Research article Special Issues

Dynamic behavior and bifurcation analysis of a Cournot duopoly model with log-linear price function and quadratic cost functions

  • Published: 26 November 2025
  • MSC : 39A10, 39A28, 65P20, 65P30, 97N80

  • In this paper, we studied the dynamic behavior of a Cournot-type duopoly model with homogeneous goods, a convex log-linear price function, and quadratic cost functions. By using the Lambert $ W $ function, we derived explicit expressions for the fixed points and showed that the model has exactly three fixed points. We conducted a local stability analysis to identify the stability regions for each fixed point. Furthermore, we demonstrated that the system undergoes a sequence of period-doubling bifurcations, which give rise to stable cycles of period 2 and period 4. We showed that the period-4 cycle loses its stability through a Neimark-Sacker bifurcation, where an attracting invariant closed curve emerges. We also derived the topological normal forms associated with the period-doubling bifurcation points. To confirm the presence of chaotic behavior, we computed the largest Lyapunov exponents. Finally, numerical simulations, along with bifurcation analyses performed using MatContM, validated our theoretical results. These findings extend and enhance previous studies in the literature, particularly the results in [1,2].

    Citation: Bashir Al-Hdaibat, A. Alameer. Dynamic behavior and bifurcation analysis of a Cournot duopoly model with log-linear price function and quadratic cost functions[J]. AIMS Mathematics, 2025, 10(11): 27608-27634. doi: 10.3934/math.20251214

    Related Papers:

  • In this paper, we studied the dynamic behavior of a Cournot-type duopoly model with homogeneous goods, a convex log-linear price function, and quadratic cost functions. By using the Lambert $ W $ function, we derived explicit expressions for the fixed points and showed that the model has exactly three fixed points. We conducted a local stability analysis to identify the stability regions for each fixed point. Furthermore, we demonstrated that the system undergoes a sequence of period-doubling bifurcations, which give rise to stable cycles of period 2 and period 4. We showed that the period-4 cycle loses its stability through a Neimark-Sacker bifurcation, where an attracting invariant closed curve emerges. We also derived the topological normal forms associated with the period-doubling bifurcation points. To confirm the presence of chaotic behavior, we computed the largest Lyapunov exponents. Finally, numerical simulations, along with bifurcation analyses performed using MatContM, validated our theoretical results. These findings extend and enhance previous studies in the literature, particularly the results in [1,2].



    加载中


    [1] G. Sarafopoulos, Complexity in a duopoly game with homogeneous players, convex, log-linear demand and quadratic cost functions, Proc. Econ. Finance, 33 (2015), 358–366. http://doi.org/10.1016/S2212-5671(15)01720-7 doi: 10.1016/S2212-5671(15)01720-7
    [2] B. Al-Hdaibat, Bifurcations in a chaotic duopoly game with a logarithmic demand function, Dyn. Contin., Discrete Impulsive Syst. Ser. B: Appl. Algorithms, 26 (2019), 389–407.
    [3] T. Puu, Nonlinear Economic Dynamics, Berlin: Springer-Verlag, 1997.
    [4] R. B. Myerson, Nash equilibrium and the history of economic theory, J. Econ. Lit., 37 (1999), 1067–1082. http://doi.org/10.1257/jel.37.3.1067 doi: 10.1257/jel.37.3.1067
    [5] B. Al-Hdaibat, W. Govaerts, N. Neirynck, On periodic and chaotic behavior in a two-dimensional monopoly model, Chaos, Solitons Fractals, 70 (2015), 27–37. http://doi.org/10.1016/j.chaos.2014.10.010 doi: 10.1016/j.chaos.2014.10.010
    [6] A. Cournot, Recherches sur les Principes Math'ematiques de la Th'eorie des Richesses, Hachette, 1838.
    [7] J. Bertrand, Théorie mathématique de la richesse sociale, In: Cournot Oligopoly, Cambridge University Press, 1988, 73–81.
    [8] T. Puu, The chaotic monopolist, Chaos, Solitons Fractals, 5 (1995), 35–44. http://doi.org/10.1016/0960-0779(94)00206-6 doi: 10.1016/0960-0779(94)00206-6
    [9] M. Kopel, Simple and complex adjustment dynamics in cournot duopoly models, Chaos, Solitons Fractals, 7 (1996), 2031–2048. http://doi.org/10.1016/S0960-0779(96)00070-7 doi: 10.1016/S0960-0779(96)00070-7
    [10] G. I. Bischi, A. Naimzada, Global analysis of a dynamic duopoly game with bounded rationality, Adv. Dyn. Games Appl., 5 (1999), 361–385.
    [11] G. I. Bischi, M. Kopel, Equilibrium selection in a nonlinear duopoly game with adaptive expectations, J. Econ. Behav. Organ., 46 (2001), 73–100.
    [12] H. N. Agiza, A. S. Hegazi, A. A. Elsadany, Complex dynamics and synchronization of duopoly game with bounded rationality, Math. Comput. Simul., 58 (2002), 133–146.
    [13] H. N. Agiza, A. A. Elsadany, Nonlinear dynamics in the cournot duopoly game with heterogeneous players, Phys. A, 320 (2003), 512–524. http://doi.org/10.1016/S0378-4371(02)01648-5 doi: 10.1016/S0378-4371(02)01648-5
    [14] A. Agliari, L. Gardini, T. Puu, Some global bifurcations related to the appearance of closed invariant curves, Math. Comput. Simul., 68 (2005), 201–219.
    [15] A. Agliari, L. Gardini, T. Puu, Global bifurcations in duopoly when the cournot point is destabilized via a subcritical neimark bifurcation, Int. Game Theory Rev., 8 (2006), 1–20.
    [16] A. K. Naimzada, L. Sbragia, Oligopoly games with nonlinear demand and cost functions: Two boundedly rational adjustment processes, Chaos, Solitons Fractals, 29 (2006), 707–722. http://doi.org/10.1016/j.chaos.2005.08.103 doi: 10.1016/j.chaos.2005.08.103
    [17] M. F. Elettreby, S. Z. Hassan, Dynamical multi-team Cournot game, Chaos, Solitons Fractals, 27 (2006), 666–672. http://doi.org/10.1016/j.chaos.2005.04.075 doi: 10.1016/j.chaos.2005.04.075
    [18] E. Ahmed, M. F. Elettreby, A. S. Hegazi, On Puu's incomplete information formulation for the standard and multi-team Bertrand game, Chaos, Solitons Fractals, 30 (2006), 1180–1184. http://doi.org/10.1016/j.chaos.2005.08.198 doi: 10.1016/j.chaos.2005.08.198
    [19] A. K. Naimzada, F. Tramontana, Controlling chaos through local knowledge, Chaos, Solitons Fractals, 42 (2009), 2439–2449. http://doi.org/10.1016/j.chaos.2009.03.109 doi: 10.1016/j.chaos.2009.03.109
    [20] J.-H. Ma, W.-Z. Ji, Complexity of repeated game model in electric power triopoly, Chaos, Solitons Fractals, 40 (2009), 1735–1740. http://doi.org/10.1016/j.chaos.2007.09.058 doi: 10.1016/j.chaos.2007.09.058
    [21] N. Angelini, R. Dieci, F. Nardini, Bifurcation analysis of a dynamic duopoly model with heterogeneous costs and behavioural rules, Math. Comput. Simul., 79 (2009), 3179–3196.
    [22] F. Tramontana, Heterogeneous duopoly with isoelastic demand function, Econ. Modell., 27 (2010), 350–357. http://doi.org/10.1016/j.econmod.2009.09.014 doi: 10.1016/j.econmod.2009.09.014
    [23] T. Dubiel-Teleszynski, Nonlinear dynamics in a heterogeneous duopoly game with adjusting players and diseconomies of scale, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 296–308. https://doi.org/10.1016/j.cnsns.2010.03.002 doi: 10.1016/j.cnsns.2010.03.002
    [24] S. S. Askar, Complex dynamic properties of cournot duopoly games with convex and log-concave demand function, Oper. Res. Lett., 42 (2014), 85–90. http://doi.org/10.1016/j.orl.2013.12.006 doi: 10.1016/j.orl.2013.12.006
    [25] S. Askar, The rise of complex phenomena in Cournot duopoly games due to demand functions without inflection points, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1918–1925. https://doi.org/10.1016/j.cnsns.2013.10.012 doi: 10.1016/j.cnsns.2013.10.012
    [26] N. Sirghi, M. NeamTu, P. C. Strain, Analysis of a dynamical cournot duopoly game with distributed time delay, Timisoara J. Econ. Bus., 8 (2015), 1–13.
    [27] S. S. Askar, A. Al-khedhairi, Cournot duopoly games: Models and investigations, Mathematics, 7 (2019), 1079.
    [28] X. Yang, Y. Peng, Y. Xiao, X. Wu, Nonlinear dynamics of a duopoly stackelberg game with marginal costs, Chaos, Solitons Fractals, 123 (2019), 185–191. http://doi.org/10.1016/j.chaos.2019.04.007 doi: 10.1016/j.chaos.2019.04.007
    [29] Y. Peng, Y. Xiao, Q. Lu, X. Wu, Y. Zhao, Chaotic dynamics in cournot duopoly model with bounded rationality based on relative profit delegation maximization, Phys. A: Stat. Mech. Appl., 560 (2020), 125174. https://doi.org/10.1016/j.physa.2020.125174 doi: 10.1016/j.physa.2020.125174
    [30] S. S. Askar, A. Al-khedhairi, On complex dynamic investigations of a piecewise smooth nonlinear duopoly game, Chaos, Solitons Fractals, 139 (2020), 110001. http://doi.org/10.1016/j.chaos.2020.110001 doi: 10.1016/j.chaos.2020.110001
    [31] J. Long, H. Zhao, Stability of equilibrium prices in a dynamic duopoly bertrand game with asymmetric information and cluster spillovers, Int. J. Bifurcation Chaos, 31 (2021), 2150240.
    [32] L. Wei, H. Wang, J. Wang, J. Hou, Dynamics and stability analysis of a stackelberg mixed duopoly game with price competition in insurance market, Discrete Dyn. Nat. Soc., 2021 (2021), 3985367.
    [33] S. Askar, On dynamic investigations of cournot duopoly game: When firms want to maximize their relative profits, Symmetry, 13 (2021), 2235.
    [34] M. El Amrani, H. Garmani, D. Ait Omar, M. Baslam, B. Minaoui, Analysis of the chaotic dynamics duopoly game of isps bounded rational, Discrete Dyn. Nat. Soc., 2022 (2022), 6632993.
    [35] Y.-l. Zhu, W. Zhou, T. Chu, Analysis of complex dynamical behavior in a mixed duopoly model with heterogeneous goods, Chaos, Solitons Fractals, 159 (2022), 112153. https://doi.org/10.1016/j.chaos.2022.112153 doi: 10.1016/j.chaos.2022.112153
    [36] A. M. Awad, S. S. Askar, A. A. Elsadany, Complex dynamics investigations of a mixed bertrand duopoly game: Synchronization and global analysis, Nonlinear Dyn., 107 (2022), 3983–3999. http://doi.org/10.1007/s11071-021-07143-2 doi: 10.1007/s11071-021-07143-2
    [37] Y. Zhang, T. Zhang, C. Wang, Complex dynamics of Cournot-Bertrand duopoly game with peer-induced fairness and delay decision, Discrete Contin. Dyn. Syst. B, 28 (2023), 2544–2564.
    [38] J. Long, F. Wang, Equilibrium stability of dynamic duopoly cournot game under heterogeneous strategies, asymmetric information, and one-way r & d spillovers, Nonlinear Eng., 12 (2023), 20220313.
    [39] Z. Wei, W. Tan, A. A. Elsadany, I. Moroz, Complexity and chaos control in a cournot duopoly model based on bounded rationality and relative profit maximization, Nonlinear Dyn., 111 (2023), 17561–17589. http://doi.org/10.1007/s11071-023-08782-3 doi: 10.1007/s11071-023-08782-3
    [40] H. Meskine, M. S. Abdelouahab, R. Lozi, Nonlinear dynamic and chaos in a remanufacturing duopoly game with heterogeneous players and nonlinear inverse demand functions, J. Differ. Equations Appl., 29 (2023), 1503–1515.
    [41] S. S. Askar, A. M. Alshamrani, Cournot–Bertrand duopoly model: Dynamic analysis based on a computed cost, Complexity, 2024 (2024), 5594918.
    [42] R. Ahmed, A. Khalid, S. Karam, Exploring complex dynamics in a stackelberg cournot duopoly game model, Phys. Scr., 99 (2024), 115036. http://doi.org/10.1088/1402-4896/ad881b doi: 10.1088/1402-4896/ad881b
    [43] R. Ahmed, M. Z. A. Qureshi, M. Abbas, N. Mumtaz, Bifurcation and chaos control in a heterogeneous cournot-bertrand duopoly game model, Chaos, Solitons Fractals, 190 (2025), 115757. http://doi.org/10.1016/j.chaos.2024.115757 doi: 10.1016/j.chaos.2024.115757
    [44] M. Azioune, M. S. Abdelouahab, R. Lozi, Bifurcation analysis of a cournot triopoly game with bounded rationality and chaos control via the ogy method, Int. J. Bifurcation Chaos, 35 (2025), 2530019.
    [45] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, On the LambertW function, Adv. Comput. Math., 5 (1996), 329–359.
    [46] Yu.A. Kuznetsov, Elements of Applied Bifurcation Theory, 3 Eds., New York: Springer-Verlag, 2004.
    [47] Yu. A. Kuznetsov, H. G. E. Meijer, Numerical Bifurcation Analysis of Maps: From Theory to Software, Cambridge University Press, 2019.
    [48] W. Govaerts, Yu. A. Kuznetsov, R. Khoshsiar Ghaziani, H. G. E. Meijer, CL_MATCONTM: A toolbox for continuation and bifurcation of cycles of maps, Report, Universiteit Gent, Belgium, and Utrecht University, The Netherlands, 2008. Available from: https://www.academia.edu/54598277/Cl_MatContM_A_toolbox_for_continuation_and_bifurcation_of_cycles_of_maps.
    [49] N. Neirynck, B. Al-Hdaibat, W. Govaerts, Yu. A. Kuznetsov, H. G. E. Meijer, Using MatcontM in the study of a nonlinear map in economics, J. Phys.: Conf. Ser., 692 (2016), 012013.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(326) PDF downloads(25) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog