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1. Introduction

System of nonlinear monotone equations is a concept that researchers have paid much interest in
over the past decades. This is mostly due to its importance in real life applications. The general form
of the concept is formulated as

F(a)=0, aeR", (1.1)

with the vector-valued mapping F assumed to be continuous and monotone. The monotonicity
assumption means F satisfies

(F(a) - F(b))" (a—b) >0, Ya,beR". (1.2)

In this paper, the solution of (1.1) a resides within a nonempty closed convex set 8 C R". This
constrained form frequently appears in real-life problems such as economic and chemical equilibrium
systems in [1,2]. It is also essential in compressed sensing [3-5].

The most preferred iterative schemes designed to handle (1.1) and the variant described above, are
the Newton’s scheme and its improved variant, the quasi-Newton method [6, 7], due to their fast
convergence attribute, especially when the initial guess is in a neighborhood of the solution. These
methods are, however, computationally expensive to implement since they require obtaining the
Jacobian or its approximation and their inverses at every iteration. The projection method designed
in [8] by Solodov and Svaiter, by virtue of its global convergence attribute, and adaptations of the
conjugate gradient (CG) schemes for large-scale problems, which require low memory to implement,
have been combined to solve (1.1) and its constrained version. In [9], Cheng combined a modified
Polak-Ribi ‘ere-Polyak (PRP) CG method [10, 11] with the hyperplane scheme [8] and proposed an
effective algorithm to solve (1.1). Without differentiability requirement, and by employing basic
conditions, the method is proven to converge globally. An improved variant of the PRP
method [10, 11] was later developed by Yu in [12], where it is implemented with the strategy
developed by Grippo et al. and Li and Fukushima [13, 14]. Based on a modified version of the
Dai-Liao (DL) CG method [15], Halilu et al. [16] proposed a DL-type algorithm for the constrained
version of (1.1) with its application to motion control. In an attempt to improve numerical efficiency
of CG-type methods, Jiang and Huang [17] proposed a CG projection scheme with a restart strategy
for constrained nonlinear monotone equations. The authors proved global convergence of the method
and applied it to image de-blurring problems. By employing an adaptive CG and quasi-Newton search
directions, as well as the strategy used in [18], Salihu et al. [19] proposed a spectral CG projection
method for solving monotone nonlinear equations with signal processing application. The authors
proved global convergence of the scheme under mild conditions. Based on a three-term search
direction and an inertial strategy, Yin et al. [20] also proposed a CG projection method for solving
constrained form of (1.1) with some real-life applications. In a recent development, Ahmed et al. [21]
proposed a four-term adaptation of the DL method for solving the constrained form of (1.1). The
authors proved global convergence of the scheme under some mild assumptions.

In the last decade, the Hager-Zhang (HZ) CG technique [22, 23] has been adopted to address the
problem outlined in Eq (1.1) and its constrained variant. Typically, search direction of the HZ method
is defined as

dy = —Fy +,8kHde_1, Fr=F(a), k=1,2,.., (1.3)
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where

az  Five i1 IPF{ di-y

T dl e ¢ (d]_yi-1)?
with 6, being a nonnegative parameter, y;_; = F; — Fy_1, and Fy_; = F(ay-). To apply the HZ method
to solve (1.1) and its constrained variant, researchers derive appropriate values for 6; in (1.4) and
combine the search direction (1.3) with the projection approach developed in [8]. For example, Xiao
and Zhu introduced a modified HZ-type projection method to solve (1.1) with convex constraints in
their work [4] by employing (1.3), where 6, in (1.4) is chosen to be 2. The algorithm obtained exhibits
global convergence and is particularly relevant in the context of compressed sensing. In the same vein,
Liu and Li [3] combined a modified version of the search direction presented in [4] with the technique
described in [8] to present another HZ-type scheme for solving (1.1) with convex constraints. A key
feature of this system, which makes it suitable for handling non-smooth functions, is its derivative-free
and low-memory architecture. The authors have successfully applied this approach in compressive
sensing to recover corrupted data.

By deriving two effective choices for the HZ parameter 6, in (1.4), Waziri et al. [24] combined a
modified version of the search direction (1.3) with the projection method [8] to propose a family of
HZ-type methods for solving (1.1). The authors proved global convergence of the methods by applying
some mild assumptions. Building on the work in [24], Sabi’u et al. [25] provided two new estimates
for the HZ parameter in [23], leading to the creation of further HZ-type methods. Inspired by [25],
Waziri et al. [26] further proposed two additional HZ-type methods for solving the constrained version
of (1.1) with compressed sensing applications.

As presented in (1.4) and in the classical HZ update [23], the parameter 6 is nonnegative, namely, it
lies in the interval [0, +00). However, the sufficient descent condition necessary for global convergence
of the method only holds for 6, € (%, +00). This is true for all the HZ-type schemes discussed above.
In an attempt to further study the HZ scheme, Ahmed et. al [27] proposed two HZ-type methods with
strict conditions that ensure convergence when 6; is in the interval (0, i). Recently, Ahmed et al. [28]
proposed a double parameter HZ-type method for solving the constrained form of (1.1). The authors
obtained an appropriate value for the HZ parameter 6, that ensured clustering of the scheme’s search
direction matrix. The method converged globally and was applied to solve signal and image recovery
problems. As a contribution, by relaxing one of the conditions applied in [27], a numerically efficient
HZ-type projection scheme is proposed in this paper for the constrained form of (1.1), where the HZ
parameter lies in the interval (0, +00). The scheme’s efficiency is further demonstrated by applying it
to solve problems in compressed sensing.

The article is structured as follows: Section 2 outlines some preliminary steps necessary for
generating the new scheme. Algorithm of the proposed method and its global convergence are
presented in Section 3. The numerical results of the scheme are reported in Section 4. Section 5
explains how the proposed method is applied to compressive sensing problems, demonstrating its
efficacy. Finally, Section 6 provides concluding remarks.

, (1.4)

2. Preliminaries

Here, we first recall the popular unconstrained optimization problem defined by

min f(a), (2.1)

acR”
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where f in (2.1) denotes a nonlinear function whose gradient V f(a;) = g(ay) is obtainable.

Various iterative schemes for solving (2.1) with double parameters have been developed in the
literature. For example, modifications have been made to the popular quasi-Newton update by Broyden
[29], Fletcher [30], Goldfarb [31], and Shanno [32], the (BFGS) scheme, specifically,

By = Bi1 — , (2.2)
Si_1Br-15k-1 St V-1
where By 1s a symmetric matrix, Sy_; = a; — dy—1, and yr_; = g(ax) — g(ax-1)-
Liao [33], proposed a two parameter modified BFGS scheme with update given by
_ Biasiasi_ Biei _ VeV
By =B - ———— =t (2.3)
Sy 1 Br-15k-1 81 V-1

The parameters o and 7y, are introduced in the second and final terms of (2.2) to enhance the
correction of the eigenvalues of the direction matrix used in the method. Numerical experiments
involving over 80 benchmark test problems of various structures and complexities demonstrated a
significant improvement of (2.3) compared to the classical BFGS scheme. Additionally, Andrei [34]
proposed a double parameter BFGS scheme, with the update for the approximation of the Hessian
matrix specified by

By = 0y | Bioy —

Bk_lsk-lskT_lBk—l] = Ve (2.4)

¢ SZ_ 1Vk=1 .

In (2.4) above, o and 7, represent positive parameters. Recently, Babaie-Kafaki [35] introduced a
two-parameter BFGS scheme, which serves as an extension of the one proposed in [33]. The update of
the scheme is given by

T
Si_ 1 Br1Sk-1

_sbo£4+ybwﬁ4+(l+?|wbm2)&4%q 25)

Hk = TkI — Tk T kT T .
Sp_1Yk-1 S 1Vik=1) 81 Vi1

where, T, and 7, represent two positive parameters. The author established that the necessary condition
for the global convergence of the method is fulfilled. Specifically,
gidi < —YllgillP, Vk=0, ¢ >0.

Furthermore, the author demonstrated that the condition number related to the search direction matrix
of the scheme remains in a more favorable condition. A modified version of (2.5) was proposed in [36],
namely,

1 Hicyic iy + Sy Hier | @ + y’z‘lHk_lyk_l) s l (2.6)

Hy = 5 Hyy = o7 5 o7 7
k k—1Yk-1 Yk k-1 Yk-1 k1 Yk-1

where 6, and Y, are parameters determined by employing Byrd and Nocedal’s measure function in [37].
To enhance the numerical implementation of the classical one-parameter HZ scheme [23], Babaie-
Kafaki [38] proposed a variant that scales the second and third terms in the search direction of the

method, namely,
di = —gi + YBidi-1, (2.7)
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where

g = gyt IDiilPgidiy
_ _g, ’
e (d_ye-1)?

with v € [0, 1]. Based on (2.7) and (2.8), the direction of the scheme can be rewritten as follows:

> 1, (2.8)

dr = —Ggr»
where , ) ,
VS | YOl sk s
St_1Vk-1 (51_ 1 Ve-1)?

It has been established in [38] that for values of 6 satisfying the condition 6, > 6 > }t, the new HZ
scheme presented in (2.7) fulfills the necessary criteria below

Gr=1

dlg. < —(1 - ﬁ) lgell?, Yk > 1.

3. New modified HZ-type scheme

In the first section, it was highlighted that several modified HZ-type schemes are available for
addressing problem (1.1) as well as its constrained variant. Also, each scheme involves a different
approximation of the HZ parameter 6;, which has been shown to satisfy the inequality

df Fr < —yl|Fill, 3.1)

with

1 _ 1
=(1-—], 6,=6>-.
l// ( 40](), k = >4

These include the schemes proposed by Waziri et al. [24], where the authors obtained the following
values of 6

(S{_1Yk-1)* (s zee1)? 1
0 = - o a0 a0 0 = - T T > R S 0’
b= s T Y s ¢ wY
where
max{ﬁ _1,0} A
Ziet = Yoot 2y, By = 6(fior — fi) + 35T (Fit + Fo), £ > 0. (3.2)

The authors have shown that both algorithms converged globally for the given values of 6;, which

are clearly greater than i. Also, Sabi’u et al. [39] presented two HZ-type approaches and their

parameters choices are given as

. (s{_9r1)? . _ =1l D=1l
“ skt |PI-111” 2 S/T_lj\)k—] ’
where R
A max{th_r, 0}
Vet = Y1 +p—7—Sk-1, p €10, 1], (3.3)
Sk—15k-1
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with 191(—1 as defined in (3.2). The authors in [39] also presented adaptive versions of the HZ CG method
in [25] for (1.1) with convex constraint with new choices for the parameter 6;, namely,

2

sT i
$3:1+AJ1+(—liﬁ}LJ,
skt ll1[Fx-1l

A T & 2 A
_ st PIScal? \/ G P sl

Ors = -
(s Jr-1)? k11191117 (s{_ k-1)*

and

b

where y;_; is as defined by (3.3) and 94, as defined in (3.2). Only recently, Sabi’u et al. [40] developed
two additional adaptive versions of the HZ schemes with their parameters defined as
(S;Z_lf’k—l)z S;{_lf’k—l . S]{_1)A7k—1

6= T A
”Sk—lllllyk—lll’

o —_—

k5 — N -~ k
||Sk—1||2||yk—1||2 ”Sk—lllllyk—lll’

where y,_; and 191(_1 remain as defined in (3.3) and (3.2), respectively. As a result, the authors
demonstrate that the schemes converge globally in all illustrations explained above and satisfy the
inequality (3.1) for 6 = 6 € (i, +00). Recently, Ahmed et. al [27] proposed the following HZ-type
search direction:

dy = —Fy +,8kSk_1, F, = F(Clk), k=1,2,..,

where , -
Fy Vi1 V117 F Si-1
k k
Be=— Yo~ r>1
St 1Yk-1 (S 1 Fx-1)
and ; ,
81 Vk-1 F sk
- - k=1 5 k
Vk-1 = Y1 + Pr-1Sk-1, Pr-1 = 1 + max {0, - 5 }, Vi-1 = Y1 + ¢ Sk—15
51l 51l
with ¢ > 0 and s;-; = a; — a;—;. The authors proved that the scheme converges globally under the
monotonicity and strong Lipschitz assumptions when 6; = 6 > - and y > 1. Under these two

_ 4y
conditions, the inequality (3.1) holds for 8, = 6 € (0,+00). Moreover, the authors obtained the
following choices of the parameter 6, for which the aforemention condition holds.

— V4
0,y = max{#;., &}, =—, ZeZ >1
k1 { k1 £}, €1 47 <
and ~
- " Z _
O, = max{sz,sz}, &y = E’ Z € 7zt > 1.

In light of the discussion presented in Section 2 and influenced by (2.5), (2.6), and the work in [27],
we proceed to derive a new version of the HZ scheme and prove it converges globally and satisfies the
inequality (3.1) for 6; = § € (0, +c0) under the condition that y € ( }‘, 2). The scheme’s search direction
is given by

OcF | Sy Vet IPF} st
dy = =0 Fi + Tk—_sk—l - ’yngszsk—l’ do = —F, (3.4)
i1 Vi1 (S 1 Fx-1)

AIMS Mathematics Volume 10, Issue 12, 28151-28181.



28157

where
Vie1 = Yke1 + SSk=1, Vi1 = F(Hhey) — Fag-1), -1 = ax-1 + Opm1di—y, 6> 0, (3.5)

and Sk—1 = 19](_1 — dj-1-

From (3.5), and by monotonicity of F, we have
St V-1 = Si_ V-1 + Sllsictl? = llsical® > 0, ¢ > 0. (3.6)
Hence, (3.4) is well-defined.
Lemma 3.1. The sequence {d;} defined by (3.4) satisfies the inequality
d{ Fy < —ylIFilP, 6 =0€(0,00), k1, (3.7)
where Y = 6_?(1 — %),y € (i,Z).
Proof. It is interesting that the search direction in (3.4) can be rewritten as
dy = —MFy, Vk>1,
where M, is the scheme’s iteration matrix, which means

Ocsi-1V_, YOVl si-1s]),

T

Mk = 9](] - — —
i1 Vi1 (5¢_Jk-1)?

(3.8)

It is clear that the matrix M, is not symmetric and not positive definite. We can get a symmetric
version of (3.8) by

— 1
M = E[MkT + My],

or more precisely, as

— Ocsiai¥i_y, 0Tk, YOk lP sk-r 5
My =00 - —— - —— &1y — . (3.9)
25 Vet 28, Vi1 (S 1 Vk-1)

So, in compact form, the revised search direction becomes
dy = —-MFy, Vk>1. (3.10)
Now, considering (3.10), we can write
dlFy = —FIMF;, Vk>1. (3.11)

Next, we analyze eigenvalues of the matrix Mk and their structure. Since from (3.6) s,{_])‘)k_l > 0,
hence, s;_; # 0 and y,_; # 0. Now let’s look at two possibilities:

(1). sk—1 #f ¥r—1. This indicates the existence of a set of vectors, say {02-1};:12 C S+ for which

st Uk =V U, =0, i=1,.,n-2, (3.12)
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where S* denotes the orthogonal complement of the space S c R” spanned by the vectors s;_; and
Vk-1. In addition to (3.12), we get

—_— —T . .
1 1 i .
Mkvk_l = Mk Uk_] = kak—l’ 1= 1’ ey 1 — 2’

which implies that for i = 1,...,n — 2, the vectors v;_, are eigenvectors of M, corresponding to the
eigenvalue 6;. We then look for the two remaining eigenvalues of M, which we label as y; and y; .
Now, from (3.9), trace of M} can be obtained as

VOMTe—t Pl 5511
(81_ 1 Jk-1)?

=0k + ... + O +x1 + Xz
~————

tl‘(ﬂk) =no;, — 0, +

(n-2) times

which ultimately yields
YONFi1 115511

P X =0t 3.13
Ak AT (Sh_ 1 Ji-1)? G139
Additionally, by applying the Frobenius norm’s properties and setting Ay = %, we have
— — T —
1Ml = tr(M, My)
3 6*A2
= né} — 59% +— L Y0
=60+ ..+ O xS
———
(n-2) times
which subsequently yields
O ONE | 2
XX = 2t YA (3.14)
Also, from (3.13) and (3.14), we get
62 6> A2
XiXi = Zk + YO0 A — k4 £, (3.15)

Now, from (3.13) and (3.15), we deduce that y; and x, are just solutions to the polynomial equation

6> 6>\
X - (9k + ngAl%)X + Zk + YOAL — k4 £ =

0,

which can be obtained in more precise form as

1
Xi=3 [ek YN £ \PERAL+ (1 - 296N,

or by following some simplification as

L1
X = 5 [0+ Y0 £ 0= Byh2 + G2 - 23 (3.16)
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From (3.16) and the Cauchy Schwarz inequality, it is clear that y;7 > 0. Also, to establish that
X; > 0, the following function can be defined:

1
GOn) = 5 |6+ ¥ = nB Ny 0P + (1= 2y)].

Now, it is worth noting that G(Ay) = x; and G(n) is a strictly decreasing function on [1, +00) for
0 € (0,400) and y # % Additionally, since y € (ﬁ, 2), taking limits as 7 approaches infinity of G(7)
yields

o Ok 1
lim G() = 6, — — = 6, (1 - —] > 0.
X > lim Gp) = 6= 7 k( 4y)>

Moreover, if y = 5, we have

1
2 b
6, 6, 1

% g % g1 2)>o0.
Me=5 =07y k( 47)>

(i1). Sg—1 || ¥x—1. According to this possibility, there exists a nonzero constant 7 for which y,_; = 75;_;.
Applying this in (3.8) or (3.9) leads to

T T
eksk—lsk_l 79k5k—1Sk_1

M, =M, =6,I -
||Sk—1||2 ||Sk—1||2

Since s;_; # 0, as previously mentioned, there is a set of mutually orthogonal vectors {v;;_l};?:‘ll cSt

for which
T ; )
S Vi =0, Ny ll=1, i=1,.,n-1,

which consequently leads to
M, =6w,_,, i=1,..,n-1.

This indicates that the eigenvalue of M, is 6, with a multiplicity of n — 1. The set of eigenvectors

associated with M, is represented by {v};_1 }?:‘11. Furthermore,

T T
Ok Sk-15,_, YOk Sk-15;_,

Sg-1 + Si—1 = (YOk) Sk-1
||Sk—1||2 ||Sk—1||2 ’

Misi—1 = OrSk—1 —

which also indicates that s;_; is the eigenvector of M, and i, is the corresponding eigenvalue, namely,

Xk = Y.

Given that 6, > O and y € (31, 2) are parameters, it can be demonstrated that
_ 1
Xk = gk’)/ > Hk(l - —) >0, Vk.
4y

Additionally, if y, is the least eigenvalue of M, then using the two options previously examined,
we can get

1
Xs ng(l - —) > 0.
4y
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Consequently, the aforementioned analysis demonstrates that M, is positive-definite. Therefore,
utilizing (3.11), and for 6; = 4 € (0, +0), we get

_ _ 1
d{ Fy = —F[MF; < —x,|IFil* < —9(1 - E) |4l

On the other hand, if we set A, = s,{_l)‘/k_l , then by direct calculation, we have

OcF] Jii 1Fk-1lP(F s¢-1)?

T _ 2 T
dp Fro = —OlIFill” + AL Fy si-1 — v6k A
3 OcF Ly 1 Ak F T 55—t — O FRl? = YOl Tt P (F L si-1)?
A? )
By setting v = A"—\/‘/%F", V2 = A[2y0c(F} si-1)Jx-1 and using the identity

1
T 2 2
viva < Sl + vl

we obtain

OAZ||Fe?

. e YOF-1 P (F} s5-1)* = OANFlI* — yOllFiar [P (F{ si-1)?

A

2
=4wnW+ZWﬂW
Y
— _g[1 = L) yFar
- k 4')’ kIl -

Therefore, if 6, = 6 € (0, +o0) for each k > 1 with y € (‘—1‘, 2), the proposed method satisfies (3.1).
Hence, letting ¢ = 6, (1 - %), we have

dl Fy < YlIF:P, (3.17)

which completes the proof. O

Following earlier research in [24,25,39], we go on to determine the proper value for the parameter 6;
of the modified HZ scheme. In order to do this, we employ the concept for analyzing the convergence
of quasi-Newton schemes that Byrd and Nocedal [41] developed. The authors in [41] suggested the
following measure function defined on any positive definite matrix:

O(H) = tr(H) — In(det(H)),

where, H denotes a positive-definite matrix with exclusively positive real eigenvalues, namely, y; >
X2 = ... = x» > 0. Additionally, tr(H) signifies the trace of H, while In(det(H)) indicates the natural
logarithm of the determinant of the matrix H. The authors observed that the function ®(H) quantifies
the proximity of H to an identity matrix, with ®(/) = n. Furthermore, the authors demonstrated that
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the matrix H is ill-conditioned when ®(H) is substantial. Consequently, the parameter 6, may be
determined as the minimizer of the function ®(M,).
Using some algebraic simplifications from (3.13) and (3.15), we have

2(s4_ k1)
(5T Tkt + VP lPllse 112

0 = arg min O(M,) = (3.18)

Prior to outlining the new scheme’s algorithmic steps, we first go over the projection operator Pgla],
which is expressed as
Pgla] = arg min|la — b|| : b € B, Ya e R".

Also, Pgl[.] is nonexpansive, namely,
IPs(a) — PgD)Il < lla —bll, VYa,beR",
and
[|[Pg(a) —Db|| < |la—bll, VbeB. (3.19)
We now introduce the new scheme’s algorithm as follows:

Algorithm 1 New Hager-Zhang Iterative Scheme (NHZIS)

Step O: Initialization. Select an initial guess ay € 8, tolerance £ > 0, parameters ¢ > 0, y € (%,2),
Be0,1),¢e€(0,2),0€(0,1),u>0.Setk =0andd, =—F).

Step 1: Calculate F(a;) and stop the process if ||F(ay)|| < &, otherwise, proceed to Step 2.

Step 2: Compute ¢, = a; + ody, where o, = max{8p* : ¢t =0, 1,2, ...}, such that

— F(90) di > polldil?, (3.20)

is satisfied.
Step 3: If [|[F(¢)|| < € stop, else set

1 = P |a — b F (90, (3.21)

where
_ F@) (ax = %)

= (3.22)
T TTIF@IP
Step 4: Generate direction d;, by (3.4) with 6, given by (3.18).
Step 5: Set k = k + 1 and proceed to Step 1.
4. Analysis of the scheme’s global convergence
In order to proceed with the analysis, we require the following assumptions:
(i). There exists a € B for which F(a) = 0.
(ii). The mapping F is Lipschitz continuous, namely, for 0 < L < oo, the following is satisfied:
|F(a) — F(b)|| < Llla - b||, VYa,beR". 4.1)
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Lemma 4.1. Suppose Assumption (i) holds. Then, Yk > 0, there exists a positive constant o such that
(3.20) is satisfied.

Proof. Assume, by contradiction, that there is a constant k, for which (3.20) does not hold for every
integer i > 0, specifically,
_F(ak() +ﬁpldk())Tdko < ﬂIBpl”dkOHZ

Making use of Assumption (i) and allowing the integer i to increase to infinity, i.e., i — oo, results
in

— F(a,) dy, < 0. 4.2)

From (3.17), we obtain
— Fla,)" dy, > YIIF (ag,)II” > 0. (4.3)
A contradiction is obtained when taking into account (4.2) and (4.3), establishing the proof. O

Lemma 4.2. Given that Assumptions (i) and (ii) hold, let a be an arbitrary solution of (1.1) in B. Then
the sequences {a;} and {9y} in Algorithm 1 are bounded and

lim fla, — 94 = 0. (4.4)

lim [lag.1 — il = 0.
k—o0

Proof. Now, we try to show that {a;} and {¢} are bounded. Suppose a € B denotes the solution of
(1.1). From (1.2), we get
(ax — @) F(Dy) = (ax — 90)" F(B).

From (3.20) and definition of 9, we get
(ax — )" F(S) > poplldil. (4.5)
Using (3.19) and (3.21), we obtain

laxs1 — all* = IPg(ax — por F () — all*
< llaw — doiF(9) — all?
— —2
= llay — all* = 20 F ()" (ar — @) + ¢ @il F ()|

o —F@) (ax — D) o (F(&)T(w - ﬂk))2
=la, — all* =2 FW) (a, —
o= al =20 Fegge T O A DT R “o)
o —F@) (ax — ) - (F(ﬂk)T<ak - ﬂk>)2
—alf-2 FWO) (a, — 9
< Nl =l = 26— e S F (00" (@ = ) + IF@
S = — (FO (ay - ﬂ@)z
= la, — all* — #(2 —
lla — all* — & ¢>( F o
< llax — al*,
which reduces to
lae — all < llax —all, Yk > 0. 4.7)
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Recursively, (4.7) indicates that |la; — al| < |lap — al|, Vk. Hence, {||la; — a||} denotes a decreasing
sequence, which is ultimately bounded. As a result, {a;} is also bounded. From Assumption (i), (4.1)
and (4.7), we get

IF(apll = IF(ax) — F(a)ll < Lllax — all < Lllao — all.

This implies that the sequence {F(a;)} is bounded by letting u = L||xy — @||, namely,
IF (anll < u. (4.8)
By definition of ¥ in step 2, (4.5), (1.2), and the Cauchy Schwarz inequality, we obtain

wllordil? < F@)" (ax — %) < F(a)" (ax — %)
lar — Ol —  llax =l = llax — Il

pllax = F¢ll = < IF(anll. (4.9)

Also, from boundedness of {a;}, (4.8) and (4.9), we see that {1};} is also bounded. Similarly, the
boundedness of {};}, for any solution a € B, implies that {|[¢} — al|} is bounded, namely,

% —all <v, v>0.
Moreover, from (4.1), we get
IF@oll = [IF(3) — F(a)ll < Lldx — all < Lv. (4.10)
Setting w = Lv, we obtain boundedness of {F(#;)}. Now, from (4.6), we have

- — [FI)T (a;, — 9)]?
llags, + (_1”2 < |lay + Zz||2 — 92 - ¢)[ ()" (ax ]

AR
_ - — Sl = Kt
< lla; + all* = Q2 — Pt ——-,
¢ PE = O F@oP
or 5
_ F@©O
32 - Pl — el < O 0~ 1P~ g — alP). @.11)
12
Furthermore, from (4.10) and (4.11) we obtain
_ & wz 0 W2
d2-¢) > lar—Kll' < = > (lax — al* = llags1 — all®) < —llao — all* < oo. (4.12)
W w2
k=0 k=0

Based on (4.12) and the convergent series property, we get
klim lla, — ]| = 0.
Then, by (3.19), (3.22) and the Cauchy Schwarz inequality, we get

llaxs1r — arll = I1Pelar — @i F (%)) — axll
< llax — e F (1) — arll
= |l F (@l
< llax — Fill-

(4.13)
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Therefore, we obtain the following by taking the limit of both sides of (4.13):
kli_{rolo llags1 — all = 0.
Furthermore, from (4.4) and the knowledge that ¥, = od), we get
kli_)rrgo olldill = 0. (4.14)
]

Theorem 4.3. Let Assumptions (i) and (ii) hold. Consider the sequences {a;} and {0} generated by
Algorithm 1. Then

lilfr_l)iorolfllF(ak)ll =0. (4.15)
Proof. The proof is by contradiction. If (4.15) is not true, then there exists v; > 0 such that
IFll = vi, Yk =0. (4.16)
Now, by the Cauchy Schwarz inequality and (3.7), we obtain that
lldill = YllFill = vi, Yk > 0.
Also, by the Cauchy Schwarz inequality,

st IP1Fx—1 I

(S5 Pk-1)? =Lkl

which clearly implies that

2= 12 T -
Ise=1 11" IPe=1 11" = (Sp_ Fi=1)"s

and
1 1
— < — . 4.17)
st P11l ~ (s]_,Fe-1)?
From (3.18) and (4.17), we have
|9k| = 2(5{_1)_7]{_1)2 2(8,{_1)_7](_1)2 _ 2
(55 Fe=1)? + VsictlPliea 1P~ |G 3-)?(+ )| T+y
Setting % = v,, we get

16k| < vs. (4.18)

From (3.5) and (4.1), we obtain
P11l < ye-1ll + Sllse-1ll < Lllsi-1ll + Sllsi—1ll = (L + )llse-11l- (4.19)
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Hence, using (3.4), (3.6), (4.18), (4.19), and the Cauchy Schwarz inequality, we have

V=1 I $e=1 ] Vet |PIERI sk 11
ldkll < 1Okl Fill + 16x] o + |6 T o
Sp_1Yk-1 (Sk_1)7k—1)
(L + ONFillll 111 YL+ o IFilllls|I*
< Wl|Fill + vz > + 5 2
Sllsi—1ll SAIsk—1ll
(L + OIF y(L+ ¢)*|IFll
= WallFill + vz + V2 2

(L+ou  y(L+¢) u
+ vy

<wvou+ v, >
S

Setting IT = v,u + vz(“Tg)ﬁ 4, XL e have that
ldi|l < I1, Vk > 0. (4.20)
Assuming that o # B, from the definition of the step-size oy, % will not satisfy (3.20), i.e.,
(oa g
—Fla + —d)" di < p=—Idi|.
Y P
So, applying the inequality (3.17), Cauchy Schwarz inequality, and (4.1), we have

T T
YlIFP < Fdek =|F(a; + %dk) - Fk) dy — F(ak + %dk) d;
g, g
< L=ENdP + == |d, 1P
p P

Consequently, the second inequality implies that

- Yo NIFP
(L4 ) lldill?

Therefore, using (4.16) and (4.20), we get

v FdP _gp Vi

L+ lddl = L+ @.21)

orlldill >

Clearly, (4.21) contradicts (4.14). O
5. Computational experiments and results discussions

This section examines the efficacy of Algorithm 1 labeled NHZIS for convenience by contrasting
its performance with that of four iterative methods in the literature. For simplicity, we label these
methods as SRCME [42], MHZM?2 [25], CGD [4], and T2DFP [43], respectively. The same parameter
selections made by the authors were also used in our experiments to implement the four schemes.
The line search parameters for the NHZIS scheme are p = 0.6, 8 = 1, ¢ = 1.7, and g = 1074,
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¢=1.1,y = 1.001. MATLAB R2014a was used to generate the implementation codes on a Windows-
based PC with the following specs: (2.30GHzCPU,4AGBRAM). If the inequality ||F(a)|| < 1078 or
|IF ()| < 1078 is reached or the iterations surpass 1000, the iterations for all five algorithms are set to
end.

Additionally, the results of the experiments were displayed in Tables 1-3, where the labels Pnum,
Nvars, Iguess, NIT, Fvalue, and Ptime denote test example number, dimension, initial guess, number
of iterations, function evaluations, and CPU time, respectively. In addition, ||F(a;)|| indicates the norm
value of the operator F' at which a solution is attained while * * #* indicates failure of a scheme to find
solution of any of the test examples.

The following test examples were employed for the experiments,  where

F(a) = (fi@), (@), ... fu(@)".

Example 1. [44] with 8 = R}
fi(a) =2a; —sin|a;|, i=1,2,...,n.

Example 2. [3].
fita) =a, - e(cos(ul:fz))’
fl(a) =a;, — e(cos(”"‘l;‘l#))
fi@ = a, = el 52,
with 8 = R,

i=2,3,...,n—1,

Example 3. Non-smooth Function [4].
fila)=a;—sinla; - 1|, i=1,2,...,n,

where B=<{a e R": Zai <n, aq>-1, i= 1,2,...,n}.
i=1

Example 4. A modification of test example Al in [27] with 8 = R} added to yield

fi(a) = elsint@)) _ 1,

fila) =@ 4 g, — 1, i=2,...,n.

Example 5. A modification of the test example 4 with 8 = R added to yield

fi@) = sin(ay) + e®m@) — 1,

fi(a) = sin(a;) + "D + g, -1, i=2,...,n.

Example 6. [44] with 8 = R’} added to yield

fi(x) =2a;—sin(a;), i=1,2,...,n.

Example 7. Non-smooth function [44].
fila)=a;-2sin|a; - 1|, i=1,2,...,n,

i=1

where B = {aeR” : Za,- <n, a=-1, i= 1,2,...,n}.
Example 8. A modification of the test example 5 with 8 = R added to yield

fi(a) = 3ay + @) — 1,
ﬁ(a) =3a; + eGsin(@)) _ 1, i=2,...,n
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The experiments were performed with variables 1000, 10000, and 50000, with the following six
initial points:

1 1 13 )"-2 21121\
ap = (1, PEREE ;) ay = (5 35 = ) ]) ,az = (1,3, ceey ...,——[( 2) ]) .

n T
-1 2 [ 1)"-2] 1 2
as = (nn 9nn (3] ) (47 FERIES) ( ) ) , 6= (Z7 PERI) 1) .

To provide an 1n51ght into the numerlcal performance of all the methods used in the experiments, a
summary of the results in Tables 1-3, which are based on number of iterations, function evaluations,
and CPU time, are drawn in Table 4. The results indicate that the NHZIS scheme outperforms the
SCRME, MHZM2, CGD, and T2DFP methods in all three metrics considered. It is observed from
Table 4 that NHZIS solved 91 (63.19%) of the test examples with fewer iterations than the SRCME,
MHZM2, CGD, and T2DFP solvers, which recorded 0 (0%), 3 (2.09%), 0 (0%), and 10 (6.95%),
respectively. It’s interesting to note that 40 (27.77%) of the test examples were solved by more than
one of the five algorithms with least iterations, which are designated as “TIES” in the summary table.

Figure 2. Dolan and Mor¢é profile for function evaluations.

AIMS Mathematics Volume 10, Issue 12, 28151-28181.
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Figure 3. Dolan and Moré profile for processing time.

Table 4. Summary of the results presented in Tables 1-3.

Method NIT Percentage Fvalue Percentage Ptime Percentage
NHZIS 91 63.19% 78 54.16% 84 58.33%

SRCME 0 0% 16 11.11% 5 3.47%
MHZM2 3 2.09% 3 2.09% 3 2.09%
CGD 0 0% 0 0% 1 0.69%
T2DFP 10 6.95% 47 32.64% 51 35.42%
TIES 40 27.77% 0 0% 0 0

Regarding least function evaluations, Table 4 shows that the NHZIS scheme solved 78 (54.16%)
of the test examples, while SRCME, MHZM2, CGD, and T2DFP recorded 16 (11.11%), 3 (2.09%), 0
(0%), and 47 (33.64%), respectively. The summary table also indicates that NHZIS solved 84 (58.33%)
of the test examples with the least amount of processing time compared to SRCME, MHZM?2, CGD,
and T2DFP that recorded 5 (3.47%), 3 (2.09%), 1 (0.69%), and 51 (35.42%) respectively.

Furthermore, the data presented in Tables 1-3 is plotted in Figures 1-3 for the three aforementioned
performance metrics using the performance tool designed by Dolan and Moré [45]. It can be seen
from each of the three figures that NHZIS solved more of the test examples with least values of each
metric considered than SRCME, MHZM2, CGD, and T2DFP. Therefore, it can be inferred from the
above discussion that the NHZIS scheme performs better than the other four methods in solving the
constrained variant of (1.1).

6. Application of NHZIS in compressed sensing

6.1. A concept’s insight

Over the years, the idea of digital image processing which aims to enhance the quality of the images
being considered, has gained popularity in a variety of applications (see Ref. [46—48]). One common

AIMS Mathematics Volume 10, Issue 12, 28151-28181.
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example is in compressed sensing, where the goal is to minimize the following ¢, — ¢, norm problem
in order to obtain sparse solutions to ill-conditioned linear systems of equations:

1
min EIINa—qH% + @lldll;, (6.1)

where @ > 0, a € R", and g € R represents an observed value. The matrix N € R™* (with k < n)
denotes a linear mapping. The terms |la||; and ||al|, refer to the ¢; and ¢, norms, respectively. It
is evident that (6.1) represents the unconstrained optimization problem commonly known as the ;-
regularized least squares problem. There are numerous methods for solving (6.1) (see [49-51]), with
gradient-based methods being among the most popular. In [52], Figueiredo et al. reformulated (6.1) as
a convex quadratic problem, where the vector a € R”" is divided into two parts as

a=u-w, u=0, w>0, uweR" (6.2)
Let u; = (a;)y, w; = (—a)); Vi = 1,2,...,n, where (.), denotes a positive operator defined
as (), = max{0,a}. Applying the definition of the ¢, — norm, we have |la|l, = ATu + ATw. Here,

A, = (1,1,..., 1T € R". This representation reformulates (6.1) as
riljvn %IIN(u -—w) — qll% + wA,u + wA,w, u,w>0. (6.3)
Using the concept in [52], (6.3) becomes
min %/ITW/I +D"WA, 120, (6.4)

which represents a quadratic program problem where

T _nT
N'N N'N ), 6.5)

_ u _ _h _ T _
/l—(w), D—wA2n+(h), h=N"gq, W_(—NTN NTN

where the matrix W is positive semi-definite. Therefore, (6.4) is a convex quadratic programming
problem, which is equivalent to
F(A) = min{4, WA+ D} =0, (6.6)

where the function F is vector-valued, monotone, and Lipschitz continuous. Hence, by ( [50,53]), the
NHZIS scheme can be used to solve it.

6.2. Numerical experiments

Here, we further illustrate the efficacy of the NHZIS scheme by running two compressed sensing
tests. In both tests, we compare performance of NHZIS with that of CGD [4], PCG [3], SRCME [42],
and T2DFP [43], where parameters of each scheme remain as used in the respective papers, with
¢ = 1.6 for NHZIS. We begin by applying the five algorithms to recover a sparse signal with n lengths
from k observed values. The mean of square error (MSE) to the original signal &, namely,

1
MSE = —|ja - all%, (6.7)
n
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is used to calculate restoration quality. Furthermore, the signal size is selected as n = 22 and k = 21°,
whereas the original signal includes 2° randomly nonzero components. In addition, Matlab’s command
randn(k,n) creates the Gaussian matrix N. The measurement £ is disturbed by noise, i.e.,

k=Na+ w, (6.8)

where w represents the Gaussian noise, which is distributed as N(0, 10™*). Moreover, we use f(a) =
%||Na - q||§ + @|al|; for the merit function.
Also, the measurement signal namely, ay = N'gq, is employed to start the experiment, which
terminates when
1fi = fenll

SR IR <1070, 6.9
il ©9)

where f; is the function value at qy.

Original signal (n = 4096, number of nonzeros = 32)
2T o T 0
L | I | L LIS | ]
0 1000 2000 3000 4000
The measurement

oA

200 400 600 800 1000
NHZIS (MSE = 1.25e-06, Iter = 59, Time = 1.89s)

2
g{lull I| — ‘|||||'|"‘|' lﬂ

0 1000 2000 000 4000
CGD (MSE = 1.27e=06, 1 i 4.58

3
6, Iter = 135, Time = 4.58s

2

_gl"' II‘ T T I‘II
0 1000 2000 3000 4000

MHZM?2 (MSE = 1.26e—06, Iter = 107, Time = 3.34s)
%h| - | Py | ﬂ
] | | R LALLS ]
0 1000 2000 3000 4000

SRCME(MSE = 2.42e—06, Iter = 68, Time =2.41s) _
e —— ARARI .

2 . . .

0 1000 2000 3000 4000
T2DFP(MSE = 1.36e-06, Iter = 90, Time = 2.84s)

2, | L I
. A S L ]
0 1000 2000 3000 4000

Figure 4. The Original, measured and recovered signals.

The sparse signal reconstruction test results are given in Figures 4 and 5, where the former shows
that the disturbed signal was reconstructed almost exactly as the original one by NHZIS, CGD, PCG,
SRCME, and T2DFP. Besides, it can be seen from Figures 4 and 5 that the quality of reconstruction as
given by MSE is significantly better for NHZIS than CGD, PCG, SRCME, and T2DFP, where NHZIS
recorded 1.25x 107 and the latter recorded 1.27x107°, 1.26x107°,2.42x107°, and 1.36x 107°. Also,
for the reconstruction process, Figures 4 and 5 shows that NHZIS yields the least number of iterations
(59) and CPU time (1.89) compared to CGD, PCG, SRCME, and T2DFP. Furthermore, to obtain a
statistically stronger result, we carry out more trials with fourteen different noise samples. Results of
the experiments are given in Table 5, where v represents the number of nonzero elements with the bold
and underlined values indicating the most efficient scheme. By these results, we conclude that NHZIS
is efficient for reconstructing signals from disturbed ones.
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Figure 5. Test results of NHZIS, CGD, PCG, SRCME, and T2DFP.

The performance of the NHZIS scheme in image de-blurring challenges is demonstrated in the
experiment that follows. Four images, namely, Boat, Girl, Girlface, and Pepper are used for the
experiment. Additionally, the parameter values are the same as those from the previous experiment.
Furthermore, the NHZIS scheme’s performance is contrasted with that of the CGD, PCG, SRCME,
and T2DFP, where the parameter settings remain as employed in each of the respective papers. In this
experiment, the quality of restoration is measured using signal-to-noise ratio (SNR), namely

llall
SNR =20 x loglo (m) ,

and peak to signal ratio (PSNR)
2

%
PSNR = IOXlOglo m,

where a represents the original image, a represents the de-blurred image, V is maximum absolute
value of recovery. We also use MSE and structural similarity index (SSIM), which exhibit the
similarity between the actual and recovered images to measure efficiency of the methods. As a
general remark, algorithms that yield larger values of SNR, PSNR, and SSIM are regarded as most
effective for recovering images much closer to the original ones compared to algorithms with less
values of the metrics. Also, algorithms with less value of MSE exhibit better quality of recovery
compared to the ones with larger values. It can be observed from the results displayed in Table 6 that
NHZIS yields the best of these values in three of the four images considered. In addition to the results
in Table 6, Figure 6 displays the original, blurred, and reconstructed images by NHZIS, CGD, PCG,
SRCME, and T2DFP, where NHZIS appear to have a slight edge over the other four methods. In
order words, Figure 6 shows that the NHZIS method’s ability to restore blurry images is marginally
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superior to that of CGD, PCG, SRCME, and T2DFP. Consequently, it is evident that the NHZIS
method works well for image de-blurring when all factors are taken into account. In the end, these
observations imply that, although each technique has advantages, the NHZIS method is clearly a more
dependable option for improved image clarity in a wider variety of situations.

Original Original Original Original

Blurred

Figure 6. Reconstructed images by the five methods.
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7. Concluding remarks

This study explores a variation of the one-parameter HZ method, demonstrating that the parameter
0, can take values in the interval (0, c0) while still satisfying the essential criterion for global
convergence. By employing the concepts developed by Byrd and Nocedal, we can establish various
options for selecting 6, and propose an alternative HZ-type technique for solving convex constrained
nonlinear equations. Due to its derivative-free nature, this innovative approach is well-suited for
tackling non-smooth problems. Preliminary numerical experiments comparing four different methods
in the literature indicate that the proposed scheme is effective. Additionally, the originality of this
method lies in its capacity to decode distorted signals and restore blurry images. The results of the
experiments show that this scheme performs competitively and outperforms four other established
techniques. As research continues to explore broader applications across various fields, this method
could pave the way for advancements that enhance our ability to address complex issues with greater
efficiency and accuracy.
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