The fifth-order nonlinear water wave equation was explored in this and its utility in oceanography and its continued establishment was highlighted. Lie symmetry theory was applied to the nonlinear model, and the corresponding infinitesimal generators were constructed. Using the theory of abelian algebra and a suitable process of similarity reduction, the governing equation was simplified to a nonlinear ordinary differential equation. A new extended algebraic method, the nonlinear evolutionary differential approximation method, was presented to obtain the wave profiles by formulation of very general analytical solutions. To get a more detailed idea of how the physical processes that include nonlinear water waves work, 2D and 3D plots were created for several sets of parameter values, showing how the solitons were formed with unique shapes and the combined effects of dispersion and nonlinearly. In addition, a physics-informed neural network was deployed for the analysis of wave profiles. In this context, a 3D graphical representation was depicted with 2D training graphs. Additionally, by use of traveling wave transformation, 2D plots were presented to show how the wave profiles vary when parameter changes. The results, were obtained when the physics-informed neural network, were validated with a numerical scheme and revealed that the variation of parameters is crucially important to nonlinear oceanographic theories. These results support adequate parameter choices in the modeling of wave propagation and interaction in nonlinear water waves.
Citation: Hassan Almusawa, Zain Majeed, Adil Jhangeer. Application-oriented analysis of nonlinear water waves via analytical and neural network approaches; Oceanography Advances[J]. AIMS Mathematics, 2025, 10(11): 27635-27665. doi: 10.3934/math.20251215
The fifth-order nonlinear water wave equation was explored in this and its utility in oceanography and its continued establishment was highlighted. Lie symmetry theory was applied to the nonlinear model, and the corresponding infinitesimal generators were constructed. Using the theory of abelian algebra and a suitable process of similarity reduction, the governing equation was simplified to a nonlinear ordinary differential equation. A new extended algebraic method, the nonlinear evolutionary differential approximation method, was presented to obtain the wave profiles by formulation of very general analytical solutions. To get a more detailed idea of how the physical processes that include nonlinear water waves work, 2D and 3D plots were created for several sets of parameter values, showing how the solitons were formed with unique shapes and the combined effects of dispersion and nonlinearly. In addition, a physics-informed neural network was deployed for the analysis of wave profiles. In this context, a 3D graphical representation was depicted with 2D training graphs. Additionally, by use of traveling wave transformation, 2D plots were presented to show how the wave profiles vary when parameter changes. The results, were obtained when the physics-informed neural network, were validated with a numerical scheme and revealed that the variation of parameters is crucially important to nonlinear oceanographic theories. These results support adequate parameter choices in the modeling of wave propagation and interaction in nonlinear water waves.
| [1] |
M. Han, L. Zhang, Y. Wang, C. M. Khalique, The effects of the singular lines on the traveling wave solutions of modified dispersive water wave equations, Nonlinear Anal. Real World Appl., 47 (2019), 236–250. https://doi.org/10.1016/j.nonrwa.2018.10.012 doi: 10.1016/j.nonrwa.2018.10.012
|
| [2] |
I. E. Mhlanga, C. M. Khalique, A study of a generalized Benney–Luke equation with time-dependent coefficients, Nonlinear Dyn., 90 (2017), 1535–1544. https://doi.org/10.1007/s11071-017-3745-1 doi: 10.1007/s11071-017-3745-1
|
| [3] |
C. M. Khalique, L. D. Moleleki, A (3+1)-dimensional generalized BKP–Boussinesq equation: Lie group approach, Results Phys., 13 (2019), 102239. https://doi.org/10.1016/j.rinp.2019.102239 doi: 10.1016/j.rinp.2019.102239
|
| [4] |
Y. H. Liang, K. J. Wang, Dynamics of the new exact wave solutions to the local fractional Vakhnenko-Parkes equation, Fractals, (2025), 2550102. https://doi.org/10.1142/S0218348X25501026 doi: 10.1142/S0218348X25501026
|
| [5] |
L. Gavete, F. Urena, J. J. Benito, A. García, M. Urena, E. Salete, Solving second order nonlinear elliptic partial differential equations using generalized finite difference method, J. Comput. Appl. Math., 318 (2018), 378–387. https://doi.org/10.1016/j.cam.2016.07.025 doi: 10.1016/j.cam.2016.07.025
|
| [6] |
I. Christie, D. F. Griffiths, A. R. Mitchell, J. M. Sanz-Serna, Product approximation for non-linear problems in the finite element method, IMA J. Numer. Anal., 1 (1981), 253–266. https://doi.org/10.1093/imanum/1.3.253 doi: 10.1093/imanum/1.3.253
|
| [7] | J. Peiró, S. Sherwin, Finite difference, finite element and finite volume methods for partial differential equations, in Handbook of Materials Modeling: Methods (2005), 2415–2446. https://doi.org/10.1007/978-1-4020-3286-8_127 |
| [8] |
M. Nadeem, F. Li, H. Ahmad, Modified Laplace variational iteration method for solving fourth-order parabolic partial differential equation with variable coefficients, Comput. Math. Appl., 78 (2019), 2052–2062. https://doi.org/10.1016/j.camwa.2019.03.053 doi: 10.1016/j.camwa.2019.03.053
|
| [9] |
S. Sirisubtawee, S. Kaewta, New modified Adomian decomposition recursion schemes for solving certain nonlinear fractional two-point boundary value problems, Int. J. Math. Math. Sci., (2017), 5742965. https://doi.org/10.1155/2017/5742965 doi: 10.1155/2017/5742965
|
| [10] |
S. Owyed, M. Abdou, A. H. Abdel-Aty, W. Alharbi, R. Nekhili, Numerical and approximate solutions for coupled time fractional nonlinear evolutions equations via reduced differential transform method, Chaos Soliton. Fract., 131 (2020), 109474. https://doi.org/10.1016/j.chaos.2019.109474 doi: 10.1016/j.chaos.2019.109474
|
| [11] |
L. Akinyemi, H. Rezazadeh, S. W. Yao, M. A. Akbar, M. M. A. Khater, A. Jhangeer, et al., Nonlinear dispersion in parabolic law medium and its optical solitons, Results Phys., 26 (2021), 104411. https://doi.org/10.1016/j.rinp.2021.104411 doi: 10.1016/j.rinp.2021.104411
|
| [12] |
J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Soliton. Fract., 30 (2008), 700–708. https://doi.org/10.1016/j.chaos.2006.03.020 doi: 10.1016/j.chaos.2006.03.020
|
| [13] |
P. F. Han, R. S. Ye, Y. Zhang, Inverse scattering transform for the coupled Lakshmanan-Porsezian-Daniel equations with non-zero boundary conditions in optical fiber communications, Math. Comput. Simul., 232 (2025), 483–503. https://doi.org/10.1016/j.matcom.2025.01.008 doi: 10.1016/j.matcom.2025.01.008
|
| [14] |
P. F. Han, K. Zhu, F. Zhang, W. X. Ma, Y. Zhang, Inverse scattering transform for the fourth-order nonlinear Schrödinger equation with fully asymmetric non-zero boundary conditions, Chin. J. Phys., (2025). https://doi.org/10.1016/j.cjph.2025.05.021 doi: 10.1016/j.cjph.2025.05.021
|
| [15] |
A. M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math. Comput. Modell., 40 (2004), 499–508. https://doi.org/10.1016/j.mcm.2003.12.010 doi: 10.1016/j.mcm.2003.12.010
|
| [16] |
A. M. Wazwaz, Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh–coth method, Appl. Math. Comput., 190 (2007), 633–640. https://doi.org/10.1016/j.amc.2007.01.056 doi: 10.1016/j.amc.2007.01.056
|
| [17] |
K. J. Wang, Resonant multiple wave, periodic wave and interaction solutions of the new extended (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Nonlinear Dyn., 111 (2023), 16427–16439. https://doi.org/10.1007/s11071-023-08699-x doi: 10.1007/s11071-023-08699-x
|
| [18] |
K. J. Wang, The generalized (3+1)-dimensional B-type Kadomtsev-Petviashvili equation: Resonant multiple soliton, N-soliton, soliton molecules and interaction solutions, Nonlinear Dyn., 112 (2024), 7309–7324. https://doi.org/10.1007/s11071-024-09356-7 doi: 10.1007/s11071-024-09356-7
|
| [19] |
S. Kumar, B. Kaur, S. W. Yao, M. Inc, M. S. Osman, Invariance analysis, exact solution and conservation laws of (2+1)-dimensional fractional Kadomtsev–Petviashvili system, Symmetry, 15 (2022), 477. https://doi.org/10.3390/sym13030477 doi: 10.3390/sym13030477
|
| [20] |
M. Nadjafikhah, M. Jafari, Computation of partially invariant solutions for the Einstein-Walker manifolds' identifying equations, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 3317. https://doi.org/10.1016/j.cnsns.2013.04.018 doi: 10.1016/j.cnsns.2013.04.018
|
| [21] |
H. Kurkcu, M. B. Riaz, M. Imran, A. Jhangeer, Lie analysis and nonlinear propagating waves of the (3+1)-dimensional generalized Boiti-Leon-Manna-Pempinelli equation, Alex. Eng. J., 80 (2023), 475–486. https://doi.org/10.1016/j.aej.2023.08.067 doi: 10.1016/j.aej.2023.08.067
|
| [22] |
F. D. Zaman, F. M. Mahomed, F. Arif, Lie symmetry classification, optimal system and conservation laws of damped Klein-Gordon equation with power-law nonlinearity, Math. Comput. Appl., 28 (2023), 96. https://doi.org/10.3390/mca28050096 doi: 10.3390/mca28050096
|
| [23] |
A. Jhangeer, A. R. Ansari, M. Imran, M. B. Riaz, Beenish, Lie symmetry analysis and traveling wave patterns arise in the model of transmission lines, AIMS Math., 9 (2024), 18013. https://doi.org/10.3934/math.2024878 doi: 10.3934/math.2024878
|
| [24] |
A. Jhangeer, Beenish, Study of magnetic fields using dynamical patterns and sensitivity analysis, Chaos Soliton. Fract., 182 (2024), 114827. https://doi.org/10.1016/j.chaos.2024.114827 doi: 10.1016/j.chaos.2024.114827
|
| [25] |
A. Jhangeer, Beenish, Dynamics and wave analysis in longitudinal motion of elastic bars or fluids, Ain Shams Eng. J., (2024), 102907. https://doi.org/10.1016/j.asej.2024.102907 doi: 10.1016/j.asej.2024.102907
|
| [26] |
Y. Shen, B. Tian, Bilinear auto-Bäcklund transformations and soliton solutions of a (3+1)-dimensional generalized nonlinear evolution equation for shallow water waves, Appl. Math. Lett., 122 (2021), 107301. https://doi.org/10.1016/j.aml.2021.107301 doi: 10.1016/j.aml.2021.107301
|
| [27] |
Y. Shen, B. Tian, S. H. Liu, Solitonic fusion and fission for a (3+1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves, Phys. Lett. A, 405 (2021), 127429. https://doi.org/10.1016/j.physleta.2021.127429 doi: 10.1016/j.physleta.2021.127429
|
| [28] |
M. A. Helal, A. R. Seadawy, M. Zekry, Stability analysis solutions of the nonlinear modified Degasperis–Procesi water wave equation, J. Ocean Eng. Sci., 2 (2017), 155–160. https://doi.org/10.1016/j.joes.2017.07.002 doi: 10.1016/j.joes.2017.07.002
|
| [29] |
A. Ali, A. R. Seadawy, Dispersive soliton solutions for shallow water wave system and modified Benjamin–Bona–Mahony equations, J. Ocean Eng. Sci., 6 (2021), 85–98. https://doi.org/10.1016/j.joes.2020.06.001 doi: 10.1016/j.joes.2020.06.001
|
| [30] |
M. Devi, S. Yadav, R. Arora, Optimal system and invariance analysis of fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation using Lie symmetry approach, Appl. Math. Comput., 404 (2021), 126230. https://doi.org/10.1016/j.amc.2021.126230 doi: 10.1016/j.amc.2021.126230
|
| [31] |
H. Almusawa, A. Jhangeer, Beenish, Soliton solutions, Lie symmetry analysis and conservation laws of ionic waves traveling through microtubules in live cells, Results Phys., 43 (2022), 106028. https://doi.org/10.1016/j.rinp.2022.106028 doi: 10.1016/j.rinp.2022.106028
|
| [32] |
X. Hong, A. Ilyas, A. Alkireet, O. A. Ilhan, J. Manafian, M. K. M. Nasution, Multiple soliton solutions of the generalized Hirota-Satsuma-Ito equation arising in shallow water wave, J. Geom. Phys., (2021), 104338. https://doi.org/10.1016/j.geomphys.2021.104338 doi: 10.1016/j.geomphys.2021.104338
|
| [33] |
U. Younas, A. R. Seadawy, M. Younis, S. T. R. Rizvi, Dispersive propagation wave structures of the Dullin-Gottwald-Holm dynamical equation in shallow water waves, Chin. J. Phys., 68 (2020), 348–364. https://doi.org/10.1016/j.cjph.2020.09.021 doi: 10.1016/j.cjph.2020.09.021
|
| [34] |
F. S. Alshammari, M. F. Hoque, H. O. Rashid, Dynamical solitary interactions between lump waves and different forms of solitons for the (2+1)-dimensional shallow water wave equation, Partial Differ. Equ. Appl. Math., 3 (2021), 100026. https://doi.org/10.1016/j.padiff.2021.100026 doi: 10.1016/j.padiff.2021.100026
|
| [35] |
N. Yang, W. Xu, K. Zhang, B. Zheng, Exact solutions to the space-time fractional shallow water wave equation via complete discrimination system for polynomial method, Results Phys., 20 (2021), 103728. https://doi.org/10.1016/j.rinp.2020.103728 doi: 10.1016/j.rinp.2020.103728
|
| [36] |
K. Hosseini, M. Mirzazadeh, S. Salahshour, D. Baleanu, A. Zafar, Specific wave structures of a fifth-order nonlinear water wave equation, J. Ocean Eng. Sci., 14 (2021). https://doi.org/10.1016/j.joes.2021.09.019 doi: 10.1016/j.joes.2021.09.019
|
| [37] |
K. Hosseini, M. Inc, M. Shafiee, M. Ilie, A. Shafaroody, A. Yusuf, et al., Invariant subspaces, exact solutions and stability analysis of nonlinear water wave equations, J. Ocean Eng. Sci., 5 (2020), 35–40. https://doi.org/10.1016/j.joes.2019.07.004 doi: 10.1016/j.joes.2019.07.004
|
| [38] |
P. F. Han, K. Zhu, W. X. Ma, Novel superposition solutions for an extended (3+1)-dimensional generalized shallow water wave equation in fluid mechanics and plasma physics, Qual. Theory Dyn. Syst., 24 (2025), 150. https://doi.org/10.1007/s12346-025-01310-1 doi: 10.1007/s12346-025-01310-1
|
| [39] |
P. F. Han, Y. Zhang, Investigation of shallow water waves near the coast or in lake environments via the KdV-Calogero-Bogoyavlenskii-Schiff equation, Chaos Solit. Fract., 184 (2024), 115008. https://doi.org/10.1016/j.chaos.2024.115008 doi: 10.1016/j.chaos.2024.115008
|
| [40] |
E. Noether, Invariante Variationsprobleme, Nachr. König. Ges. Wiss. Gött. Math.-Phys. Kl., 2 (1918), 235–257. https://doi.org/10.48550/arXiv.physics/0503066 doi: 10.48550/arXiv.physics/0503066
|
| [41] | P. J. Olver, Hamiltonian and Non-Hamiltonian Models for Water Waves, Springer, (1984). https://doi.org/10.1007/3-540-12916-2_62 |
| [42] |
H. Lu, M. Wang, Exact soliton solutions of some nonlinear physical models, Phys. Lett. A, 255 (1999), 249–252. https://doi.org/10.1016/S0375-9601(03)00909-5 doi: 10.1016/S0375-9601(03)00909-5
|
| [43] | A. H. A. Ali, A. A. Soliman, New exact solutions of some nonlinear partial differential equations, Int. J. Nonlinear Sci., 5 (2008), 79–88. |
| [44] |
J. Ul Rahman, F. Makhdoom, A. Ali, S. Danish, Mathematical modeling and simulation of biophysics systems using neural network, Int. J. Mod. Phys. B, 38 (2024), 2450066. https://doi.org/10.1142/S0217979224500668 doi: 10.1142/S0217979224500668
|
| [45] |
S. Rehman, A. Hussain, J. Ul Rahman, N. Anjum, T. Munir, Modified Laplace based variational iteration method for the mechanical vibrations and its applications, Acta Mech. Autom., 16 (2022), 2. https://doi.org/10.2478/ama-2022-0012 doi: 10.2478/ama-2022-0012
|
| [46] |
J. A. Zarnan, W. M. Hameed, A. B. Kanbar, New numerical approach for solution of nonlinear differential equations, J. Hunan Univ. Nat. Sci., 49 (2022), 7. https://doi.org/10.55463/issn.1674-2974.49.7.18 doi: 10.55463/issn.1674-2974.49.7.18
|
| [47] |
S. Kremsner, A. Steinicke, M. Szölgyenyi, A deep neural network algorithm for semilinear elliptic PDEs with applications in insurance mathematics, Risks, 8 (2020), 136. https://doi.org/10.3390/risks8040136 doi: 10.3390/risks8040136
|
| [48] |
Y. Li, W. Han, H. Zheng, J. Huang, W. Wang, Deep learning-based safety helmet detection in engineering management based on convolutional neural networks, Adv. Civ. Eng., (2020), 9703560. https://doi.org/10.1155/2020/9703560 doi: 10.1155/2020/9703560
|
| [49] |
A. Sahu, K. P. S. Rana, V. Kumar, An application of deep dual convolutional neural network for enhanced medical image denoising, Med. Biol. Eng. Comput., 61 (2023), 991–1004. https://doi.org/10.1007/s11517-022-02731-9 doi: 10.1007/s11517-022-02731-9
|
| [50] |
G. Pan, P. Zhang, A. Chen, Y. Deng, Z. Zhang, H. Lu, et al., Aerobic glycolysis in colon cancer is repressed by naringin via the HIF1A pathway, J. Zhejiang Univ. Sci. B, 24 (2023), 221–231. https://doi.org/10.1631/jzus.B2200221 doi: 10.1631/jzus.B2200221
|
| [51] | A. Singh, R. Jiwari, U. Saini, PINNs algorithmic framework for simulation of nonlinear Burgers' type models, arXiv preprint arXiv: 2506.12922 (2025). https://doi.org/10.48550/arXiv.2506.12922 |