Research article Topical Sections

Flag-transitive point-primitive $ 2 $-$ (v, k, \lambda) $ designs with $ A_n $ ($ n = 6, 7, 8 $) socle

  • Published: 26 November 2025
  • MSC : 05B05, 20B25, 20B15, 20B30

  • This paper classifies all flag-transitive point-primitive nontrivial $ 2 $-$ (v, k, \lambda) $ designs whose automorphism groups have socle $ A_n $ for $ n = 6, 7, 8 $. Up to isomorphism, there are exactly 50 such designs, including 11 full designs and 3 symmetric ones.

    Citation: Delu Tian, Qianfen Liao, Zhilin Zhang. Flag-transitive point-primitive $ 2 $-$ (v, k, \lambda) $ designs with $ A_n $ ($ n = 6, 7, 8 $) socle[J]. AIMS Mathematics, 2025, 10(11): 27666-27676. doi: 10.3934/math.20251216

    Related Papers:

  • This paper classifies all flag-transitive point-primitive nontrivial $ 2 $-$ (v, k, \lambda) $ designs whose automorphism groups have socle $ A_n $ for $ n = 6, 7, 8 $. Up to isomorphism, there are exactly 50 such designs, including 11 full designs and 3 symmetric ones.



    加载中


    [1] C. J. Colbourn, J. H. Dinitz, Handbook of combinatorial designs, 2 Eds., Chapman and Hall/CRC, 2006. https://doi.org/10.1201/9781420010541
    [2] J. H. Conway, R. T. Curtis, R. A. Parker, S. P. Norton, R. A. Wilson, ATLAS of finite groups, Oxford University Press, 1985.
    [3] E. S. Lander, Symmetric designs: an algebraic approach, London Mathematical Society Lecture Note Series: 74, Cambridge University Press, 1983.
    [4] H. Wielandt, Finite permutation groups, Academic Press, 1964. https://doi.org/10.1016/C2013-0-11702-3
    [5] D. L. Tian, S. L. Zhou, Flag-transitive point-primitive symmetric $(v, k, \lambda)$ designs with $\lambda$ at most 100, J. Combin. Des., 21 (2013), 127–141. https://doi.org/10.1002/jcd.21337 doi: 10.1002/jcd.21337
    [6] D. L. Tian, S. L. Zhou, Flag-transitive $2$-$(v, k, \lambda)$ symmetric designs with sporadic socle, J. Combin. Des., 23 (2015), 140–150. https://doi.org/10.1002/jcd.21385 doi: 10.1002/jcd.21385
    [7] S. H. Alavi, M. Bayat, M. Biliotti, A. Daneshkhah, E. Francot, H. Guan, et al., Block designs with $\gcd(r, \lambda) = 1$ admitting flag-transitive automorphism groups, Results Math., 77 (2022), 151. https://doi.org/10.1007/s00025-022-01697-2 doi: 10.1007/s00025-022-01697-2
    [8] H. X. Liang, A. Montinaro, A classification of the flag-transitive 2-$(v, k, 2)$ designs, J. Comb. Theory, Ser. A, 211 (2025), 105983. https://doi.org/10.1016/j.jcta.2024.105983 doi: 10.1016/j.jcta.2024.105983
    [9] A. Montinaro, Classfication of the 2-$(k^2, k, \lambda)$ design, with $\lambda | k$, admitting a flag-transitive automorphism group $G$ of almost simple type, J. Comb. Theory, Ser. A, 195 (2023), 105710.
    [10] A. Montinaro, A classification of flag-transitive 2-$(k^2, k, \lambda)$ designs with $\lambda | k$, J. Comb. Theory, Ser. A, 197 (2023), 105750. https://doi.org/10.1016/j.jcta.2023.105750 doi: 10.1016/j.jcta.2023.105750
    [11] H. L. Dong, S. L. Zhou, Alternating groups and flag-transitive 2-$(v, k, 4)$ symmetric designs, J. Combin. Des., 19 (2011), 475–483. https://doi.org/10.1002/jcd.20294 doi: 10.1002/jcd.20294
    [12] H. L. Dong, S. L. Zhou, Flag-transitive primitive $(v, k, \lambda)$-symmetric designs with $\lambda$ at most $10$ and alternating groups, J. Algebra Appl., 13 (2014), 1450025. https://doi.org/10.1142/S021949881450025X doi: 10.1142/S021949881450025X
    [13] Y. Zhu, D. L. Tian, S. L. Zhou, Flag-transitive point-primitive $(v, k, \lambda)$-symmetric designs with $\lambda$ at most 100 and alternating socle, Math. Slovaca, 66 (2016), 1037–1046.
    [14] Y. J. Wang, S. L. Zhou, Flag-transitive $2$-$(v, k, \lambda)$ symmetric designs with $\lambda\geq (k, \lambda)^2$ and alternating socle, Discrete Math., 343 (2020), 111973. https://doi.org/10.1016/j.disc.2020.111973 doi: 10.1016/j.disc.2020.111973
    [15] Y. J. Wang, J. X. Shen, S. L. Zhou, Alternating groups and flag-transitive non-symmetric 2-$(v, k, \lambda)$ designs with $\lambda \geq (r, \lambda)^2$, Discrete Math., 345 (2022), 112703. https://doi.org/10.1016/j.disc.2021.112703 doi: 10.1016/j.disc.2021.112703
    [16] Y. L. Zhang, J. F. Chen, S. L. Zhou, Flag-transitive 2-$(v, k, \lambda)$ designs with $\lambda$ prime and alternating socle, J. Algebra Appl., 23 (2024), 2450080. https://doi.org/10.1142/S0219498824500804 doi: 10.1142/S0219498824500804
    [17] J. X. Shen, J. F. Chen, S. L. Zhou, Flag-transitive 2-designs with prime square replication number and alternating groups, Des. Codes Cryptogr., 91 (2023), 709–717. https://doi.org/10.1007/s10623-022-01121-4 doi: 10.1007/s10623-022-01121-4
    [18] W. B. Zhang, S. L. Zhou, Flag-transitive 2-designs with $(r-\lambda, k) = 1$ and alternating socle, Discrete Math., 346 (2023), 113569. https://doi.org/10.1016/j.disc.2023.113569 doi: 10.1016/j.disc.2023.113569
    [19] D. L. Tian, Complete classification of flag-transitive point-primitive 2-designs with socle $M_11$, J. Math. Res. Appl., 40 (2020), 551–557. https://doi.org/10.3770/j.issn:2095-2651.2020.06.001 doi: 10.3770/j.issn:2095-2651.2020.06.001
    [20] D. L. Tian, Z. L. Zhang, Y. J. Wang, Flag-transitive 2-designs and Mathieu group $M_12$, J. Math., 2025 (2025), 2866118. https://doi.org/10.1155/jom/2866118 doi: 10.1155/jom/2866118
    [21] D. L. Tian, G. Q. Li, Flag-transitive point-primitive 2-designs with socle $A_5$, J. Phys.: Conf. Ser., 1592 (2020), 012030. https://doi.org/10.1088/1742-6596/1592/1/012030 doi: 10.1088/1742-6596/1592/1/012030
    [22] R. A. Wilson, The finite simple groups, Vol. 251, Springer, 2009. https://doi.org/10.1007/978-1-84800-988-2
    [23] The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.4, 2005. Available form: http://www.gap-system.org.
    [24] W. Bosma, J. Cannon, C. Playoust, The MAGMA algebra system Ⅰ: the user language, J. Symb. Comput., 24 (1997), 235–265. https://doi.org/10.1006/jsco.1996.0125 doi: 10.1006/jsco.1996.0125
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(254) PDF downloads(39) Cited by(0)

Article outline

Figures and Tables

Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog