Research article

An adaptive anisotropic diffusion model integrating total variation and non-local means for image denoising

  • Published: 01 December 2025
  • MSC : 35K25, 35K61, 68U10

  • This study proposes an adaptive diffusion equation for noise removal that combines total variation (TV) and non-local means (NL-means). By incorporating a weighted non-local data fidelity term, the model adaptively switches between TV and NL-means based on image features. A key advantage of this approach is its ability to correct over-smoothed low-contrast areas, minimize residual noise near edges, and reduce staircasing artifacts during denoising. Furthermore, the existence of a weak solution for the proposed model is rigorously established.

    Citation: Xiaojuan Zhang. An adaptive anisotropic diffusion model integrating total variation and non-local means for image denoising[J]. AIMS Mathematics, 2025, 10(12): 28207-28220. doi: 10.3934/math.20251240

    Related Papers:

  • This study proposes an adaptive diffusion equation for noise removal that combines total variation (TV) and non-local means (NL-means). By incorporating a weighted non-local data fidelity term, the model adaptively switches between TV and NL-means based on image features. A key advantage of this approach is its ability to correct over-smoothed low-contrast areas, minimize residual noise near edges, and reduce staircasing artifacts during denoising. Furthermore, the existence of a weak solution for the proposed model is rigorously established.



    加载中


    [1] P. Perona, J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 629–639. https://doi.org/10.1109/34.56205 doi: 10.1109/34.56205
    [2] H. K. Rafsanjani, M. H. Sedaaghi, S. Saryazdi, Efficient diffusion coefficient for image denoising, Comput. Math. Appl., 72 (2016), 893–903. https://doi.org/10.1016/j.camwa.2016.06.005 doi: 10.1016/j.camwa.2016.06.005
    [3] X. Zhang, W. Ye, An adaptive fourth-order partial differential equation for image denoising, Comput. Math. Appl., 74 (2017), 2529–2545. https://doi.org/10.1016/j.camwa.2017.07.036 doi: 10.1016/j.camwa.2017.07.036
    [4] L. I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D: Nonlinear Phenom., 60 (1992), 259–268. https://doi.org/10.1016/0167-2789(92)90242-F doi: 10.1016/0167-2789(92)90242-F
    [5] C. Antonin, L. P. Louis, Image recovery via total variation minimization and related problems, Numer. Math., 76 (1997), 167–188. https://doi.org/10.1007/s002110050258 doi: 10.1007/s002110050258
    [6] T. Chan, A. Marquina, P. Mulet, High-order total variation-based image restoratio, SIAM J. Sci. Comput., 22 (2000), 503–516. https://doi.org/10.1137/S1064827598344169 doi: 10.1137/S1064827598344169
    [7] A. Buades, B. Coll, J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 4 (2005), 490–530. https://doi.org/10.1137/040616024 doi: 10.1137/040616024
    [8] C. Sutour, C. A. Deledalle, J. F. Aujol, Adaptive regularization of the NL-Means: Application to image and video denoising, IEEE Trans. Image Process., 23 (2014), 3506–3521. https://doi.org/10.1109/TIP.2014.2329448 doi: 10.1109/TIP.2014.2329448
    [9] J. Delon, A. Desolneux, C. Sutour, A. Viano, RNLp: Mixing nonlocal and TV-Lp methods to remove impulse noise from image, J. Math. Imaging Vis., 61 (2019), 458–481. https://doi.org/10.1007/s10851-018-0856-3 doi: 10.1007/s10851-018-0856-3
    [10] C. Louchet, L. Moisan, Total variation as a local filter, SIAM J. Imaging Sci., 4 (2011), 651–694. https://doi.org/10.1137/100785855 doi: 10.1137/100785855
    [11] K. Shi, Coupling local and nonlocal diffusion equations for image denoising, Nonlinear Anal. Real World Appl., 62 (2021), 103362. https://doi.org/10.1016/j.nonrwa.2021.103362 doi: 10.1016/j.nonrwa.2021.103362
    [12] A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vis., 20 (2004), 89–97. https://doi.org/10.1023/B:JMIV.0000011325.36760.1e doi: 10.1023/B:JMIV.0000011325.36760.1e
    [13] A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imagin, J. Math. Imaging Vis., 40 (2011), 120–145. https://doi.org/10.1007/s10851-010-0251-1 doi: 10.1007/s10851-010-0251-1
    [14] L. P. Yaroslavsky, Digital picture processing: An introduction, Springer Science & Business Media, 2012.
    [15] V. B. S. Prasath, J. M. Urbano, D. Vorotnikov, Analysis of adaptive forward-backward diffusion flows with applications in image processing, Inverse Probl., 31 (2015), 105008. https://dx.doi.org/10.1088/0266-5611/31/10/105008 doi: 10.1088/0266-5611/31/10/105008
    [16] J. Weickert, B. Romeny, M. Viergever, Efficient and reliable schemes for nonlinear diffusion filtering, IEEE Trans. Image Process., 7 (1998), 398–410. https://doi.org/10.1109/83.661190 doi: 10.1109/83.661190
    [17] K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), 2080–2095. https://doi.org/10.1109/TIP.2007.901238 doi: 10.1109/TIP.2007.901238
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(674) PDF downloads(43) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog