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Abstract: This study proposes an adaptive diffusion equation for noise removal that combines total
variation (TV) and non-local means (NL-means). By incorporating a weighted non-local data fidelity
term, the model adaptively switches between TV and NL-means based on image features. A key
advantage of this approach is its ability to correct over-smoothed low-contrast areas, minimize residual
noise near edges, and reduce staircasing artifacts during denoising. Furthermore, the existence of a
weak solution for the proposed model is rigorously established.
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1. Introduction

Image denoising is a fundamental challenge in image processing. This problem can be formally
stated as the recovery of a clean image u from its noisy observation as follows:

f=u+n

where f denotes the observed noisy image, and n denotes the additive white Gaussian noise with
a zero mean. Numerous effective approaches have been developed to address this inverse problem
and estimate solutions, such as, anisotropic diffusion PDE models [1-3]variational methods [4-6] and
nonlocal methods [7-10].

The total variation (TV) minimization was introduced by Rudin, Osher, and Fatemi [4]. This
method is particularly effective for denoising while preserving edges; however, it presents three major
drawbacks: textures tend to be overly smoothed, flat areas are approximated by a piecewise constant
surface, resulting in a staircasing effect, and the image suffers from contrast loss. Subsequent research
has developed various improvements to address the limitations of TV-based methods [7, 8, 10].
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The non-local means (NL-means) algorithm proposed by Buades et al. [7] is a highly regarded
contemporary denoising technique. Despite its strong performance, it tends to oversmooth details [10].
In response, Louchet and Moisan [10] introduced the TV-means algorithm, which combines NL-means
with TV regularization in an iterative process to reduce staircasing and rare-patch effects. Building on
this, Sutour et al. [8] devised an adaptive framework that uses a weighted non-local data fidelity term to
automatically tune the TV regularization based on NL-means confidence. Shi [11] proposed a coupled
local-nonlocal diffusion equation to mitigate artifacts inherent in both approaches.

This article presents a hybrid TV and NL-means model that compensates for their individual
shortcomings. Our framework adaptively selects between the two methods: NL-means for preserving
textured regions with repetitive patterns, and TV for restoring edges and homogeneous areas.

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature.
Section 3 introduces the proposed model and establishes the existence of a weak solution. Section 4
details the numerical scheme and presents a comparative analysis of denoising results. Finally,
Section 5 concludes the paper.

2. Related methods

2.1. The TV model

The total variation (TV) model [4] uses total variation regularization to enforce image smoothness
while preserving edge information. The denoised image u’" is obtained by solving the following
energy-minimization problem:

A
u = argmin(— f (u— f)’dx + f |Vu|dx). 2.1)
ueR” 2 Q Q

The first term is the data fidelity, while the second is the TV regularization. The parameter A > 0
balances the weight between these two terms. This minimization problem can be solved by evolving
the associated partial differential equation:

{u, = div () + A(f —w). inQy, (2.2)

=, on 8Q x (0, T),
where Q; = Q x (0,T], with Q c R? being a bounded smooth domain with Lipschitz continuous
boundary 0€Q. Several efficient numerical methods have been developed to solve this minimization
problem [12, 13].

2.2. The NL-means algorithm

Non-local methods in image processing extend the classical Yaroslavsky filter [14] and patch-
based approaches. The fundamental principle involves estimating the value of each pixel through the
weighted averaging of similar pixels across the image. This approach is particularly effective because
pixels with analogous local structures (patches) typically provide better estimates than the immediate
spatial neighbors.

Buades et al. [7] formalized this concept into the well-known non-local means (NL-means) filter:
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L= 3w, (2.3)

JjEQ

The weighting coefficients are determined as follows:

v 1 [IV(Ni)—V(Nj)Ii,Q]

W' = —exp|-— 7

L] Zl
where Z; is the normalization factor that ensures that the weights sum to 1, N, represents a fixed-size
square neighborhood centered at pixel k, the similarity metric [V(N;) — V(N)|,,» computes the weighted
Euclidean distance between patches, @ > 0 denotes the standard deviation of the Gaussian kernel used
for distance weighting, and % controls the decay of the exponential function.

(2.4)

2.3. Regularized NL-Means(R-NL)

Sutour et al. [8] introduced a variational approach that corrects the over-smoothing and reduces the
residual noise of the NL-means by adaptively regularizing non-local methods with the total variation.
They assume that in the non-local neighborhood of pixel i, the observations f; are all realizations of the
random variable f; = u; + n;. u; represents the true signal with a standard deviation O'S’g"“l. n; denotes
the noise with a zero mean and known standard deviation o7**. Both random Varlables are assumed
to be independent.

The regularized estimate combines non-local means denoising with the original data through a
convex combination as follows:
ulVtPr = (1 - a/i)usL + a;f. (2.5

The confidence index «; is defined as
(O_tvignal)z |(O_NL)2 ( 1_101'se)2|

i i
; = . ; - . (2.6)
(O_;tgnal)z + (O'?mse)z |( NL)2 ( ;101se)2| + (O_;mtse)z

with the empirical variance estimate

2
6Ny ZWNL 2 (ZWfVJLff] . (2.7)

JjeQ JjeQ

Note that the solution u*?/ can be rewritten as the weighted sum
NLDJ _ Z WNLDJ 2.8)
jeQ
where WN LDJ = (1 — @; )wN L'+ @;6;; and 6;; is the Kronecker delta function.

The complete regularlzatmn framework performs TV minimization with a non-local fidelity term
as follows:

= argmin| > 4, > wlP(f —wp)? + > 1Vuil|. (2.9)

ueR® i€cQ  jeQ i€Q
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This optimization problem can be formulated as

uFNE = argmin (Z Ay — u Py + Z |Vul~|) (2.10)
ueRr” i€Q i€Q
with adaptive regularization parameters
-1/2
A=y Z(wﬁ,vf’”)z} @2.11)
JjeQ

where y > 0 is a fixed parameter that sets the strength of the adaptive regularization.

2.4. Adaptive forward-backward diffusion equation (AFBD )

Building upon the theoretical connection between the variational formulation (2.1) and its
corresponding PDE (2.2), Prasath et al. [15] developed an adaptive forward—backward diffusion
(AFBD) model:

ou Vu
— =di \Y — 2.12
v div (h( G, * u)lvul) (2.12)

where h(VG, * u) serves as an edge-sensitive diffusion coefficient.

1

MG * ) = KNG, *

K >0, (2.13)

where G, represents a two-dimensional Gaussian kernel.

Although the authors established the existence of weak solutions for the AFBD model in (2.12), and
experimental validation showed that it successfully avoids the edge-smearing of conventional diffusion
while maintaining its benefits, the method still exhibits staircasing artifacts in noisy regions.

3. The proposed model

Motivated by the framework of [15] and the regularization functional (2.10), we consider the
following homogeneous Dirichlet problem:

u, = div (h(VG(, % u)g—gl) + AU — ), in Qy,
=0, on 0Q x (0, T), (3.1)

u(x,0) = f(x), in Q,

where A(x) is the continuous formulation of (2.11), defined as

-1/2
A(x) =7( fg wz(x,y)dy) - (3.2)

NLDJ

The discrete counterpart of w(x, y) is defined as wi
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The inverse mollification function A(VG, * u) self-adjusts based on an estimate of the edge
information from the smoothed gradient of the image. By reducing the TV flow in homogeneous
regions, the staircasing problem is alleviated.

This hybrid model adaptively blends TV’s edge preservation and NL-means’ texture denoising via
a residual-variance-guided parameter A(x). In homogeneous regions, high patch redundancy yields low
variance and a large A(x), favoring NL-means for smooth results. Near edges, low redundancy increases
variance and shrinks A(x), engaging TV to maintain edge sharpness. This adaptive mechanism strikes
an excellent balance between effective noise reduction, sharp edge preservation, and the maintenance
of fine texture details.

We now establish the existence of a weak solution to the proposed problem (3.1).

Definition 1. (Test Function Space [3]) Let C¥(Q x (0, T); R?) denote the space of k-order continuously
differentiable functions. For any v = (v, v,) € CK(Q x (0, T); R?) satisfying the boundary conditions:
ﬁivl aiVQ

-—n =0 and — =0
oxt  loax©,1)

foralli =0,1,...,k— 1, then v belongs to a space which is denoted by (VS(Q x (0, T); R?).

Definition 2. (Weighted Partial Variation [3]) Let M be the Banach space of finite signed Radon
measures on Q X (0, 7T), dual to Co(2 X (0,T)). Foru ¢ M and @ € C(ﬁ X [0, T]) with @ > 0, the
weighted partial k-order variation is:

PVE (u) = sup (u, diviFgy M x C

YeVEQX(0,1):R?) [y<D

where || = \/m and diviy = ‘2:)‘(”; + %.
Proposition 1. [3] Assume that u € L'(0, 75 WE(Q). Then, PV () = [ [ ®(x, nlD"u(x, nldxds.

—n =
ay' 2 AQx(0,T)

The space functions of k-bounded partial variation on Q X (0, T') can be defined by

BPVF = {u eM

lillgpy = lllly + PVAG) < +oo}.

Definition 3. A function « in the class
ueC,0,T;L*(Q) NBPV N WL, T;[L> N W"(Q)T) (3.3)

is called a weak solution to problem (3.1) with f € L*(Q) if
(i) there exists z € L®(Q x (0, T); R?), ||zll.~ < 1, so that for all v € L2 n W"1(Q),

<%, v> + (W(VGy * u)z, Vv) + AP —u),v) =0 (3.4)

a.e.on (0,7);
(i) for all w € L'(0, T; WH'(Q)) n W0, T; L*(Q)), one has

T dW T
(T = w(T)|P + 2f (F5 . us) Jds + 2PV, 0 + 2f (A7 = )(s), u(s) = w(s) s
o \ds 7 0

T
<Ilf = wOI + Iw(DI? = Iw(O)I + 2f0 (h(VGa * u)(8)z(s), VW(S))dS;
(3.5)
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(iii) the initial condition f holds in the space L*(Q).
We first need to study the following auxiliary problem:

&t eA(u) = div(h(VGy * ) =Ty + AWM — u), in Qr,

6+|Vu|
o _ 0, on 0Q x (0, T), (3.6)
u(x, 0) = f(x), in €2,

where € > 0 is parameter.
Lemma 1. Let f € L2(Q). Problem (3.6) admits a solution u in the class

LX0,T; H™(Q)) N H'(0, T (H"())") N C([0, T1; L*(2)), (3.7

where m > 4 .
Lemma 2. Let u be a solution to problem (3.6). Then, u satisfies the a priori bound

du
el oo 0,7 0202y + all 1o, msw11 @) + ||—||L2(0T @)y < C. (3.8)

The constant C is independent of e.
Theorem 1. Letting f € L*(Q), there exists a weak solution to (3.1) in the class (3.3).

Owing to the similarity of the proofs to the analogous arguments in [3, 15], the proofs of Lemmas 1
and 2 and Theorem 1 are omitted.

4. Numerical implementation of the proposed model

4.1. Numerical approximation

The proposed model (3.1) is discretized using standard finite difference schemes and solved
numerically via the additive operator splitting (AOS) method [16]. In our numerical implementation,
we represent an m-dimensional discrete image as a vector f € RV, where each component f;(i =
1,---,N) corresponds to the grayscale intensity at pixel location x;. The spatial discretization uses
grid spacing h; in each dimension /, while temporal discretization employs time steps #; := kt for
k € N with step size 7. The numerical approximations u* ~ u(x;, #) and C* ~ h(VG, * u(x;, t"))Wli,tk»
are computed using central difference approximations for the gradient terms, ensuring second-order
spatial accuracy in our implementation.

The simplest discretization of (3.1) with reflecting boundary conditions is

k+1 m Ck
k+1 k+1 NLDJ k
—:Z Z @A — ) + A — )

I=1 jeN(i)

where N(7) consists of the two neighbors of pixel i along the / direction (boundary pixels may have
only one neighbor). In vector-matrix notation, this becomes

— ZAI(Mk)ukH n /I(MNLDJ . uk)
=1
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where A;(u*) = [d! j(u")] with

Ct+ C§
, J € N,(D),
th
l.. k = Ck + Ck
aL/(”)' _Z i Zn’ j=i
neNG) 2h
0, otherwise.

The additive operator splitting (AOS) [16] scheme is given by

uk+1 —

1 « -1
— > (1= mrAGh) " [k + 7A@ - i),
m

I=1

The operators B;(u*) = I — mtA;(u*) govern one-dimensional diffusion processes along each spatial
dimension x;. When employing consecutive pixel numbering along the /-th coordinate direction, these
operators reduce to strictly diagonally dominant tridiagonal matrices. We refer readers to [16] for
complete implementation details.

4.2. Parameters setting

The quantitative evaluation uses two widely adopted image quality metrics: peak signal-to-noise
ratio (PSNR) and mean structural similarity index (MSSIM), where higher values indicate better
denoising performances. All experiments were conducted using MATLAB R2020a on an 11th Gen
Intel® Core™ i7-1165G7 processor (2.80 GHz) and 8 GB RAM. To validate the effectiveness of our
proposed method (3.1), we performed comprehensive comparative evaluations against four established
denoising approaches: TV [4], NL-means [7], R-NL [8], and BM3D [17].

The experimental configuration uses consistent parameters across all evaluations: A fixed time step
7 =0.2, K = 107, and spatial filtering with a 5 x 5 rotationally symmetric Gaussian lowpass filter
(o = 0.8). The algorithm utilizes standard 5x5 pixel patches and 21 x 21 search windows for non-local
processing. The TV [4] regularization parameter A was set to 0. The parameter vy in our model (3.1)
was adjusted adaptively: A value of 10 was used for low-texture images with low noise, while it was
set to 100 for texture-rich images with medium or high noise levels. The stopping time was chosen so
that the best PSNR is obtained.

4.3. Test cases and discussion

Figure 1 shows the ten test images used for the experimental validation. Table 1 presents quantitative
comparisons between the proposed method and state-of-the-art approaches, evaluating both PSNR
and MSSIM metrics across all test images corrupted by additive white Gaussian noise (AWGN) with
standard deviations of 20, 30, and 40. As can be noted, the proposed scheme performs well for a variety
of images. Compared with TV [4], NL-means [7], and R-NL [8], the proposed method achieves the
best performance in terms of both PSNR and MSSIM. It also surpasses BM3D in terms of MSSIM for
the Mosaic. The proposed method outperformed TV [4], NL-means [7], and R-NL [8]. The proposed
method required more time than the other four methods. For a 512 x 512 image corrupted by AWGN
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with a standard deviation of 40, the proposed algorithm requires approximately 50 s to obtain the best

PSNR.
Table 1. Qualitative comparison of denoising algorithms.
Images - TV [4] NL-means [7] R-NL [8] BM3D [17] Proposed
PSNR/MSSIM PSNR/MSSIM PSNR/MSSIM  PSNR/MSSIM PSNR/MSSIM
20  31.48/0.9157  31.11/0.9067  32.00/0.9256  33.08/0.9414 32.07/0.9258
Lena 30 29.82/0.8811 29.20/0.8682  30.15/0.8929  31.30/0.9140 30.25/0.8942
40  28.70/0.8534  27.74/0.8308  28.73/0.8614  30.00/0.8875  28.85/0.8639
20 32.26/0.9149  31.92/0.9049  32.74/0.9269  34.21/0.9452  32.83/0.9269
Cameraman 30 30.38/0.8779  29.97/0.8691 30.67/0.8907  32.19/0.9186  30.76/0.8915
40  29.02/0.8464  28.49/0.8382  29.33/0.8650  30.82/0.8940  29.46 /0.8667
20 31.59/0.9229  30.92/0.9150  31.83/0.9314  32.79/0.9435  32.04/0.9362
Airplane 30 29.67/0.8871  28.91/0.8827  29.77/0.9019  30.82/0.9197  30.09/0.9118
40  28.29/0.8541 27.31/0.8453  28.35/0.8765  29.42/0.8973  28.62/0.8881
20 28.61/0.8290  28.33/0.8236  29.55/0.8588  29.89/0.8705  29.57/0.8598
Parrot 30 26.76/0.7826  26.95/0.7770  27.61/0.8159  28.06/0.8330  27.72/0.8190
40 25.51/0.7544  25.67/0.7296  26.07/0.7817  26.83/0.8229  26.35/0.7880
20 31.93/0.9066  32.10/0.9155  32.91/0.9313  33.71/0.9430  32.95/0.9321
Hats 30 30.38/0.8807  30.23/0.8793  30.99/0.8988  31.90/0.9162  31.06/0.9016
40  29.46/0.8601 28.83/0.8439  29.80/0.8752  30.68/0.8916  29.92/0.8778
20 29.29/0.8937  28.68/0.8559  29.93/0.9008  30.92/0.9269  29.95/0.9025
Boat 30 27.61/0.8451 26.79/0.8011 27.94/0.8433  29.11/0.8866  28.03/0.8483
40 26.47/0.7987  25.49/0.7519  26.52/0.7903  27.80/0.8478  26.68/0.7994
20 26.59/0.8415  29.53/0.9089  30.18/0.9294  32.08/0.9508 30.35/0.9316
Barbara 30 24.76/0.7699  27.07/0.8556  27.62/0.8762  29.99/0.9223  28.01/0.8845
40  23.86/0.7481  25.44/0.8043  25.82/0.8258  28.42/0.8899  26.26/0.8437
20 31.44/0.9430  31.12/0.9546  32.23/0.9658  32.59/0.9665 32.30/0.9678
Monarch 30 29.36/0.9133  28.99/0.9269  29.93/0.9467  30.59/0.9483  30.09/0.9504
40  27.85/0.8875  27.32/0.8967  28.22/0.9243 = 29.16/0.9301  28.59/0.9304
20 29.69/0.8977  28.75/0.8543  29.97/0.8926  30.58/0.9166 30.12/0.9052
Man 30 28.09/0.8484  27.06/0.7972  28.05/0.8332  28.81/0.8720  28.35/0.8556
40 26.98/0.8074  25.93/0.7508  26.76/0.7827  27.64/0.8332  27.19/0.8131
20 36.75/0.9829  37.63/0.9807  40.49/0.9887  39.94/0.9916  40.40/0.9928
Mosaic 30 34.64/0.9758  34.26/0.9544  36.90/0.9767  36.88/0.9805  36.85/0.9831
40  33.05/0.9695  32.14/0.9260  34.32/0.9611 34.80/0.9649  34.41/0.9704
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(b) Cameraman (c) Airplane (d) Parrot (e) Hats

(g) Barbara (h) Monarch (i) Man () Mosaic

Figure 1. Test images used in Table 1.

Figures 2—4 show a visual comparison of natural images corrupted by AWGN with standard
deviations of 30 and 40. Figures 2 and 3 present the restored images of the Barbara image, which
shows that the TV not only introduces a staircasing effect on Barbara’s face and the background, but
also fails to preserve the texture. Although the NL-means [7] method preserves the texture, its results
suffer from oversmoothing. The texture recovery performance of BM3D [17] is inferior to those of R-
NL [8] and our method. BM3D [17] introduces artifacts, particularly in the facial region. Our proposed
method and R-NL [8] effectively preserve texture while achieving natural facial restoration. Figure 4
presents the restoration results of the five methods for the test image Airplane with o,= 40. The regions
in the red squares are displayed in the lower-right corner for a better visual comparison. The TV [4]
produces noticeable staircasing artifacts, whereas the NL-means [7] leads to over-smoothed number
regions. Our method outperforms R-NL [8] in digital restoration, but its results are still inferior to
those of BM3D [17].
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(b) Noise (c) TV [4]

(d) NL-means [7] (e) R-NL [8] (f) BM3D [17]

(g) Proposed

Figure 2. Restoration results of five methods for test image Barbara with o, = 30.
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(a) Original (b) Original (c) Noise (d) TV [4]

(h) Proposed

(m) R-NL [8] (n) BM3D [17] (o) Proposed

Figure 3. Zoomed parts of Barbara are shown for better visual comparison.
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(e) R-NL [8] (f) BM3D [17] (g) Proposed

Figure 4. Restoration results of five methods for test image Airplane with o,= 40.

5. Conclusions

In this study, we have proposed an adaptive diffusion model that utilizes a combination of TV
and NL-means terms. The proposed model incorporates a weighted non-local data fidelity term
that dynamically adjusts the balance between TV and NL-means regularization based on local image
features. We have investigated the existence of a weak solution for the new model. Comprehensive
numerical experiments have demonstrated that the proposed method can effectively suppresses noise
while preserving textural details and maintaining structural integrity across various noise levels.
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