This paper proposed a new iterative method for solving nonlinear monotone equations with convex constraint and its applications in sparse signal reconstruction and image de-blurring problems. The method can be viewed as an improved adaptation of the generalized Hager-Zhang conjugate gradient method for unconstrained optimization. Unlike the latter which only converged globally for strongly convex functions when the Hager-Zhang parameter $ \theta_k $ lies in the interval $ \left(\frac{1}{4}, +\infty\right) $, the new method exhibited this attribute for nonlinear monotone and Lipschitz continuous functions without restriction for $ \theta_k $ under a more relaxed condition. The derivative-free structure of the method made it suitable for both smooth and non-smooth problems. Numerical experiments on benchmark test problems demonstrated the method's superior performance compared to some state-of-the-art algorithms. Furthermore, the algorithm was successfully applied to sparse signal recovery and image de-blurring problems in compressed sensing, confirming its practical effectiveness.
Citation: Abubakar Sani Halilu, Mohamad A. Mohamed, Mohammed A. Saleh, Kabiru Ahmed, Abdulgader Z. Almaymuni, Mohammed Y. Waziri, Sulaiman M. Ibrahim, Badr Almutairi. Accelerated Hager-Zhang type projection scheme for monotone equations with applications[J]. AIMS Mathematics, 2025, 10(12): 28151-28181. doi: 10.3934/math.20251238
This paper proposed a new iterative method for solving nonlinear monotone equations with convex constraint and its applications in sparse signal reconstruction and image de-blurring problems. The method can be viewed as an improved adaptation of the generalized Hager-Zhang conjugate gradient method for unconstrained optimization. Unlike the latter which only converged globally for strongly convex functions when the Hager-Zhang parameter $ \theta_k $ lies in the interval $ \left(\frac{1}{4}, +\infty\right) $, the new method exhibited this attribute for nonlinear monotone and Lipschitz continuous functions without restriction for $ \theta_k $ under a more relaxed condition. The derivative-free structure of the method made it suitable for both smooth and non-smooth problems. Numerical experiments on benchmark test problems demonstrated the method's superior performance compared to some state-of-the-art algorithms. Furthermore, the algorithm was successfully applied to sparse signal recovery and image de-blurring problems in compressed sensing, confirming its practical effectiveness.
| [1] |
S. P. Dirkse, M. C. Ferris, A collection of nonlinear mixed complementarity problems, Optim. Method. Softw., 5 (1995), 319–345. http://doi.org/10.1080/10556789508805619 doi: 10.1080/10556789508805619
|
| [2] |
K. Meintjes, A. P. Morgan, A methodology for solving chemical equilibrium systems, Appl. Math. Comput., 22 (1987), 333–361. http://doi.org/10.1016/0096-3003(87)90076-2 doi: 10.1016/0096-3003(87)90076-2
|
| [3] |
J. K. Liu, S. J. Li, A projection method for convex constrained monotone nonlinear equations with applications, Comput. Math. Appl., 70 (2015), 2442–2453. http://doi.org/10.1016/0096-3003(87)90076-2 doi: 10.1016/0096-3003(87)90076-2
|
| [4] |
Y. Xiao, H. Zhu, A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing, J. Math. Anal. Appl., 405 (2013), 310–319. http://doi.org/10.1016/j.jmaa.2013.04.017 doi: 10.1016/j.jmaa.2013.04.017
|
| [5] |
A. S. Halilu, A. Majumder, M. Y. Waziri, A. M. Awwal, K. Ahmed, On solving double direction methods for convex constrained monotone nonlinear equations with image restoration, Comput. Appl. Math., 40 (2021), 239. http://doi.org/10.1007/s40314-021-01624-1 doi: 10.1007/s40314-021-01624-1
|
| [6] | J. Dennis, J. Mor$\acute{e}$, Quasi-Newton methods, motivation and theory, SIAM Rev., 19 (1977), 46–89. http://doi.org/10.1137/1019005 |
| [7] | C. Kelly, Iterative methods for optimization, Philadelphia: Siam, 1999. http://doi.org/10.1137/1.9781611970920 |
| [8] | M. V. Solodov, B. F. Svaiter, A globally convergent inexact Newton method for systems of monotone equations, In: Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Boston: Springer, 1998. http://doi.org/10.1007/978-1-4757-6388-1_18 |
| [9] |
W, Cheng, A PRP type method for systems of monotone equations, Math. Comput. Modell., 50 (2009), 15–20. http://doi.org/10.1016/j.mcm.2009.04.007 doi: 10.1016/j.mcm.2009.04.007
|
| [10] |
E. Polak, G. Ribi$\acute{e}$re, Note Sur la convergence de directions conjugèes, R.I.R.O., 3 (1969), 35–43. http://doi.org/10.1051/m2an/196903r100351 doi: 10.1051/m2an/196903r100351
|
| [11] |
B. T. Polyak, The conjugate gradient method in extreme problems, USSR Comput. Math. Math. Phys., 9 (1969), 94–112. http://doi.org/10.1016/0041-5553(69)90035-4 doi: 10.1016/0041-5553(69)90035-4
|
| [12] | G. Yu, A derivative-free method for solving large-scale nonlinear systems of equations, J. Ind. Manag. Optim., 6 (2010)149–160. http://doi.org/10.3934/jimo.2010.6.149 |
| [13] | L. Grippo, F. Lampariello, S. Lucidi, A nonmonotone linesearch technique for Newton's method. SIAM J. Numer. Anal., 23 (1986), 707–716. http://www.jstor.org/stable/2157617 |
| [14] | D. H. Li, M. Fukushima, A derivative-free linesearch and global convergence of Broyden-like method for nonlinear equations, Optim. Method. Softw., 13 (2000), 583–599. |
| [15] | Y. H. Dai, L. Z. Liao, New conjugacy conditions and related nonlinear conjugate gradient methods, Appl. Math. Optim., 43 (2001), 87–101. |
| [16] |
A. S. Halilu, A. Majumder, M. Y. Waziri, K. Ahmed, A. M. Awwal, Motion control of the two joint planar robotic manipulators through accelerated Dai-Liao method for solving system of nonlinear equatiions, Eng. Comput., 39 (2022), 1802–1840. http://doi.org/10.1108/EC-06-2021-0317 doi: 10.1108/EC-06-2021-0317
|
| [17] |
X. Z. Jiang, Z. F. Huang, An accelerated relaxed-inertial strategy based CGP algorithm with restart technique for constrained nonlinear pseudo-monotone equations to image de-blurring problems, J. Comput. Appl. Math., 447 (2024), 115887. http://doi.org/10.1016/j.cam.2024.115887 doi: 10.1016/j.cam.2024.115887
|
| [18] |
M. Y. Waziri, K. Ahmed, A. S. Halilu, Adaptive three-term family of conjugate residual methods for system of monotone nonlinear equations, Sao Paulo J. Math. Sci., 16 (2022), 957–996. http://doi.org/10.1007/s40863-022-00293-0 doi: 10.1007/s40863-022-00293-0
|
| [19] |
S. B. Salihu, A. S. Halilu, M. Abdullahi, K. Ahmed, P. Mehta, S. Murtala, An improved spectral conjugate gradient projection method for monotone nonlinear equations with application, J. Appl. Math. Comput., 70 (2024), 3879–3915. http://doi.org/10.1007/s12190-024-02121-4 doi: 10.1007/s12190-024-02121-4
|
| [20] | J. H. Yin, Q. Huang, J. Jian, D. Han, An inertial-relaxed three-term conjugate gradient projection method for large-scale unconstrained nonlinear pseudo-monotone equations with applications, J. Comput. Math., 2025. http://doi.org/10.4208/jcm.2503-m2024-0175 |
| [21] |
K. Ahmed, M. Y. Waziri, A. S. Halilu, S. Murtala, Descent four-term Dai-Liao type scheme for constrained monotone equations and image de-blurring, Int. J. Comput. Appl. Math., 11 (2025), 223. https://doi.org/10.1007/s40819-025-02039-w doi: 10.1007/s40819-025-02039-w
|
| [22] |
W. W. Hager, H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM J. Optim., 16 (2005), 170–192. http://doi.org/10.1137/030601880 doi: 10.1137/030601880
|
| [23] | W. W. Hager, H. Zhang, A survey of nonlinear conjugate gradient methods, Pac. J. Optim., 2 (2006), 35–58. |
| [24] |
M. Y. Waziri, K. Ahmed, J. Sabi'u, A family of Hager-Zhang conjugate gradient methods for system of monotone nonlinear equations, Appl. Math. Comput., 361 (2019), 645–660. http://doi.org/10.1016/j.amc.2019.06.012 doi: 10.1016/j.amc.2019.06.012
|
| [25] |
J. Sabi'u, A. Shah, M. Y. Waziri, K. Ahmed, Modified Hager-Zhang conjugate gradient methods via singular value analysis for solving monotone nonlinear equations with convex constraint, Int. J. Comput. Meth., 18 (2020), 04. http://doi.org/10.1142/S0219876220500437 doi: 10.1142/S0219876220500437
|
| [26] |
M. Y. Waziri, K. Ahmed, A. S. Halilu, J. Sabi'u, Two new Hager-Zhang iterative schemes with improved parameter choices for monotone nonlinear systems and their applications in compressed sensing, Rairo Oper. Res., 56 (2022), 239–273. http://doi.org/10.1051/ro/2021190 doi: 10.1051/ro/2021190
|
| [27] | K. Ahmed, M. Y. Waziri, A. S. Halilu, S. Murtala, Sparse signal reconstruction via Hager-Zhang-type schemes for constrained system of nonlinear equations. Optimization, 73 (2023), 1949–1980. http://doi.org/10.1080/02331934.2023.2187255 |
| [28] |
K. Ahmed, M. Y. Waziri, A. S. Halilu, S. Murtala, H. Abdullahi, Signal and image reconstruction with a double parameter Hager-Zhang-type conjugate gradient method for system of nonlinear equations, Numer. Linear Algebra Appl., 32 (2025), e2583. http://doi.org/10.1002/nla.2583 doi: 10.1002/nla.2583
|
| [29] |
C. G. Broyden, The convergence of a class double-rank minimization algorithms, J. Inst. Math. Appl., 6 (1970), 76–90. http://doi.org/10.1093/imamat/6.1.76 doi: 10.1093/imamat/6.1.76
|
| [30] |
R. Fletcher, A new approach to variable metric algorithms, Comput. J., 13 (1970), 317–322. http://doi.org/10.1093/comjnl/13.3.317 doi: 10.1093/comjnl/13.3.317
|
| [31] |
D. Goldfarb, A family of variable metric methods derived by variation mean, Math. Comput., 23 (1970), 23–26. http://doi.org/10.2307/2004873 doi: 10.2307/2004873
|
| [32] |
D. F. Shanno, Conditioning of quasi-Newton methods for function minimization, Math. Comput., 24 (1970), 647–656. http://doi.org/10.2307/2004840 doi: 10.2307/2004840
|
| [33] | A. Liao, Modifying BFGS method, Oper. Res. Lett., 20 (1997), 171–177. http://doi.org/10.1016/S0167-6377(96)00050-8 |
| [34] |
N. Andrei, A double parameter scaled BFGS method for unconstrained optimization, J. Comput. Appl. Math., 332 (2018), 26–44. http://doi.org/10.1016/j.cam.2017.10.009 doi: 10.1016/j.cam.2017.10.009
|
| [35] |
S. Babaie-Kafaki, Z. Aminifard, Two parameter scaled memoryless BFGS methods with a nonmonotone choice for the initial step length, Numer. Algor., 82 (2019), 1345–1357. http://doi.org/10.1007/s11075-019-00658-1 doi: 10.1007/s11075-019-00658-1
|
| [36] |
N. Andrei, A double-parameter scaling Broyden–Fletcher–Goldfarb–Shanno method based on minimizing the measure function of Byrd and Nocedal for Unconstrained Optimization, J. Optim. Theory Appl., 178 (2018), 191–218. http://doi.org/10.1007/s10957-018-1288-3 doi: 10.1007/s10957-018-1288-3
|
| [37] |
R. Byrd, J. Nocedal, A tool for the analysis of quasi-Newton methods with application to unconstrained minimization, SIAM J. Numer. Anal., 26 (1989), 727–739. http://doi.org/10.1137/0726042 doi: 10.1137/0726042
|
| [38] |
S. Babai-Kafaki, On the sufficient descent condition of the Hager-Zhang conjugate gradient methods, 40R-Q. J. Oper. Res., 12 (2014), 285–292. http://doi.org/10.1007/s10288-014-0255-6 doi: 10.1007/s10288-014-0255-6
|
| [39] |
J. Sabi'u, A. Shah, M. Y. Waziri, Two optimal Hager-Zhang conjugate gradient methods for solving monotone nonlinear equations, Appl. Numer. Math., 153 (2020), 217–233. http://doi.org/10.1016/j.apnum.2020.02.017 doi: 10.1016/j.apnum.2020.02.017
|
| [40] |
J. Sabi'u, A. Shah, M. Y. Waziri, A modified Hager-Zhang conjugate gradient method with optimal choices for solving monotone nonlinear equations, Int. J. Comput. Math., 99 (2021), 332–352. http://doi.org/10.1080/00207160.2021.1910814 doi: 10.1080/00207160.2021.1910814
|
| [41] |
R. H. Byrd, J. Nocedal, A tool for the analysis of quasi-Newton methods with application to unconstrained minimization, SIAM J. Numer. Anal., 26 (1989), 727–739. http://doi.org/10.1137/0726042 doi: 10.1137/0726042
|
| [42] |
P. Gao, W. Zheng, T. Wang, Y. Li, F. Li, Signal recovery with constrained monotone nonlinear equations, J. Appl. Anal. Comput., 13 (2023), 2006–2025. http://doi.org/10.11948/20220335 doi: 10.11948/20220335
|
| [43] | L. Pengjie, A three-term derivative-free projection method with BFGS-like update and its accelerated variant, Optimization, 2025, 1–35. http://doi.org/10.1080/02331934.2025.2526727 |
| [44] |
W. La Cruz, A Spectral algorithm for large-scale systems of nonlinear monotone equations, Numer. Algor., 76 (2017), 1109–1130. http://doi.org/10.1007/s11075-017-0299-8 doi: 10.1007/s11075-017-0299-8
|
| [45] |
E. D. Dolan, J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), 201–213. http://doi.org/10.1007/s101070100263 doi: 10.1007/s101070100263
|
| [46] | M. R. Banham, A. K. Katsaggelos, Digital image restoration, IEEE Signal Process, Mag., 14 (1997), 24–41. http://doi.org/10.1109/79.581363 |
| [47] |
C. L. Chan, A. K. Katsaggelos, A. V. Sahakian, Image sequence filtering in quantum-limited noise with applications to low-dose fluoroscopy, IEEE Trans. Med. Imaging, 12 (1993), 610–621. http://doi.org/10.1109/42.241890 doi: 10.1109/42.241890
|
| [48] | C. H. Slump, Real-time image restoration in diagnostic X-ray imaging, the effects on quantum noise, 11th IAPR International Conference on Pattern Recognition, 1992,693–696. http://doi.org/10.1109/ICPR.1992.201871 |
| [49] |
T. Elaine, Y. Wotao, Z. Yin, A fixed-point continuation method for $\ell_1-$regularized minimization with applications to compressed sensing, SIAM J. Optim., 19 (2008), 1107–1130. http://doi.org/10.1137/070698920 doi: 10.1137/070698920
|
| [50] |
J. S. Pang, Inexact Newton methods for the nonlinear complementarity problem, Math. Program., 36 (1986), 54–71. http://doi.org/10.1007/BF02591989 doi: 10.1007/BF02591989
|
| [51] |
A. T. Mario, R. Figueiredo, D. Nowak, An EM algorithm for wavelet-based image restoration, IEEE Trans. Image Process., 12 (2003), 906–916. http://doi.org/10.1109/TIP.2003.814255 doi: 10.1109/TIP.2003.814255
|
| [52] |
M. Figueiredo, R. Nowak, S. J. Wright, Gradient projection for sparse reconstruction, application to compressed sensing and other inverse problems, IEEE J-STSP, 1 (2007), 586–597. http://doi.org/10.1109/JSTSP.2007.910281 doi: 10.1109/JSTSP.2007.910281
|
| [53] |
Y. Xiao, Q. Wang, Q. Hu, Non-smooth equations based method for $\ell_1-norm$ problems with applications to compressed sensing, Nonlinear Anal. Theory Methods Appl., 74 (2011), 3570–3577. http://doi.org/10.1016/j.na.2011.02.040 doi: 10.1016/j.na.2011.02.040
|