This paper studied the Cauchy problem for a system of coupled Korteweg-de Vries (KdV) equations driven by multiplicative space-time white noise. We established local well-posedness for the system, proving that for $ \mathcal{F}_0 $-measurable initial data $ \left(\phi_0, \varphi_0\right) $ in the Sobolev space $ H^s(\mathbb{R}) \times H^s(\mathbb{R}) $ with $ s > -5 / 8 $, and with the noise operator $ \Xi $ belonging to the intersection of Hilbert-Schmidt spaces $ L_2^{0, s} \cap L_2^{0, s, -\frac{3}{8}} $, there exists a unique local solution. Furthermore, we demonstrated global well-posedness in the energy space $ L^2(\mathbb{R}) \times L^2(\mathbb{R}) $ for $ L^2 $-valued initial data and with $ \Xi \in L_2^{0, 0} \cap L_2^{0, 0, -\frac{3}{8}} $. The analysis employed Fourier restriction norm methods, utilizing Bourgain-type spaces $ X^{s, b} $ and $ Y^{s_1, s_2, b} $. Key to the proofs was the establishment of crucial linear and bilinear estimates within these spaces and a detailed analysis of the stochastic convolution via Itô calculus. A fixed-point argument was then applied to obtain the local solution, while global existence followed from an invariance property (conservation) of the $ L^2 $ norm, a martingale inequality, and an approximation procedure. The work extends previous results on single stochastic KdV equations to a more complex coupled system, providing a robust framework for analyzing nonlinear wave propagation subject to random perturbations, with applications in plasma physics and fluid dynamics.
Citation: Aissa Boukarou, Mohammadi Begum Jeelani, Nouf Abdulrahman Alqahtani. Stochastic Korteweg–de Vries-type systems: Local and global theory[J]. AIMS Mathematics, 2025, 10(11): 27560-27580. doi: 10.3934/math.20251212
This paper studied the Cauchy problem for a system of coupled Korteweg-de Vries (KdV) equations driven by multiplicative space-time white noise. We established local well-posedness for the system, proving that for $ \mathcal{F}_0 $-measurable initial data $ \left(\phi_0, \varphi_0\right) $ in the Sobolev space $ H^s(\mathbb{R}) \times H^s(\mathbb{R}) $ with $ s > -5 / 8 $, and with the noise operator $ \Xi $ belonging to the intersection of Hilbert-Schmidt spaces $ L_2^{0, s} \cap L_2^{0, s, -\frac{3}{8}} $, there exists a unique local solution. Furthermore, we demonstrated global well-posedness in the energy space $ L^2(\mathbb{R}) \times L^2(\mathbb{R}) $ for $ L^2 $-valued initial data and with $ \Xi \in L_2^{0, 0} \cap L_2^{0, 0, -\frac{3}{8}} $. The analysis employed Fourier restriction norm methods, utilizing Bourgain-type spaces $ X^{s, b} $ and $ Y^{s_1, s_2, b} $. Key to the proofs was the establishment of crucial linear and bilinear estimates within these spaces and a detailed analysis of the stochastic convolution via Itô calculus. A fixed-point argument was then applied to obtain the local solution, while global existence followed from an invariance property (conservation) of the $ L^2 $ norm, a martingale inequality, and an approximation procedure. The work extends previous results on single stochastic KdV equations to a more complex coupled system, providing a robust framework for analyzing nonlinear wave propagation subject to random perturbations, with applications in plasma physics and fluid dynamics.
| [1] |
R. L. Herman, The stochastic, damped KdV equation, J. Phys. A: Math. Gen., 23 (1990), 1063. https://doi.org/10.1088/0305-4470/23/7/014 doi: 10.1088/0305-4470/23/7/014
|
| [2] |
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Geom. Funct. Anal., 3 (1993), 107–156. https://doi.org/10.1007/BF01896020 doi: 10.1007/BF01896020
|
| [3] |
C. E. Kenig, G. Ponce, L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1–21. https://doi.org/10.1215/S0012-7094-93-07101-3 doi: 10.1215/S0012-7094-93-07101-3
|
| [4] | C. E. Kenig, G. Ponce, L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573–603. |
| [5] |
A. de Bouard, A. Debussche, On the stochastic Korteweg-de Vries equation, J. Funct. Anal., 154 (1998), 215–251. https://doi.org/10.1006/jfan.1997.3184 doi: 10.1006/jfan.1997.3184
|
| [6] |
A. de Bouard, A. Debussche, Y. Tsutsumi, White noise driven Korteweg-de Vries equation, J. Funct. Anal., 169 (1999), 532–558. https://doi.org/10.1006/jfan.1999.3484 doi: 10.1006/jfan.1999.3484
|
| [7] |
A. de Bouard, A. Debussche, Random modulation of solitons for the stochastic Korteweg-de Vries equation, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 24 (2007), 251–278. https://doi.org/10.1016/j.anihpc.2006.03.009 doi: 10.1016/j.anihpc.2006.03.009
|
| [8] |
A. Boukarou, K. Guerbati, K. Zennir, S. Alodhaibi, S. Alkhalaf, Well-posedness and time regularity for a system of modified Korteweg-de Vries-type equations in analytic Gevrey spaces, Mathematics, 8 (2020), 809. https://doi.org/10.3390/math8050809 doi: 10.3390/math8050809
|
| [9] |
T. Oh, Diophantine conditions in well-posedness theory of coupled KdV-type systems: Local theory, Int. Math. Res. Notices, 18 (2009), 3516–3556. https://doi.org/10.1093/imrn/rnp063 doi: 10.1093/imrn/rnp063
|
| [10] |
Y. Guo, K. Simon, E. S. Titi, Global well-posedness of a system of nonlinearly coupled KdV equations of Majda and Biello, Commun. Math. Sci., 13 (2015), 1261–1288. https://doi.org/10.4310/cms.2015.v13.n5.a9 doi: 10.4310/cms.2015.v13.n5.a9
|
| [11] |
X. Carvajal, M. Panthee, Sharp well-posedness for a coupled system of mKdV-type equations, J. Evol. Equ., 19 (2019), 1167–1197. https://doi.org/10.1007/s00028-019-00508-6 doi: 10.1007/s00028-019-00508-6
|
| [12] | J. Ginibre, Le probleme de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace, Séminaire Bourbaki, 796 (1995), 163–187. |
| [13] | G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, 2 Eds, Cambridge University Press, 2014. https://doi.org/10.1017/CBO9781107295513 |
| [14] |
M. S. Ullah, Interaction solution to the (3+1)-D negative-order KdV first structure, Partial Differ. Equ. Appl. Math., 8 (2023), 100566. https://doi.org/10.1016/j.padiff.2023.100566 doi: 10.1016/j.padiff.2023.100566
|
| [15] |
F. S. Alshammari, Z. Rahman, H. O. Roshid, M. S. Ullah, A. Aldurayhim, M. Z. Ali, Dynamical structures of multi-solitons and interaction of solitons to the higher-order KdV-5 equation, Symmetry, 15 (2023), 626. https://doi.org/10.3390/sym15030626 doi: 10.3390/sym15030626
|
| [16] |
F. Wang, Z. Ma, Meshless collocation method for inverse source identification problems, Adv. Appl. Math. Mech., 7 (2015), 496–509. https://doi.org/10.4208/aamm.2014.m611 doi: 10.4208/aamm.2014.m611
|
| [17] |
F. Wang, W. Chen, L. Ling, Combinations of the method of fundamental solutions for general inverse source identification problems, Appl. Math. Comput., 219 (2012), 1173–1182. https://doi.org/10.1016/j.amc.2012.07.027 doi: 10.1016/j.amc.2012.07.027
|
| [18] |
M. Amir, A. Boukarou, S. M. Mirgani, M. H. Kesri, K. Zennir, M. B. Jeelani, Well-posedness for a coupled system of gKdV equations in analytic spaces, Electron. Res. Arch., 33 (2025), 4119–4134. https://doi.org/10.3934/era.2025184 doi: 10.3934/era.2025184
|
| [19] |
A. Boukarou, K. Zennir, M. Bouye, A. Moumen, Nondecreasing analytic radius for the a Kawahara-Korteweg-de-Vries equation. AIMS Mathematics, 9 (2024), 22414–22434. http://doi.org/10.3934/math/20241090 doi: 10.3934/math/20241090
|
| [20] |
A. Boukarou, K. Guerbati, K. Zennir, M. Alnegga, Gevrey regularity for the generalized Kadomtsev-Petviashvili Ⅰ (gKP-Ⅰ) equation, AIMS Mathematics, 6 (2021), 10037–10054. https://doi.org/10.3934/math.2021583 doi: 10.3934/math.2021583
|
| [21] |
A. Boukarou, S. M. Mirgani, K. Zennir, K. Bouhali, S. S. Alodhaibi, White-noise-driven KdV-type Boussinesq system, Mathematics, 13 (2025), 1758. https://doi.org/10.3390/math13111758 doi: 10.3390/math13111758
|