Tx)z”"’)2
(T ((1 ST - 2T4x3),
04(m) = (((Tx@)m + (T = T2x(T 0" )2 - T“;ﬁ(h)zz*’”)2
(T (((1 -7 - T4x3)2 - 2T8x7),

2 2
05(m) = ((((Tx@m n (Tx)z"’)2 - T%C(Tx)z”"‘)2 - T4x3(Tx)2“”‘) _ T8x7(Tx)23*"’)

+ (T2 ((((1 -~ - T4x3)2 - T8x7)

2
_ 2T16x15)

2

2 2
B(m) = (((((Tx@m + (Tx)2m)2 — T2x(Tx)*™" )2 - T4x3(Tx)22+m) - T8x7(Tx)23*”’] - T‘f’x‘S(Tx)z“'”]

(e

2
6;(m) = [[((((Tx@m +(T0") =TT )2 - T4x3(Tx)zz+m) ey (Tx)23+m]
’ 2

2
I ] + (T [[((((1 - sz)2 _ T4x3)2 _ T8x7) _ Tléxls)

2
+(Tx)""

_ 2T32x31],

2 2
_ TIGXIS(TX)24+'"]

2
_ T32x31] _ 2T64x63].
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