Research article Special Issues

Novel analytical approaches and stability examination for soliton solutions in a dispersive perturbed Gardner model

  • Published: 26 November 2025
  • MSC : 35G20, 35C07, 35C08, 35C09

  • This study presented a rigorous analytical investigation of the perturbed Gardner equation, a fundamental model describing nonlinear wave propagation in plasma physics, fluid dynamics, and nonlinear optics. Using an advanced analytical framework, we derived exact solutions capturing diverse wave behaviors: Localized bright solitons representing stable energy packets, dark solitons manifesting as intensity voids, singular solitons with distinctive phase profiles, and periodic waves governed by elliptic functions. Linear stability analysis revealed that solution robustness emerged from a delicate balance between nonlinear focusing and dispersive spreading, with precise parameter windows identified for maintaining structural integrity. A key finding identified the dispersion triplet—higher-order dispersion coefficients—as crucial for controlling wave amplitude, spectral broadening, and nonlinearity-dispersion balance. Numerical validation confirmed mathematical consistency and physical feasibility, with strong agreement between theory and simulations. This established a framework for understanding nonlinear wave phenomena in photonic and plasma applications.

    Citation: Wafaa B. Rabie, Hamdy M. Ahmed, A. M. Abd-Alla, Khadiga A. Ismail, Ahmed Ramady. Novel analytical approaches and stability examination for soliton solutions in a dispersive perturbed Gardner model[J]. AIMS Mathematics, 2025, 10(11): 27581-27607. doi: 10.3934/math.20251213

    Related Papers:

  • This study presented a rigorous analytical investigation of the perturbed Gardner equation, a fundamental model describing nonlinear wave propagation in plasma physics, fluid dynamics, and nonlinear optics. Using an advanced analytical framework, we derived exact solutions capturing diverse wave behaviors: Localized bright solitons representing stable energy packets, dark solitons manifesting as intensity voids, singular solitons with distinctive phase profiles, and periodic waves governed by elliptic functions. Linear stability analysis revealed that solution robustness emerged from a delicate balance between nonlinear focusing and dispersive spreading, with precise parameter windows identified for maintaining structural integrity. A key finding identified the dispersion triplet—higher-order dispersion coefficients—as crucial for controlling wave amplitude, spectral broadening, and nonlinearity-dispersion balance. Numerical validation confirmed mathematical consistency and physical feasibility, with strong agreement between theory and simulations. This established a framework for understanding nonlinear wave phenomena in photonic and plasma applications.



    加载中


    [1] N. Mhadhbi, S. Gana, M. F. Alsaeedi, Exact solutions for nonlinear partial differential equations via a fusion of classical methods and innovative approaches, Sci. Rep., 14 (2024), 6443. https://doi.org/10.1038/s41598-024-57005-1 doi: 10.1038/s41598-024-57005-1
    [2] B. Kopçasız, Unveiling new exact solutions of the complex-coupled Kuralay system using the generalized Riccati equation mapping method, J. Math. Sci. Model., 7 (2024), 146–156. https://doi.org/10.33187/jmsm.1475211 doi: 10.33187/jmsm.1475211
    [3] M. Jannah, T. Islam, A. Akter, Explicit travelling wave solutions to nonlinear partial differential equations arise in mathematical physics and engineering, J. Eng. Adv., 2 (2021), 58–63. https://doi.org/10.38032/jea.2021.01.008 doi: 10.38032/jea.2021.01.008
    [4] W. B. Rabie, H. M. Ahmed, H. H. Hussein, Novel analytic solutions of strain wave model in micro-structured solids, Nonlinear Eng., 13 (2024), 20220293. https://doi.org/10.1515/nleng-2022-0293 doi: 10.1515/nleng-2022-0293
    [5] W. M. Hasan, H. M. Ahmed, A. M. Ahmed, H. M. Rezk, W. B. Rabie, Exploring highly dispersive optical solitons and modulation instability in nonlinear Schrödinger equations with nonlocal self-phase modulation and polarization dispersion, Sci. Rep., 15 (2025), 27070. https://doi.org/10.1038/s41598-025-09710-8 doi: 10.1038/s41598-025-09710-8
    [6] D. M. Gusu, W. Gudeta, Solving nonlinear partial differential equations of special kinds of 3rd order using balance method and its models, Int. J. Differ. Equat., 2023 (2023), 7663326. https://doi.org/10.1155/2023/7663326 doi: 10.1155/2023/7663326
    [7] U. Younas, T. A. Sulaiman, J. Ren, On the optical soliton structures in the magneto electro-elastic circular rod modeled by nonlinear dynamical longitudinal wave equation, Opt. Quant. Electron., 54 (2022), 688. https://doi.org/10.1007/s11082-022-04104-w doi: 10.1007/s11082-022-04104-w
    [8] L. Nottale, Scale relativity and fractal space-time: Applications to quantum physics, cosmology and chaotic systems, Chaos Soliton. Fract., 7 (1996), 877–938. https://doi.org/10.1016/0960-0779(96)00002-1 doi: 10.1016/0960-0779(96)00002-1
    [9] P. K. Shukla, B. Eliasson, Colloquium: Nonlinear collective interactions in quantum plasmas with degenerate electron fluids, Rev. Mod. Phys., 83 (2011), 885–906. https://doi.org/10.1103/RevModPhys.83.885 doi: 10.1103/RevModPhys.83.885
    [10] A. Jhangeer, S. Fatima, N. Raza, M. H. Rafiq, N. A. Shah, M. Bayram, Numerical analysis of a novel mathematical model of measles-pneumonia co-infection with treated-vaccinated compartment, Ain Shams Eng. J., 16 (2025), 103659. https://doi.org/10.1016/j.asej.2025.103659 doi: 10.1016/j.asej.2025.103659
    [11] U. Akpan, L. Akinyemi, D. Ntiamoah, A. Houwe, S. Abbagari, Generalized stochastic Korteweg-de Vries equations, their Painlevé integrability, N-soliton and other solutions, Int. J. Geom. Methods M., 21 (2024), 2450128. https://doi.org/10.1142/S0219887824501287 doi: 10.1142/S0219887824501287
    [12] J. Ahmad, Z. Mustafa, J. Habib, Analyzing dispersive optical solitons in nonlinear models using an analytical technique and its applications, Opt. Quant. Electron., 56 (2024), 77. https://doi.org/10.1007/s11082-023-05552-8 doi: 10.1007/s11082-023-05552-8
    [13] J. Ahmad, M. Hameed, Z. Mustafa, F. Pervaiz, M. Nadeem, Y. Alsayaad, A study of traveling wave solutions and modulation instability in the (3+1)-dimensional Sakovich equation employing advanced analytical techniques, Sci. Rep., 15 (2025), 23332. https://doi.org/10.1038/s41598-025-00503-7 doi: 10.1038/s41598-025-00503-7
    [14] L. A. A. Essa, M. U. Rahman, Dynamics of bifurcation, chaos, sensitivity and diverse soliton solution to the Drinfeld-Sokolov-Wilson equations arise in mathematical physics, Int. J. Theor. Phys., 63 (2024), 216. https://doi.org/10.1007/s10773-024-05759-9 doi: 10.1007/s10773-024-05759-9
    [15] I. Alazman, B. S. T. Alkahtani, M. N. Mishra, Dynamic of bifurcation, chaotic structure and multi-soliton of fractional nonlinear Schrödinger equation arise in plasma physics, Sci. Rep., 14 (2024), 25781. https://doi.org/10.1038/s41598-024-72744-x doi: 10.1038/s41598-024-72744-x
    [16] N. Cao, X. Li, X. Yin, The control model of Rossby waves and dynamic characteristics in stratified fluids, Chaos Soliton. Fract., 201 (2025), 117208. https://doi.org/10.1016/j.chaos.2025.117208 doi: 10.1016/j.chaos.2025.117208
    [17] J. Muhammad, U. Younas, Wave propagation and multistability analysis to the modified fractional KDV-KP equation in diversity of fields, Model. Earth Syst. Env., 11 (2025), 262. https://doi.org/10.1007/s40808-025-02434-8 doi: 10.1007/s40808-025-02434-8
    [18] W. B. Rabie, H. M. Ahmed, T. A. Nofal, S. Alkhatib, Wave solutions for the (3+1)-dimensional fractional Boussinesq-KP-type equation using the modified extended direct algebraic method, AIMS Math., 9 (2024), 31882–31897. https://doi.org/10.3934/math.20241532 doi: 10.3934/math.20241532
    [19] J. Ahmad, Z. Mustafa, J. Habib, Analyzing dispersive optical solitons in nonlinear models using an analytical technique and its applications, Opt. Quant. Electron., 56 (2024), 77. https://doi.org/10.1007/s11082-023-05552-8 doi: 10.1007/s11082-023-05552-8
    [20] B. Ghanbari, D. Baleanu, New solutions of Gardner's equation using two analytical methods, Front. Phys., 7 (2019), 202. https://doi.org/10.3389/fphy.2019.00202 doi: 10.3389/fphy.2019.00202
    [21] S. Kumar, S. Malik, A new analytic approach and its application to new generalized Korteweg-de Vries and modified Korteweg-de Vries equations, Math. Method. Appl. Sci., 47 (2024), 11709–11726. https://doi.org/10.1002/mma.10150 doi: 10.1002/mma.10150
    [22] S. A. E. Tantawy, W. M. Moslem, Nonlinear structures of the Korteweg-de Vries and modified Korteweg-de Vries equations in non-Maxwellian electron-positron-ion plasma: Solitons collision and rogue waves, Phys. Plasmas, 21 (2014), 052107. https://doi.org/10.1063/1.4879815 doi: 10.1063/1.4879815
    [23] N. Rauf, Mathematical techniques for analyzing nonlinear optical phenomena, Front. Appl. Phys. Math., 1 (2024), 251–285.
    [24] N. Raees, I. Mahmood, E. Hussain, U. Younas, H. O. Elansary, S. Mumtaz, Dynamics of optical solitons and sensitivity analysis in fiber optics, Phys. Lett. A, 528 (2024), 130031. https://doi.org/10.1016/j.physleta.2024.130031 doi: 10.1016/j.physleta.2024.130031
    [25] W. B. Rabie, H. M. Ahmed, M. Marin, A. A. Syied, A. A. Elmonem, N. S. E. Abdalla, et al., Thorough investigation of exact wave solutions in nonlinear thermoelasticity theory under the influence of gravity using advanced analytical methods, Acta Mech., 236 (2025), 1599–1632. https://doi.org/10.1007/s00707-025-04229-5 doi: 10.1007/s00707-025-04229-5
    [26] A. V. Aksenov, A. D. Polyanin, Review of methods for constructing exact solutions of equations of mathematical physics based on simpler solutions, Theor. Math. Phys., 211 (2022), 567–594. https://doi.org/10.1134/S0040577922050014 doi: 10.1134/S0040577922050014
    [27] K. Mosegaard, T. M. Hansen, Inverse methods: Problem formulation and probabilistic solutions, In: Integrated imaging of the earth: Theory and applications, 2016, 7–27. https://doi.org/10.1002/9781118929063.ch2
    [28] E. Rivalta, F. Corbi, L. Passarelli, V. Acocella, T. Davis, M. A. D. Vito, Stress inversions to forecast magma pathways and eruptive vent location, Sci. Adv., 5 (2019), eaau9784. https://doi.org/10.1126/sciadv.aau9784 doi: 10.1126/sciadv.aau9784
    [29] A. Bruckstein, T. Kailath, An inverse scattering framework for several problems in signal processing, IEEE ASSP Mag., 4 (1987), 6–20. https://doi.org/10.1109/MASSP.1987.1165567 doi: 10.1109/MASSP.1987.1165567
    [30] A. F. Alharbi, U. Akram, Ansatz-based exploration of M-shaped and multi-wave solitons in the Kudryashov-Sinelshchikov model, Mod. Phys. Lett. B, 39 (2025), 2550169. https://doi.org/10.1142/S0217984925501696 doi: 10.1142/S0217984925501696
    [31] W. B. Rabie, H. M. Ahmed, W. Hamdy, Exploration of new optical solitons in magneto-optical waveguides with a coupled system of nonlinear Biswas–Milovic equation via Kudryashov's law using the extended F-expansion method, Mathematics, 11 (2023), 300. https://doi.org/10.3390/math11020300 doi: 10.3390/math11020300
    [32] L. Kaur, A. Biswas, A. H. Arnous, Y. Yildirim, L. Moraru, M. J. Jweeg, Shock wave and singular solitary wave perturbation with Gardners equation having dispersion triplet, Contemp. Math., 6 (2025), 3743–3762. https://doi.org/10.37256/cm.6320256903 doi: 10.37256/cm.6320256903
    [33] A. I. Aliyu, A. Yusuf, D. Baleanu, Optical solitons, conservation laws and modulation instability analysis for the modified nonlinear Schrödinger's equation for Davydov solitons, J. Electromagnet. Wave., 32 (2018), 858–873. https://doi.org/10.1080/09205071.2017.1408499 doi: 10.1080/09205071.2017.1408499
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(282) PDF downloads(26) Cited by(0)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog