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Abstract: This study proposes an adaptive diffusion equation for noise removal that combines total
variation (TV) and non-local means (NL-means). By incorporating a weighted non-local data fidelity
term, the model adaptively switches between TV and NL-means based on image features. A key
advantage of this approach is its ability to correct over-smoothed low-contrast areas, minimize residual
noise near edges, and reduce staircasing artifacts during denoising. Furthermore, the existence of a
weak solution for the proposed model is rigorously established.
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1. Introduction

Image denoising is a fundamental challenge in image processing. This problem can be formally
stated as the recovery of a clean image u from its noisy observation as follows:

f = u + n

where f denotes the observed noisy image, and n denotes the additive white Gaussian noise with
a zero mean. Numerous effective approaches have been developed to address this inverse problem
and estimate solutions, such as, anisotropic diffusion PDE models [1–3]variational methods [4–6] and
nonlocal methods [7–10].

The total variation (TV) minimization was introduced by Rudin, Osher, and Fatemi [4]. This
method is particularly effective for denoising while preserving edges; however, it presents three major
drawbacks: textures tend to be overly smoothed, flat areas are approximated by a piecewise constant
surface, resulting in a staircasing effect, and the image suffers from contrast loss. Subsequent research
has developed various improvements to address the limitations of TV-based methods [7, 8, 10].
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The non-local means (NL-means) algorithm proposed by Buades et al. [7] is a highly regarded
contemporary denoising technique. Despite its strong performance, it tends to oversmooth details [10].
In response, Louchet and Moisan [10] introduced the TV-means algorithm, which combines NL-means
with TV regularization in an iterative process to reduce staircasing and rare-patch effects. Building on
this, Sutour et al. [8] devised an adaptive framework that uses a weighted non-local data fidelity term to
automatically tune the TV regularization based on NL-means confidence. Shi [11] proposed a coupled
local-nonlocal diffusion equation to mitigate artifacts inherent in both approaches.

This article presents a hybrid TV and NL-means model that compensates for their individual
shortcomings. Our framework adaptively selects between the two methods: NL-means for preserving
textured regions with repetitive patterns, and TV for restoring edges and homogeneous areas.

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature.
Section 3 introduces the proposed model and establishes the existence of a weak solution. Section 4
details the numerical scheme and presents a comparative analysis of denoising results. Finally,
Section 5 concludes the paper.

2. Related methods

2.1. The TV model

The total variation (TV) model [4] uses total variation regularization to enforce image smoothness
while preserving edge information. The denoised image uTV is obtained by solving the following
energy-minimization problem:

uTV = argmin
u∈Rn

(
λ

2

∫
Ω

(u − f )2dx +

∫
Ω

|∇u|dx
)
. (2.1)

The first term is the data fidelity, while the second is the TV regularization. The parameter λ > 0
balances the weight between these two terms. This minimization problem can be solved by evolving
the associated partial differential equation:ut = div

(
∇u
|∇u|

)
+ λ( f − u), in ΩT ,

∂u
∂n = 0, on ∂Ω × (0,T ),

(2.2)

where ΩT = Ω × (0,T ], with Ω ⊂ R2 being a bounded smooth domain with Lipschitz continuous
boundary ∂Ω. Several efficient numerical methods have been developed to solve this minimization
problem [12, 13].

2.2. The NL-means algorithm

Non-local methods in image processing extend the classical Yaroslavsky filter [14] and patch-
based approaches. The fundamental principle involves estimating the value of each pixel through the
weighted averaging of similar pixels across the image. This approach is particularly effective because
pixels with analogous local structures (patches) typically provide better estimates than the immediate
spatial neighbors.

Buades et al. [7] formalized this concept into the well-known non-local means (NL-means) filter:
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uNL
i =

∑
j∈Ω

wNL
i, j f j. (2.3)

The weighting coefficients are determined as follows:

wNL
i, j =

1
Zi

exp

−|V(Ni) − V(N j)|22,α
h2

 (2.4)

where Zi is the normalization factor that ensures that the weights sum to 1, Nk represents a fixed-size
square neighborhood centered at pixel k, the similarity metric |V(Ni)−V(N j)|2,α computes the weighted
Euclidean distance between patches, α > 0 denotes the standard deviation of the Gaussian kernel used
for distance weighting, and h controls the decay of the exponential function.

2.3. Regularized NL-Means(R-NL)

Sutour et al. [8] introduced a variational approach that corrects the over-smoothing and reduces the
residual noise of the NL-means by adaptively regularizing non-local methods with the total variation.
They assume that in the non-local neighborhood of pixel i, the observations fi are all realizations of the
random variable fi = ui + ni. ui represents the true signal with a standard deviation σsignal

i . ni denotes
the noise with a zero mean and known standard deviation σnoise

i . Both random variables are assumed
to be independent.

The regularized estimate combines non-local means denoising with the original data through a
convex combination as follows:

uNLDJ
i = (1 − αi)uNL

i + αi fi. (2.5)

The confidence index αi is defined as

αi =
(σsignal

i )2

(σsignal
i )2 + (σnoise

i )2
≈

|(σ̂NL
i )2 − (σnoise

i )2|

|(σ̂NL
i )2 − (σnoise

i )2| + (σnoise
i )2

(2.6)

with the empirical variance estimate

(σ̂NL
i )2 =

∑
j∈Ω

wNL
i, j f 2

j −

∑
j∈Ω

wNL
i, j f j


2

. (2.7)

Note that the solution uNLDJ
i can be rewritten as the weighted sum

uNLDJ
i =

∑
j∈Ω

wNLDJ
i, j f j (2.8)

where wNLDJ
i, j = (1 − αi)wNL

i, j + αiδi, j and δi, j is the Kronecker delta function.
The complete regularization framework performs TV minimization with a non-local fidelity term

as follows:

uR−NL = argmin
u∈Rn

∑
i∈Ω

λi

∑
j∈Ω

wNLDJ
i, j ( f j − u j)2 +

∑
i∈Ω

|∇ui|

 . (2.9)
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This optimization problem can be formulated as

uR−NL = argmin
u∈Rn

∑
i∈Ω

λi(ui − uNLDJ
i )2 +

∑
i∈Ω

|∇ui|

 (2.10)

with adaptive regularization parameters

λi = γ

∑
j∈Ω

(wNLDJ
i, j )2


−1/2

(2.11)

where γ > 0 is a fixed parameter that sets the strength of the adaptive regularization.

2.4. Adaptive forward-backward diffusion equation (AFBD )

Building upon the theoretical connection between the variational formulation (2.1) and its
corresponding PDE (2.2), Prasath et al. [15] developed an adaptive forward–backward diffusion
(AFBD) model:

∂u
∂t

= div
(
h(∇Gσ ∗ u)

∇u
|∇u|

)
(2.12)

where h(∇Gσ ∗ u) serves as an edge-sensitive diffusion coefficient.

h(∇Gσ ∗ u) =
1

1 + K|∇Gσ ∗ u|2
, K > 0, (2.13)

where Gσ represents a two-dimensional Gaussian kernel.
Although the authors established the existence of weak solutions for the AFBD model in (2.12), and

experimental validation showed that it successfully avoids the edge-smearing of conventional diffusion
while maintaining its benefits, the method still exhibits staircasing artifacts in noisy regions.

3. The proposed model

Motivated by the framework of [15] and the regularization functional (2.10), we consider the
following homogeneous Dirichlet problem:

ut = div
(
h(∇Gσ ∗ u) ∇u

|∇u|

)
+ λ(uNLDJ − u), in ΩT ,

∂u
∂n = 0, on ∂Ω × (0,T ),
u(x, 0) = f (x), in Ω,

(3.1)

where λ(x) is the continuous formulation of (2.11), defined as

λ(x) = γ

(∫
Ω

w2(x, y)dy
)−1/2

. (3.2)

The discrete counterpart of w(x, y) is defined as wNLDJ
i, j .

AIMS Mathematics Volume 10, Issue 12, 28207–28220.



28211

The inverse mollification function h(∇Gσ ∗ u) self-adjusts based on an estimate of the edge
information from the smoothed gradient of the image. By reducing the TV flow in homogeneous
regions, the staircasing problem is alleviated.

This hybrid model adaptively blends TV’s edge preservation and NL-means’ texture denoising via
a residual-variance-guided parameter λ(x). In homogeneous regions, high patch redundancy yields low
variance and a large λ(x), favoring NL-means for smooth results. Near edges, low redundancy increases
variance and shrinks λ(x), engaging TV to maintain edge sharpness. This adaptive mechanism strikes
an excellent balance between effective noise reduction, sharp edge preservation, and the maintenance
of fine texture details.

We now establish the existence of a weak solution to the proposed problem (3.1).
Definition 1. (Test Function Space [3]) Let Ck(Ω× (0,T );R2) denote the space of k-order continuously
differentiable functions. For any v = (v1, v2) ∈ Ck(Ω × (0,T );R2) satisfying the boundary conditions:

∂iv1

∂xi n1

∣∣∣∣
∂Ω×(0,T )

= 0 and
∂iv2

∂yi n2

∣∣∣∣
∂Ω×(0,T )

= 0

for all i = 0, 1, ..., k − 1, then v belongs to a space which is denoted byVk
0(Ω × (0,T );R2).

Definition 2. (Weighted Partial Variation [3]) Let M be the Banach space of finite signed Radon
measures on Ω × (0,T ), dual to C0(Ω × (0,T )). For u ∈ M and Φ ∈ C(Ω × [0,T ]) with Φ ≥ 0, the
weighted partial k-order variation is:

PVk
Φ(u) = sup

ψ∈Vk
0(Ω×(0,T );R2) |ψ|≤Φ

〈u, divkψ〉M ×C0

where |ψ| =
√
ψ2

1 + ψ2
2 and divkψ =

∂kψ1
∂xk +

∂kψ2
∂yk .

Proposition 1. [3] Assume that u ∈ L1(0,T ; Wk
1(Ω)). Then, PVk

Φ(u) =
∫ T

0

∫
Ω

Φ(x, t)|Dku(x, t)|dxdt.

The space functions of k-bounded partial variation on Ω × (0,T ) can be defined by

BPVk =

{
u ∈ M

∣∣∣∣∣ ‖u‖BPVk := ‖u‖M + PVk
1(u) < +∞

}
.

Definition 3. A function u in the class

u ∈ Cw(0,T ; L2(Ω)) ∩ BPV ∩W1
∞(0,T ; [L2 ∩W1,1(Ω)]∗) (3.3)

is called a weak solution to problem (3.1) with f ∈ L2(Ω) if
(i) there exists z ∈ L∞(Ω × (0,T );R2), ‖z‖L∞ ≤ 1, so that for all v ∈ L2 ∩W1,1(Ω),〈

du
dt
, v

〉
+ (h(∇Gσ ∗ u)z,∇v) + (λ(uNLDJ − u), v) = 0 (3.4)

a.e. on (0,T );
(ii) for all w ∈ L1(0,T ; W1,1(Ω)) ∩W1,1(0,T ; L2(Ω)), one has

‖u(T ) − w(T )‖2 + 2
∫ T

0

(dw
ds

(s), u(s)
)
ds + 2PV1

h(∇Gσ∗u)(u) + 2
∫ T

0

(
λ(uNLDJ − u)(s), u(s) − w(s)

)
ds

≤‖ f − w(0)‖2 + ‖w(T )‖2 − ‖w(0)‖2 + 2
∫ T

0

(
h(∇Gσ ∗ u)(s)z(s),∇w(s)

)
ds;

(3.5)
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(iii) the initial condition f holds in the space L2(Ω).
We first need to study the following auxiliary problem:

∂u
∂t + εA(u) = div(h(∇Gσ ∗ u) ∇u

ε+|∇u| ) + λ(uNLDJ − u), in ΩT ,
∂u
∂nnn = 0, on ∂Ω × (0,T ),
u(x, 0) = f (x), in Ω,

(3.6)

where ε > 0 is parameter.
Lemma 1. Let f ∈ L2(Ω). Problem (3.6) admits a solution u in the class

L2(0,T ; Hm(Ω)) ∩ H1(0,T ; (Hm(Ω))∗) ∩C([0,T ]; L2(Ω)), (3.7)

where m > 4 .
Lemma 2. Let u be a solution to problem (3.6). Then, u satisfies the a priori bound

‖u‖L∞(0,T ;L2(Ω)) + ‖u‖L1(0,T ;W1,1(Ω)) + ‖
du
dt
‖L2(0,T ;(Hm(Ω))∗) ≤ C. (3.8)

The constant C is independent of ε.
Theorem 1. Letting f ∈ L2(Ω), there exists a weak solution to (3.1) in the class (3.3).

Owing to the similarity of the proofs to the analogous arguments in [3,15], the proofs of Lemmas 1
and 2 and Theorem 1 are omitted.

4. Numerical implementation of the proposed model

4.1. Numerical approximation

The proposed model (3.1) is discretized using standard finite difference schemes and solved
numerically via the additive operator splitting (AOS) method [16]. In our numerical implementation,
we represent an m-dimensional discrete image as a vector f ∈ RN , where each component fi(i =

1, · · · ,N) corresponds to the grayscale intensity at pixel location xi. The spatial discretization uses
grid spacing hl in each dimension l, while temporal discretization employs time steps tk := kτ for
k ∈ N with step size τ. The numerical approximations uk

i ≈ u(xi, tk) and Ck
i ≈ h(∇Gσ ∗ u(xi, tk)) 1

|∇u(xi,tk)|
are computed using central difference approximations for the gradient terms, ensuring second-order
spatial accuracy in our implementation.

The simplest discretization of (3.1) with reflecting boundary conditions is

uk+1
i − uk

i

τ
=

m∑
l=1

∑
j∈Nl(i)

Ck
j + Ck

i

2h2
l

(uk+1
j − uk+1

i ) + λi(uNLDJ
i − uk

i )

where Nl(i) consists of the two neighbors of pixel i along the l direction (boundary pixels may have
only one neighbor). In vector-matrix notation, this becomes

uk+1 − uk

τ
=

m∑
l=1

Al(uk)uk+1 + λ(uNLDJ − uk)
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where Al(uk) = [al
i j(u

k)] with

al
i j(u

k) :=



Ck
i + Ck

j

2h2
l

, j ∈ Nl(i),

−
∑

n∈Nl(i)

Ck
i + Ck

n

2h2
l

, j = i,

0, otherwise.

The additive operator splitting (AOS) [16] scheme is given by

uk+1 =
1
m

m∑
l=1

(
I − mτAl(uk)

)−1
[uk + τλ(uNLDJ − uk)].

The operators Bl(uk) = I −mτAl(uk) govern one-dimensional diffusion processes along each spatial
dimension xl. When employing consecutive pixel numbering along the l-th coordinate direction, these
operators reduce to strictly diagonally dominant tridiagonal matrices. We refer readers to [16] for
complete implementation details.

4.2. Parameters setting

The quantitative evaluation uses two widely adopted image quality metrics: peak signal-to-noise
ratio (PSNR) and mean structural similarity index (MSSIM), where higher values indicate better
denoising performances. All experiments were conducted using MATLAB R2020a on an 11th Gen
Intel® Core™ i7-1165G7 processor (2.80 GHz) and 8 GB RAM. To validate the effectiveness of our
proposed method (3.1), we performed comprehensive comparative evaluations against four established
denoising approaches: TV [4], NL-means [7], R-NL [8], and BM3D [17].

The experimental configuration uses consistent parameters across all evaluations: A fixed time step
τ = 0.2 , K = 10−4, and spatial filtering with a 5 × 5 rotationally symmetric Gaussian lowpass filter
(σ = 0.8). The algorithm utilizes standard 5×5 pixel patches and 21×21 search windows for non-local
processing. The TV [4] regularization parameter λ was set to 0. The parameter γ in our model (3.1)
was adjusted adaptively: A value of 10 was used for low-texture images with low noise, while it was
set to 100 for texture-rich images with medium or high noise levels. The stopping time was chosen so
that the best PSNR is obtained.

4.3. Test cases and discussion

Figure 1 shows the ten test images used for the experimental validation. Table 1 presents quantitative
comparisons between the proposed method and state-of-the-art approaches, evaluating both PSNR
and MSSIM metrics across all test images corrupted by additive white Gaussian noise (AWGN) with
standard deviations of 20, 30, and 40. As can be noted, the proposed scheme performs well for a variety
of images. Compared with TV [4], NL-means [7], and R-NL [8], the proposed method achieves the
best performance in terms of both PSNR and MSSIM. It also surpasses BM3D in terms of MSSIM for
the Mosaic. The proposed method outperformed TV [4], NL-means [7], and R-NL [8]. The proposed
method required more time than the other four methods. For a 512 × 512 image corrupted by AWGN
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with a standard deviation of 40, the proposed algorithm requires approximately 50 s to obtain the best
PSNR.

Table 1. Qualitative comparison of denoising algorithms.

Images σ
TV [4] NL-means [7] R-NL [8] BM3D [17] Proposed

PSNR/MSSIM PSNR/MSSIM PSNR/MSSIM PSNR/MSSIM PSNR/MSSIM

Lena
20 31.48/0.9157 31.11/0.9067 32.00/0.9256 33.08/0.9414 32.07/0.9258
30 29.82/0.8811 29.20/0.8682 30.15/0.8929 31.30/0.9140 30.25/0.8942
40 28.70/0.8534 27.74/0.8308 28.73/0.8614 30.00/0.8875 28.85/0.8639

Cameraman
20 32.26/0.9149 31.92/0.9049 32.74/0.9269 34.21/0.9452 32.83/0.9269
30 30.38/0.8779 29.97/0.8691 30.67/0.8907 32.19/0.9186 30.76/0.8915
40 29.02/0.8464 28.49/0.8382 29.33/0.8650 30.82/0.8940 29.46 /0.8667

Airplane
20 31.59/0.9229 30.92/0.9150 31.83/0.9314 32.79/0.9435 32.04/0.9362
30 29.67/0.8871 28.91/0.8827 29.77/0.9019 30.82/0.9197 30.09/0.9118
40 28.29/0.8541 27.31/0.8453 28.35/0.8765 29.42/0.8973 28.62/0.8881

Parrot
20 28.61/0.8290 28.33/0.8236 29.55/0.8588 29.89/0.8705 29.57/0.8598
30 26.76/0.7826 26.95/0.7770 27.61/0.8159 28.06/0.8330 27.72/0.8190
40 25.51/0.7544 25.67/0.7296 26.07/0.7817 26.83/0.8229 26.35/0.7880

Hats
20 31.93/0.9066 32.10/0.9155 32.91/0.9313 33.71/0.9430 32.95/0.9321
30 30.38/0.8807 30.23/0.8793 30.99/0.8988 31.90/0.9162 31.06/0.9016
40 29.46/0.8601 28.83/0.8439 29.80/0.8752 30.68/0.8916 29.92/0.8778

Boat
20 29.29/0.8937 28.68/0.8559 29.93/0.9008 30.92/ 0.9269 29.95/0.9025
30 27.61/0.8451 26.79/0.8011 27.94/0.8433 29.11/0.8866 28.03/0.8483
40 26.47/0.7987 25.49/0.7519 26.52/0.7903 27.80/0.8478 26.68/0.7994

Barbara
20 26.59/0.8415 29.53/0.9089 30.18/0.9294 32.08/0.9508 30.35/0.9316
30 24.76/0.7699 27.07/0.8556 27.62/0.8762 29.99/0.9223 28.01/0.8845
40 23.86/0.7481 25.44/0.8043 25.82 /0.8258 28.42/0.8899 26.26/0.8437

Monarch
20 31.44/0.9430 31.12/0.9546 32.23/0.9658 32.59/0.9665 32.30/0.9678
30 29.36/0.9133 28.99/0.9269 29.93/0.9467 30.59/0.9483 30.09/0.9504
40 27.85/0.8875 27.32/0.8967 28.22/0.9243 29.16/0.9301 28.59/0.9304

Man
20 29.69/0.8977 28.75/0.8543 29.97/0.8926 30.58/0.9166 30.12/0.9052
30 28.09/0.8484 27.06/0.7972 28.05/0.8332 28.81/0.8720 28.35/0.8556
40 26.98/0.8074 25.93/0.7508 26.76/0.7827 27.64/0.8332 27.19/0.8131

Mosaic
20 36.75/0.9829 37.63/0.9807 40.49/0.9887 39.94/0.9916 40.40/0.9928
30 34.64/0.9758 34.26/0.9544 36.90/0.9767 36.88/0.9805 36.85/0.9831
40 33.05/0.9695 32.14/0.9260 34.32/0.9611 34.80/0.9649 34.41/0.9704
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(a) Lena (b) Cameraman (c) Airplane (d) Parrot (e) Hats

(f) Boat (g) Barbara (h) Monarch (i) Man (j) Mosaic

Figure 1. Test images used in Table 1.

Figures 2–4 show a visual comparison of natural images corrupted by AWGN with standard
deviations of 30 and 40. Figures 2 and 3 present the restored images of the Barbara image, which
shows that the TV not only introduces a staircasing effect on Barbara’s face and the background, but
also fails to preserve the texture. Although the NL-means [7] method preserves the texture, its results
suffer from oversmoothing. The texture recovery performance of BM3D [17] is inferior to those of R-
NL [8] and our method. BM3D [17] introduces artifacts, particularly in the facial region. Our proposed
method and R-NL [8] effectively preserve texture while achieving natural facial restoration. Figure 4
presents the restoration results of the five methods for the test image Airplane with σn= 40. The regions
in the red squares are displayed in the lower-right corner for a better visual comparison. The TV [4]
produces noticeable staircasing artifacts, whereas the NL-means [7] leads to over-smoothed number
regions. Our method outperforms R-NL [8] in digital restoration, but its results are still inferior to
those of BM3D [17].
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(a) Barbara (b) Noise (c) TV [4]

(d) NL-means [7] (e) R-NL [8] (f) BM3D [17]

(g) Proposed

Figure 2. Restoration results of five methods for test image Barbara with σn = 30.
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(a) Original (b) Original (c) Noise (d) TV [4]

(e) NL-means [7] (f) R-NL [8] (g) BM3D [17] (h) Proposed

(i) Original (j) Noise (k) TV [4] (l) NL-means [7]

(m) R-NL [8] (n) BM3D [17] (o) Proposed

Figure 3. Zoomed parts of Barbara are shown for better visual comparison.
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(a) Original (b) Noise (c) TV [4] (d) NL-means [7]

(e) R-NL [8] (f) BM3D [17] (g) Proposed

Figure 4. Restoration results of five methods for test image Airplane with σn= 40.

5. Conclusions

In this study, we have proposed an adaptive diffusion model that utilizes a combination of TV
and NL-means terms. The proposed model incorporates a weighted non-local data fidelity term
that dynamically adjusts the balance between TV and NL-means regularization based on local image
features. We have investigated the existence of a weak solution for the new model. Comprehensive
numerical experiments have demonstrated that the proposed method can effectively suppresses noise
while preserving textural details and maintaining structural integrity across various noise levels.

Use of Generative-AI tools declaration

The authors declare they have used Deepseek in this article. The AI tools were used exclusively for
the purpose of language polishing, and improving the fluency and readability of the manuscript.The AI-
assisted improvements are applied throughout the entire text of the manuscript to improve its linguistic
quality, and do not affect the core scientific meaning or findings.

Conflict of interest

The authors declare no conflict of interest.

AIMS Mathematics Volume 10, Issue 12, 28207–28220.



28219

References

1. P. Perona, J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern
Anal. Mach. Intell., 12 (1990), 629–639. https://doi.org/10.1109/34.56205

2. H. K. Rafsanjani, M. H. Sedaaghi, S. Saryazdi, Efficient diffusion coefficient for image denoising,
Comput. Math. Appl., 72 (2016), 893–903. https://doi.org/10.1016/j.camwa.2016.06.005

3. X. Zhang, W. Ye, An adaptive fourth-order partial differential equation for image denoising,
Comput. Math. Appl., 74 (2017), 2529–2545. https://doi.org/10.1016/j.camwa.2017.07.036

4. L. I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys.
D: Nonlinear Phenom., 60 (1992), 259–268. https://doi.org/10.1016/0167-2789(92)90242-F

5. C. Antonin, L. P. Louis, Image recovery via total variation minimization and related problems,
Numer. Math., 76 (1997), 167–188. https://doi.org/10.1007/s002110050258

6. T. Chan, A. Marquina, P. Mulet, High-order total variation-based image restoratio, SIAM J. Sci.
Comput., 22 (2000), 503–516. https://doi.org/10.1137/S1064827598344169

7. A. Buades, B. Coll, J. M. Morel, A review of image denoising algorithms, with a new one,
Multiscale Model. Simul., 4 (2005), 490–530. https://doi.org/10.1137/040616024

8. C. Sutour, C. A. Deledalle, J. F. Aujol, Adaptive regularization of the NL-Means: Application
to image and video denoising, IEEE Trans. Image Process., 23 (2014), 3506–3521.
https://doi.org/10.1109/TIP.2014.2329448

9. J. Delon, A. Desolneux, C. Sutour, A. Viano, RNLp: Mixing nonlocal and TV-Lp
methods to remove impulse noise from image, J. Math. Imaging Vis., 61 (2019), 458–481.
https://doi.org/10.1007/s10851-018-0856-3

10. C. Louchet, L. Moisan, Total variation as a local filter, SIAM J. Imaging Sci., 4 (2011), 651–694.
https://doi.org/10.1137/100785855

11. K. Shi, Coupling local and nonlocal diffusion equations for image denoising, Nonlinear Anal. Real
World Appl., 62 (2021), 103362. https://doi.org/10.1016/j.nonrwa.2021.103362

12. A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging
Vis., 20 (2004), 89–97. https://doi.org/10.1023/B:JMIV.0000011325.36760.1e

13. A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications
to imagin, J. Math. Imaging Vis., 40 (2011), 120–145. https://doi.org/10.1007/s10851-010-0251-1

14. L. P. Yaroslavsky, Digital picture processing: An introduction, Springer Science & Business Media,
2012.

15. V. B. S. Prasath, J. M. Urbano, D. Vorotnikov, Analysis of adaptive forward-backward
diffusion flows with applications in image processing, Inverse Probl., 31 (2015), 105008.
https://dx.doi.org/10.1088/0266-5611/31/10/105008

16. J. Weickert, B. Romeny, M. Viergever, Efficient and reliable schemes for nonlinear diffusion
filtering, IEEE Trans. Image Process., 7 (1998), 398–410. https://doi.org/10.1109/83.661190

AIMS Mathematics Volume 10, Issue 12, 28207–28220.

https://dx.doi.org/https://doi.org/10.1109/34.56205
https://dx.doi.org/https://doi.org/10.1016/j.camwa.2016.06.005
https://dx.doi.org/https://doi.org/10.1016/j.camwa.2017.07.036
https://dx.doi.org/https://doi.org/10.1016/0167-2789(92)90242-F
https://dx.doi.org/https://doi.org/10.1007/s002110050258
https://dx.doi.org/https://doi.org/10.1137/S1064827598344169
https://dx.doi.org/https://doi.org/10.1137/040616024
https://dx.doi.org/https://doi.org/10.1109/TIP.2014.2329448
https://dx.doi.org/https://doi.org/10.1007/s10851-018-0856-3
https://dx.doi.org/https://doi.org/10.1137/100785855
https://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2021.103362
https://dx.doi.org/https://doi.org/10.1023/B:JMIV.0000011325.36760.1e
https://dx.doi.org/https://doi.org/10.1007/s10851-010-0251-1
https://dx.doi.org/https://dx.doi.org/10.1088/0266-5611/31/10/105008
https://dx.doi.org/https://doi.org/10.1109/83.661190


28220

17. K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising by sparse 3-D
transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), 2080–2095.
https://doi.org/10.1109/TIP.2007.901238

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 12, 28207–28220.

https://dx.doi.org/https://doi.org/10.1109/TIP.2007.901238
https://creativecommons.org/licenses/by/4.0

	Introduction
	Related methods 
	 The TV model
	The NL-means algorithm
	Regularized NL-Means(R-NL)
	Adaptive forward-backward diffusion equation (AFBD )

	The proposed model 
	Numerical implementation of the proposed model
	Numerical approximation
	Parameters setting
	Test cases and discussion

	Conclusions

