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Abstract: This paper studied the Cauchy problem for a system of coupled Korteweg-de Vries (KdV)
equations driven by multiplicative space-time white noise. We established local well-posedness for the
system, proving that for F0-measurable initial data (ϕ0, φ0) in the Sobolev space H s(R) × H s(R) with
s > −5/8, and with the noise operator Ξ belonging to the intersection of Hilbert-Schmidt spaces L0,s

2 ∩

L0,s,− 3
8

2 , there exists a unique local solution. Furthermore, we demonstrated global well-posedness in the

energy space L2(R)×L2(R) for L2-valued initial data and with Ξ ∈ L0,0
2 ∩L0,0,− 3

8
2 . The analysis employed

Fourier restriction norm methods, utilizing Bourgain-type spaces Xs,b and Y s1,s2,b. Key to the proofs was
the establishment of crucial linear and bilinear estimates within these spaces and a detailed analysis
of the stochastic convolution via Itô calculus. A fixed-point argument was then applied to obtain the
local solution, while global existence followed from an invariance property (conservation) of the L2

norm, a martingale inequality, and an approximation procedure. The work extends previous results
on single stochastic KdV equations to a more complex coupled system, providing a robust framework
for analyzing nonlinear wave propagation subject to random perturbations, with applications in plasma
physics and fluid dynamics.
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1. Introduction

The noise-driven Korteweg–de Vries equation

∂ϕ

∂t
+
∂3ϕ

∂x3 + ϕ
∂ϕ

∂x
= Ξ

∂2B

∂t∂x
(1.1)
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arises naturally in the study of weakly nonlinear wave propagation in plasmas subject to random
fluctuations [1]. It provides a more realistic description than the deterministic KdV equation by
incorporating the effects of stochastic perturbations. Such random terms may model thermal noise,
external forcing, or uncertainties in the medium properties. Beyond plasma physics, stochastic
KdV-type equations are also relevant in fluid dynamics, nonlinear optics, and other dispersive wave
phenomena. In these broader contexts, the stochastic terms can be interpreted as effective
representations of physical effects neglected or averaged out in the deterministic model.

Bourgain introduced new space-time function spaces, now known as Bourgain spaces, based on the
linear Airy group in his work [2]. Using these spaces, he demonstrated the global well-posedness of
the Korteweg-de Vries equation in L2(R). Following his approach, Kenig et al. established existence
and uniqueness results in Sobolev spaces of negative index, specifically in H s(R) for s > −3/4 ( [3,4]).
The main challenge in applying Bourgain’s method to the Korteweg-de Vries equation is proving a
suitable bilinear estimate in Bourgain spaces.

∥∂x(ϕφ)∥Xs,b−1 ≲ ∥ϕ∥Xs,b∥φ∥Xs,b ,

which is crucial for controlling the quadratic nonlinearity. Once this estimate is established, the
contraction mapping principle can be applied to obtain local well-posedness, which in turn leads to
global results through conservation laws.

The stochastic Korteweg-de Vries equation, as discussed in Eq (1.1), has been studied by various
authors. For further reading, we refer the reader to sources [5–7]. Notably, de Bouard et al. [6]
demonstrated that for almost every ω ∈ Ω, there exists a time Tω > 0 and a unique solution ϕ(t) to
Eq (1.1) defined on the interval [0,Tω].

ϕ ∈ C ([0,Tω] ,H s(R)) ∩
(
XTω

s,b ∩ ẊTω
s,− 3

8 ,b

)
,

under the assumptions that ϕ0(x, ω) ∈ H s(R) with s > −5/8, ϕ0 is F0 − measurable, and
Ξ ∈ L0,s

2 ∩ L0
2

(
L2(R), Ḣ s,− 3

8 (R)
)
. Moreover, they showed that if Ξ ∈ L0,0

2 ∩ L0
2

(
L2(R), Ḣ0,− 3

8 (R)
)

and

ϕ0 ∈ L2
(
Ω, L2(R)

)
is F0-measurable, then the solution of (1.1) is global and belongs to

L2
(
Ω,C

(
[0,T ], L2(R)

))
.

While the single stochastic KdV equation provides a fundamental model, many physical systems
are inherently characterized by the interaction of multiple wave modes. This necessitates the study of
coupled KdV systems. The KdV-type systems (1.2) have garnered significant attention in the literature
(see, e.g., [8–11]). For instance, in plasmas, they can describe the resonant interaction of long-wave
and short-wave modes [10], while in fluid dynamics, they model bidirectional wave propagation or the
interaction of internal waves in stratified fluids [12, 13]. In this context, Tadahiro Oh [9] examined the
local well-posedness problem for

∂ϕ

∂t
+
∂3ϕ

∂3x
+ α1ϕ

∂ϕ

∂x
+ α2φ

∂φ

∂x
+ α3ϕ

∂φ

∂x
+ α4φ

∂ϕ

∂x
= 0

∂φ

∂t
+ β

∂3φ

∂3x
+ β1ϕ

∂ϕ

∂x
+ β2φ

∂φ

∂x
+ β3ϕ

∂φ

∂x
+ β4φ

∂ϕ

∂x
= 0, 0 < β ≤ 1,

(1.2)
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in both periodic and non-periodic settings, with initial data (ϕ0, φ0) ∈ H s (Tλ) × H s (Tλ) or H s(R) ×
H s(R). In particular, he established sharp local well-posedness thresholds depending on the coupling
parameter β. In the periodic case, resonance phenomena were analyzed using Diophantine conditions,
leading to local well-posedness results in H s (Tλ) for s ≥ s∗(β), where s∗(β) ∈ (1/2, 1] is determined
by the Diophantine properties of specific constants that arise from β. In the non-periodic case, he
proved a sharp result in the energy space, showing local well-posedness (and in some cases global
well-posedness) in L2(R).

However, in realistic environments, these interactions are subject to random perturbations.
Extending the well-posedness theory from single equations to stochastically driven coupled systems
presents significant new challenges. While our focus is on theoretical well-posedness, the phenomena
modeled by these systems, such as the complex soliton interactions studied numerically for
higher-order KdV equations [14, 15], highlight the need for a rigorous foundation. Furthermore, the
robust analysis of such nonlinear systems can provide valuable insights for related computational and
inverse problems [16, 17], establishing a theoretical benchmark for future numerical studies of
stochastic soliton dynamics.

In this paper, inspired by the works of [6, 18–21], we study the Cauchy problem for a system of
coupled Korteweg-de Vries equations driven by white noise (1.3).

∂ϕ

∂t
+
∂3ϕ

∂3x
+ α1ϕ

∂ϕ

∂x
+ α2φ

∂φ

∂x
+ α3ϕ

∂φ

∂x
+ α4φ

∂ϕ

∂x
= Ξ

∂2B

∂t∂x

∂φ

∂t
+
∂3φ

∂3x
+ β1ϕ

∂ϕ

∂x
+ β2φ

∂φ

∂x
+ β3ϕ

∂φ

∂x
+ β4φ

∂ϕ

∂x
= Ξ

∂2B

∂t∂x

ϕ(x, 0) = ϕ0(x), φ(x, 0) = φ0(x),

(1.3)

where αi, βi, i = 1 · · · 4, are real constants and (x, t) ∈ R × R+.
We demonstrate that the stochastic Korteweg–de Vries-type system is locally well-posed in the

Sobolev spaces H s(R) × H s(R) for all s > −5/8. Furthermore, we establish that solutions can be
extended globally in time when the initial data belongs to the energy space L2(R) × L2(R). In this
context, ϕ = ϕ(x, t) and φ = φ(x, t) are random processes defined for the pairs (x, t) ∈ R × R+. The
symbol Ξ denotes a linear operator, while B represents a two-parameter Brownian motion on R × R+.
This means B is a zero-mean Gaussian process with the following correlation function:

E(B(x, t)B(y, s)) = (t ∧ s)(x ∧ y),

where t, s ∈ R+, x, y ∈ R, and (·, ·) denotes the L2(R) space duality product.
To articulate our results clearly, we will first define the notation we will use. We begin with function

spaces. For s ∈ R, H s(R) denotes the standard Sobolev space of order s, which is defined by the norm

∥ω∥Hs(R) = ∥ω∥Hs =

(∫
R

(1 + |ζ |)2s|ω̂|2dζ
)1/2

.

Additionally, for s1, s2 ∈ R, we consider the anisotropic Sobolev space Ḣ s1,s2(R), which is defined by
the norm

∥ω∥Ḣs1 ,s2 (R) = ∥ω∥Ḣs1 ,s2 =

(∫
R

|ζ |2s2(1 + |ζ |)2s1 |ω̂|2dζ
)1/2

.
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Here, ω̂ represents the spatial Fourier transform, given by

ω̂(ζ) =
∫
R

ω(x)e−ixζdx.

Given real parameters s and b, the Bourgain spaces Xs,b(R2) and the Bourgain-type spaces
Y s1,s2,b(R2) are defined by the norms

∥ϑ∥Xs,b(R2) = ∥ϑ∥Xs,b =

( ∫
R2

(1 + |ζ |)2s(1 + |γ − ζ3|)2b|ϑ̃(γ, ζ)|2dζdγ
)1/2

,

∥ϑ∥Y s1 ,s2 ,b(R2) = ∥ϑ∥Y s1 ,s2 ,b =

( ∫
R2
|ζ |2s2(1 + |ζ |)2s1(1 + |γ − ζ3|)2b|ϑ̃(γ, ζ)|2dζdγ

)1/2

,

with ϑ̃ representing the spacetime Fourier transform.

ϑ̃(ζ, γ) =
∫
R2
ϑ(x, t)e−i(xζ+tγ) dxdt.

For T > 0, we also consider the restricted spaces Y s1,s2,b
T and Xs,b

T , consisting of the restrictions to the
interval [0,T ] of functions in Y s1,s2,b and Xs,b, respectively. These spaces are equipped with the norms

∥ϑ∥Xs,b
T
= inf

{
∥z∥Xs,b : ϑ(x, t) = z(x, t) on R × [0,T ]

}
.

∥ϑ∥Y s1 ,s2 ,b
T
= inf

{
∥z∥Y s1 ,s2 ,b : ϑ(x, t) = z(x, t) on R × [0,T ]

}
.

Given that our analysis involves systems of equations, we require the use of product function spaces.
Accordingly, we define

Xs,b = Xs,b × Xs,b, X
s,b
T = Xs,b

T × Xs,b
T ,

Ys1,s2,b = Y s1,s2,b × Y s1,s2,b, Y
s1,s2,b
T = Y s1,s2,b

T × Y s1,s2,b
T ,

and
H s = H s × H s, Ḣ s1,s2 = Ḣ s1,s2 × Ḣ s1,s2 ,

with norms
∥(ϕ, φ)∥Xs,b = max{∥ϕ∥Xs,b , ∥φ∥Xs,b},

∥(ϕ, φ)∥
X

s,b
T
= max{∥ϕ∥Xs,b

T
, ∥φ∥Xs,b

T
},

∥(ϕ, φ)∥Ys1 ,s2 ,b = max{∥ϕ∥Y s1 ,s2 ,b , ∥φ∥Y s1 ,s2 ,b},

∥(ϕ, φ)∥
Y

s1 ,s2 ,b
T
= max{∥ϕ∥Y s1 ,s2 ,b

T
, ∥φ∥Y s1 ,s2 ,b

T
},

∥(ϕ0, φ0)∥H s = max{∥ϕ0∥Hs , ∥φ0∥Hs},

and
∥(ϕ0, φ0)∥Ḣ s1 ,s2 = max{∥ϕ0∥Ḣs1 ,s2 , ∥φ0∥Ḣs1 ,s2 }.

Finally, the space of Hilbert-Schmidt operators from L2(R) into H s(R) will be denoted by
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L0,s
2 = L0

2

(
L2(R),H s(R)

)
,

and is equipped with the norm

∥Ξ∥2
L0,s

2
=

∞∑
i=1

∥Ξei∥
2
Hs(R).

We also denote by
L0,s1,s2

2 = L0
2(L2(R), Ḣ s1,s2(R))

the space of Hilbert–Schmidt operators from L2(R) into Ḣ s1,s2(R), endowed with the norm

∥Ξ∥2
L0,s1 ,s2

2

=

∞∑
i=1

∥Ξei∥
2
Ḣs1 ,s2 (R),

where (ei)i≥1 denotes an orthonormal basis of L2(R).
With the above notation, we now present the principal results of this work. Let (Ω,F , P) denote a

probability space endowed with a filtration (F t)t ≥ 0. For system (1.3), the following local and global
well-posedness theorems hold:

Theorem 1.1. Let s > −5/8 and assume Ξ ∈ L0,s
2 ∩ L0,s,− 3

8
2 . Suppose the initial data (ϕ0(x, ω), φ0(x, ω))

satisfy
(ϕ0, φ0) ∈ H s for ω ∈ Ω, (ϕ0, φ0) is F0 − measurable.

There exists a time Tϱ > 0 such that the initial value problem (1.3) admits a unique solution
(ϕ(t), φ(t)) on [0,Tϱ], with

(ϕ, φ) ∈
(
C

([
0,Tϱ

]
,H s (R)

)
×C

([
0,Tϱ

]
,H s (R)

))
∩

((
Xs,b

Tϱ
∩ Y s,− 3

8 ,b
Tϱ

)
×

(
Xs,b

Tϱ
∩ Y s,− 3

8 ,b
Tϱ

))
.

When s = 0, global existence follows from the conservation of the L2(R)×L2(R) norm for solutions
of the Cauchy problem associated with the coupled Korteweg–de Vries-type system driven by white
noise (1.3). More precisely, we state

Theorem 1.2. Assume Ξ ∈ L0,0
2 ∩ L0,0,− 3

8
2 , and suppose that

(ϕ0, φ0) ∈ L2
(
Ω, L2(R)

)
× L2

(
Ω, L2(R)

)
, (ϕ0, φ0) is F0 − measurable.

Then the unique solution (ϕ, φ) obtained in Theorem 1.1 exists globally in time and satisfies

(ϕ, φ) ∈ L2
(
Ω,C

(
[0,T0] , L2(R)

))
× L2

(
Ω,C

(
[0,T0] , L2(R)

))
, ∀T0 > 0.

To conclude our preliminary discussion, we introduce the notation γ ≲k1,...,kn δ to mean that γ ≤ cδ
for some constant c > 0 depending only on λ1, . . . , λn. When c is an absolute constant, independent of
any parameters, we simply write γ ≲ δ.
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2. Linear and bilinear estimates in Bourgain spaces

To establish our main results, we first introduce several key estimates. In order to state them, we
rewrite system (1.3) in its Itô form, namely,


dϕ +

(
∂3ϕ

∂3x
+ α1ϕ

∂ϕ

∂x
+ α2φ

∂φ

∂x
+ α3ϕ

∂φ

∂x
+ α4φ

∂ϕ

∂x

)
dt = ΞdW

dφ +
(
∂3φ

∂3x
+ β1ϕ

∂ϕ

∂x
+ β2φ

∂φ

∂x
+ β3ϕ

∂φ

∂x
+ β4φ

∂ϕ

∂x

)
dt = ΞdW.

(2.1)

Where W(t) = ∂B
∂x denotes a cylindrical Wiener process on L2(R), which can equivalently be

represented as

W(t) =
∞∑

i=0

βi(t)ei,

with (ei)i∈N an orthonormal basis of L2(R) and (βi)i∈N a sequence of mutually independent real-valued
Brownian motions defined on a fixed probability space.

System (2.1) is equipped with the initial conditions

ϕ(·, 0) = ϕ0(·), φ(·, 0) = φ0(·). (2.2)

We start by considering the linear equation, which highlights the assumptions required on Ξ.



dϕ +
∂3ϕ

∂3x
dt = ΞdW

dφ +
∂3φ

∂3x
dt = ΞdW

(ϕ0(x), φ0(x)) = (0, 0),

which can be represented through the stochastic Itô integral


ϕl(t) =

∫ t

0
U(t − γ)ΞdW(γ)

φl(t) =
∫ t

0
U(t − γ)ΞdW(γ),

(2.3)

where U(t) = e−t∂3
x denotes the Airy group. By the unitarity of U(t), one readily verifies that ϕ(t) and

φ(t) belong to H s(R) only if Ξ is a Hilbert–Schmidt operator from L2(R) into H s(R).
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In order to solve (2.1) with the initial data (2.2), we employ its mild form

ϕ(t) = U(t)ϕ0 +

∫ t

0
U(t − γ)

(
α1ϕ

∂ϕ

∂x
+ α2φ

∂φ

∂x
+ α3ϕ

∂φ

∂x
+ α4φ

∂ϕ

∂x

)
(γ)dγ

+

∫ t

0
U(t − γ)ΞdW(γ)

φ(t) = U(t)φ0 +

∫ t

0
U(t − γ)

(
β1ϕ

∂ϕ

∂x
+ β2φ

∂φ

∂x
+ β3ϕ

∂φ

∂x
+ β4φ

∂ϕ

∂x

)
(γ)dγ

+

∫ t

0
U(t − γ)ΞdW(γ).

(2.4)

Mild solutions are obtained using the following estimates.

Proposition 2.1 (Linear estimates [6]). For any s, b ∈ R, we have

∥U(t)ϕ0∥Xs,b
T
≲ ∥ϕ0∥Hs , ∥U(t)φ0∥Xs,b

T
≲ ∥φ0∥Hs . (2.5)

Further, if −
1
2
< b′ ≤ 0 ≤ b < b′ + 1, 0 ≤ T ≤ 1, and F ∈ Xs,b

T ∩ Y s,− 3
8 ,b

T , then∥∥∥∥∥∥
∫ t

0
U (t − γ) F(γ)dγ

∥∥∥∥∥∥
Xs,b

T

≲ T 1−b+b′∥F(γ)∥Xs,b′
T

(2.6)

and ∥∥∥∥∥∥
∫ t

0
U (t − γ) F(γ)dγ

∥∥∥∥∥∥
Y

s,− 3
8 ,b

T

≲ T 1−b+b′∥F(γ)∥
Y

s,− 3
8 ,b
′

T

. (2.7)

Lemma 2.2 (Bilinear estimates in Xs,b [6]). Let s > −3/4, 1/2 < b < 1, −1/2 < b′ < 0, and b′ = b − 1
such that for all ϕ, φ ∈ Xs,b′ , we have∥∥∥∥∥ϕ∂ϕ∂x

∥∥∥∥∥
Xs,b′
≲

(
min

{
∥ϕ∥Xs,b , ∥ϕ∥

Xs,b− 1
2 ∩Y s,− 3

8 ,b−
1
2

})2
, (2.8)∥∥∥∥∥φ∂φ∂x

∥∥∥∥∥
Xs,b′
≲

(
min

{
∥φ∥Xs,b , ∥φ∥

Xs,b− 1
2 ∩Y s,− 3

8 ,b−
1
2

})2
, (2.9)∥∥∥∥∥ϕ∂φ∂x

∥∥∥∥∥
Xs,b′
≲

(
min

{
∥ϕ∥Xs,b , ∥ϕ∥

Xs,b− 1
2 ∩Y s,− 3

8 ,b−
1
2

})
×

(
min

{
∥φ∥Xs,b , ∥φ∥

Xs,b− 1
2 ∩Y s,− 3

8 ,b−
1
2

})
, (2.10)∥∥∥∥∥φ∂ϕ∂x

∥∥∥∥∥
Xs,b′
≲

(
min

{
∥φ∥Xs,b , ∥φ∥

Xs,b− 1
2 ∩Y s,− 3

8 ,b−
1
2

})
×

(
min

{
∥ϕ∥Xs,b , ∥ϕ∥

Xs,b− 1
2 ∩Y s,− 3

8 ,b−
1
2

})
. (2.11)

Lemma 2.3 (Bilinear estimates in Y s1,s2,b [6]). Let s > −5/8, 1/2 < b < 1, −1/2 < b′ < 0, and
b′ = b − 1 such that for all ϕ, φ ∈ Y s,− 3

8 ,b
′

, we have∥∥∥∥∥ϕ∂ϕ∂x

∥∥∥∥∥
Y s,− 3

8 ,b
′
≲

(
min

{
∥ϕ∥Xs,b , ∥ϕ∥

Xs,b− 1
2 ∩Y s,− 3

8 ,b−
1
2

})2
, (2.12)
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27567∥∥∥∥∥φ∂φ∂x

∥∥∥∥∥
Y s,− 3

8 ,b
′
≲

(
min

{
∥φ∥Xs,b , ∥φ∥

Xs,b− 1
2 ∩Y s,− 3

8 ,b−
1
2

})2
, (2.13)∥∥∥∥∥ϕ∂φ∂x

∥∥∥∥∥
Y s,− 3

8 ,b
′
≲

(
min

{
∥ϕ∥Xs,b , ∥ϕ∥

Xs,b− 1
2 ∩Y s,− 3

8 ,b−
1
2

})
×

(
min

{
∥φ∥Xs,b , ∥φ∥

Xs,b− 1
2 ∩Y s,− 3

8 ,b−
1
2

})
, (2.14)∥∥∥∥∥φ∂ϕ∂x

∥∥∥∥∥
Y s,− 3

8 ,b
′
≲

(
min

{
∥φ∥Xs,b , ∥φ∥

Xs,b− 1
2 ∩Y s,− 3

8 ,b−
1
2

})
×

(
min

{
∥ϕ∥Xs,b , ∥ϕ∥

Xs,b− 1
2 ∩Y s,− 3

8 ,b−
1
2

})
. (2.15)

We choose a function ϖ such that ϖ(t) = 0 for t < 0 and |t| > 2, and ϖ(t) = 1 for t ∈ [0, 1], with

ϖ ∈ C∞0 . Note that such a ϖ belongs to Hb
t = Hb([0,T ],R) for any b >

1
2

, where

∥ϖ∥2Hb
t
= ∥ϖ∥2L2 +

∫
R2

|ϖ(η1) −ϖ(η2)|2

|η1 − η2|
1+2b dη1dη2.

We show the following lemma.

Lemma 2.4 (Stochastic convolution in Xb,s). Let s, b ∈ R, with b < 1/2, and assume that Ξ ∈ L0,s
2 .

Then ϕl(t), φl(t) defined by (2.3) satisfies

ϖϕl ∈ L2
(
Ω, Xb,s

)
, ϖφl ∈ L2

(
Ω, Xb,s

)
and

E
(
∥ϖϕl∥

2
Xs,b

)
≲b,ϖ ∥Ξ∥

2
L0,s

2
, E

(
∥ϖφl∥

2
Xs,b

)
≲b,ϖ ∥Ξ∥

2
L0,s

2
.

Proof. Let us introduce the function

f (·, t) = ϖ(t)
∫ t

0
U(−γ)ΞdW(γ), t ∈ R+. (2.16)

This implies that U(t) f (·, t) = ϖ(t)Ψ(t). Thus, we have

E
(
∥ϖΨ∥2Xs,b

)
= E

(∫
R2

(1 + |ζ |)2s(1 + |γ|)2b
∣∣∣ f̂ (ζ, t)

∣∣∣2 dγdζ
)

=

∫
R

(1 + |ζ |)2sE
(∥∥∥ f̂ (ζ, ·)

∥∥∥2

Hb
t

)
dζ.

According to the expansion W(t) =
∞∑

i=0

βi(t)ei of the cylindrical Wiener process and (2.3)2, we have

E
(∥∥∥ f̂ (ζ, ·)

∥∥∥2

Hb
t

)
= S1 +S2

where,

S1 =

∞∑
i=0

∣∣∣Ξ̂ei

∣∣∣2 E ∥∥∥∥∥∥ϖ(t)
∫ t

0
eiγζ3

dβi(γ)

∥∥∥∥∥∥2

L2(R)

 ,
S2 =

∞∑
i=0

∣∣∣Ξ̂ei

∣∣∣2
E


∫
R2

∣∣∣∣∣ ϖ (η1)
∫ η1

0
eiγζ3

dβi(γ) −ϖ (η2)
∫ η2

0
eiγζ3

dβi(γ)
∣∣∣∣∣

|η1 − η2|
1+2b dη1dη2


 .
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From the Itô isometry formula, we have

S1 =

∞∑
i=0

∣∣∣Ξ̂ei

∣∣∣2 ∫ 2

0
|ϖ(t)|2E

∣∣∣∣∣∣
∫ t

0
eiγζ3

dβi(γ)

∣∣∣∣∣∣2
 dt

=
∥∥∥∥|t| 12ϖ∥∥∥∥2

L2
t

∞∑
i=0

∣∣∣Ξ̂ei

∣∣∣2 .
To estimate S2, we get

S2 =

∞∑
i=0

∣∣∣Ξ̂ei

∣∣∣2
E


∫
R2

∣∣∣∣∣ ϖ (η1)
∫ η1

0
eiγζ3

dβi(γ) −ϖ (η2)
∫ η2

0
eiγζ3

dβi(γ)
∣∣∣∣∣

|η1 − η2|
1+2b dη1dη2




= 2
∞∑

i=0

∣∣∣Ξ̂ei

∣∣∣2 ∫
η2>0

∫
η1<η2

E

(∣∣∣∣∣ ϖ (η1)
∫ η1

0
eiγζ3

dβi(γ) −ϖ (η2)
∫ η2

0
eiγζ3

dβi(γ)
∣∣∣∣∣2

|η1 − η2|
1+2b dη1dη2

≤

∞∑
i=0

∣∣∣Ξ̂ei

∣∣∣2
2

∫
η2>0

∫
η1<0

|ϖ (η2)|2 E
(∣∣∣∫ η2

0
eiγζ3

dβi(γ)
∣∣∣2)

|η1 − η2|
1+2b dη1dη2

+ 2
∫
η2>0

∫
0<η1<η2

1
|η1 − η2|

1+2b

× E

(∣∣∣∣∣∣ ϖ (η1)
∫ η1

0
eiγζ3

dβi(γ) −ϖ (η2)
∫ η1

0
eiγζ3

dβi(γ) +ϖ (η2)
∫ η2

η1

eiγζ3
dβi(γ)

)2

dη1dη2


≤

∞∑
i=0

∣∣∣Ξ̂ei

∣∣∣2
2

∫
η2>0

∫
η1<0

|ϖ (η2)|2 E
(∣∣∣∫ η2

0
eiγζ3

dβi(γ)
∣∣∣2)

|η1 − η2|
1+2b dη1dη2

+ 4
∫
η2>0

∫
0<η1<η2

|ϖ (η1) −ϖ (η2)|2 E
(∣∣∣∫ η1

0
eiγζ3

dβi(γ)
∣∣∣2)

|η1 − η2|
1+2b dη1dη2

+ 4
∫
η2>0

∫
0<η1<η2

|ϖ (η2)|2 E
(∣∣∣∣∫ η2

η1
eiγζ3

dβi(γ)
∣∣∣∣2)

|η1 − η2|
1+2b dη1dη2


=

∞∑
i=0

∣∣∣Ξ̂ei

∣∣∣2 [I1 + I2 + I3] .

Now, we limit I1,I2, and I3 separately:

I1 ≤ 2
∫ 2

0
η1 |ϖ (η2)|2

∫
η1<0

1
|η1 − η2|

1+2b dη1dη2 ≤ Mb

∥∥∥∥|t| 12−bϖ
∥∥∥∥2

L2
t

.
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Using Eq (2.16) and the assumption that 2b ∈ (0, 1), we have

I2 ≤ 4
∫ ∞

0

∫ η2

0

η1 |ϖ (η1) −ϖ (η2)|2

∥η1 − η2∥
1+2b dη1dη2

≤ 4
∫ 2

0

∫ η2

0

η1 |ϖ (η1) −ϖ (η2)|2

∥η1 − η2∥
1+2b dη1dη2

+ 4
∫ ∞

2

∫ 2

0

η1 |ϖ (η1)|2

∥η1 − η2∥
1+2b dη1dη2

≤ 8∥ϖ∥2Hb
t
+ 4

∥∥∥∥|t| 12ϖ∥∥∥∥2

L∞t

∫ ∞

0

∫ 2

0

1
|η1 − η2|

1+2b dη1dη2

≤ 8∥ϖ∥2Hb
t
+Mb

∥∥∥∥|t| 12ϖ∥∥∥∥2

L∞t
.

Similarly,

I3 ≤ 4
∫ 2

0

∫ η2

0

|ϖ (η2)|2

|η1 − η2|
2b dη1dη2 ≤ Mb

∥∥∥∥|t| 12−bϖ
∥∥∥∥2

L2
t

.

So, we have

E
(∥∥∥ f̂ (ζ, ·)

∥∥∥2

Hb
t

)
≤ K(b, ϖ)

∞∑
i=0

∣∣∣Ξ̂ei

∣∣∣2
where K(b, ϖ) = Mb

(
∥ϖ∥Hb

t
+

∥∥∥∥|t| 12ϖ∥∥∥∥
L2

t

+
∥∥∥∥|t| 12ϖ∥∥∥∥

L∞t

)
. □

Lemma 2.5 (Stochastic convolution in Y s1,s2,b). Let s, b ∈ R, with b < 1/2, and assume that Ξ ∈ L0,s1,s2
2 .

Then ϕl(t), φl(t) defined by (2.3) satisfies

ϖϕl ∈ L2
(
Ω,Y s1,s2,b

)
, ϖφl ∈ L2

(
Ω,Y s1,s2,b

)
and

E
(
∥ϖϕl∥

2
Y s1 ,s2 ,b

)
≲b,ϖ ∥Ξ∥

2
L0,s1 ,s2 ,

2

, E
(
∥ϖφl∥

2
Y s1 ,s2 ,b

)
≲b,ϖ ∥Ξ∥

2
L0,s1 ,s2 ,

2

.

Proof. The proof is similar with that of Lemma 2.4. □

3. Local well-posedness (Proof of Theorem 1.1)

Based on the stochastic estimates established in the previous section and the Banach fixed-point
theorem, we derive a local well-posedness result for system (1.3). Accordingly, this section is dedicated
to the proof of Theorem 1.1. Let

Π1(t) = U(t)ϕ0, Π2(t) = U(t)φ0,
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Υ1(t) =
∫ t

0
U(t − γ)ΞdW(γ),Υ2(t) =

∫ t

0
U(t − γ)ΞdW(γ),

and

Ψ1(t) =
∫ t

0
U(t − γ)

(
α1ϕ

∂ϕ

∂x
+ α2φ

∂φ

∂x
+ α3ϕ

∂φ

∂x
+ α4φ

∂ϕ

∂x

)
(γ)dγ,

Ψ2(t) =
∫ t

0
U(t − γ)

(
β1ϕ

∂ϕ

∂x
+ β2φ

∂φ

∂x
+ β3ϕ

∂φ

∂x
+ β4φ

∂ϕ

∂x

)
(γ)dγ.

Now, assume that 
Ψ1(t) = ϕl(t) − Π1(t) − Υ1(t)

Ψ2(t) = φl(t) − Π2(t) − Υ2(t),
(3.1)

so 

Ψ1(t) =
∫ t

0
U(t − γ)

(
α1ϕ

∂ϕ

∂x
+ α2φ

∂φ

∂x
+ α3ϕ

∂φ

∂x
+ α4φ

∂ϕ

∂x

)
(γ)dγ

Ψ2(t) =
∫ t

0
U(t − γ)

(
β1ϕ

∂ϕ

∂x
+ β2φ

∂φ

∂x
+ β3ϕ

∂φ

∂x
+ β4φ

∂ϕ

∂x

)
(γ)dγ,

(3.2)

and then (3.2) is equivalent to



Ψ1(t) =
∫ t

0
U(t − γ)

[
∂x

(
α1

2

(
Ψ1(t) + Π1(t) + Υ1(t)

)2

+
α2

2

(
Ψ2(t) + Π2(t) + Υ2(t)

)2)

+ α3

(
Ψ1(t) + Π1(t) + Υ1(t)

)
∂x

(
Ψ2(t) + Π2(t) + Υ2(t)

)

+ α4

(
Ψ2(t) + Π2(t) + Υ2(t)

)
∂x

(
Ψ1(t) + Π1(t) + Υ1(t)

)]
(γ)dγ

Ψ2(t) =
∫ t

0
U(t − γ)

[
∂x

(
β1

2

(
Ψ1(t) + Π1(t) + Υ1(t)

)2

+
β2

2

(
Ψ2(t) + Π2(t) + Υ2(t)

)2)

+ β3

(
Ψ1(t) + Π1(t) + Υ1(t)

)
∂x

(
Ψ2(t) + Π2(t) + Υ2(t)

)

+ β4

(
Ψ2(t) + Π2(t) + Υ2(t)

)
∂x

(
Ψ1(t) + Π1(t) + Υ1(t)

)]
(γ)dγ.

Simplifying this expression yields
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

Ψ1(t) =
∫ t

0
U(t − γ)

[
∂x

(
α1

2

(
Ψ2

1 + Π
2
1 + Υ

2
1 + 2Ψ1Π1 + 2Ψ1Υ1 + 2Π1Υ1

)
+
α2

2

(
Ψ2

2 + Π
2
2 + Υ

2
2 + 2Ψ2Π2 + 2Ψ2Υ2 + 2Π2Υ2

) )
+ α3 (Ψ1∂xΨ2 + Π1∂xΨ2 + Υ1∂xΨ2 + Ψ1∂xΠ2 + Π1∂xΠ2

+ Υ1∂xΠ2 + Ψ1∂xΥ2 + Π1∂xΥ2 + Υ1∂xΥ2)

+ α4 (Ψ2∂xΨ1 + Π2∂xΨ1 + Υ2∂xΨ2 + Ψ2∂xΠ1 + Π2∂xΠ1

+ Υ2∂xΠ1 + Ψ2∂xΥ1 + Π2∂xΥ1 + Υ2∂xΥ1)
]
(γ)dγ

Ψ2(t) =
∫ t

0
U(t − γ)

[
∂x

(
β1

2

(
Ψ2

1 + Π
2
1 + Υ

2
1 + 2Ψ1Π1 + 2Ψ1Υ1 + 2Π1Υ1

)
+
β2

2

(
Ψ2

2 + Π
2
2 + Υ

2
2 + 2Ψ2Π2 + 2Ψ2Υ2 + 2Π2Υ2

) )
+ β3 (Ψ1∂xΨ2 + Π1∂xΨ2 + Υ1∂xΨ2 + Ψ1∂xΠ2 + Π1∂xΠ2

+ Υ1∂xΠ2 + Ψ1∂xΥ2 + Π1∂xΥ2 + Υ1∂xΥ2)

+ β4 (Ψ2∂xΨ1 + Π2∂xΨ1 + Υ2∂xΨ2 + Ψ2∂xΠ1 + Π2∂xΠ1

+ Υ2∂xΠ1 + Ψ2∂xΥ1 + Π2∂xΥ1 + Υ2∂xΥ1)
]
(γ)dγ.

(3.3)

Next, we define the ball BR,T by

BR,T =

{
(Ψ1,Ψ2) ∈ Xs,b− 1

2
T ∩ Y

s,− 3
8 ,b−

1
2

T : ∥(Ψ1,Ψ2)∥
X

s,b− 1
2

T

+ ∥(Ψ1,Ψ2)∥
Y

s,− 3
8 ,b−

1
2

T

≤ R, R > 0
}
.

Therefore, the goal of this section becomes to prove that (Ψ1(t),Ψ2(t)) is a contraction mapping in
BR,T . According to Lemmas 2.1, 2.2, and 2.4, we obtain

∥Γ1(Ψ1(t))∥
X

s,b− 1
2

T

≲ T 1−b+b′
∥∥∥∥∥∂x

(
α1

2

(
Ψ2

1 + Π
2
1 + Υ

2
1 + 2Ψ1Π1 + 2Ψ1Υ1 + 2Π1Υ1

)
+
α2

2

(
Ψ2

2 + Π
2
2 + Υ

2
2 + 2Ψ2Π2 + 2Ψ2Υ2 + 2Π2Υ2

) )
+ α3

(
Ψ1∂xΨ2 + Π1∂xΨ2 + Υ1∂xΨ2 + Ψ1∂xΠ2
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+ Π1∂xΠ2 + Υ1∂xΠ2 + Ψ1∂xΥ2 + Π1∂xΥ2 + Υ1∂xΥ2

)
+ α4

(
Ψ2∂xΨ1 + Π2∂xΨ1 + Υ2∂xΨ2 + Ψ2∂xΠ1

+ Π2∂xΠ1 + Υ2∂xΠ1 + Ψ2∂xΥ1 + Π2∂xΥ1 + Υ2∂xΥ1

)∥∥∥∥∥
Xs,b′

T

≲α T 1−b+b′
[1
2

(
∥Ψ1∥

2

X
s,b− 1

2
T

+ ∥Π1∥
2

X
s,b− 1

2
T

+ ∥Υ1∥
2

X
s,b− 1

2
T

+ ∥Ψ2∥
2

X
s,b− 1

2
T

+ ∥Π2∥
2

X
s,b− 1

2
T

+ ∥Υ2∥
2

X
s,b− 1

2
T

)
+

(
∥Ψ1∥

X
s,b− 1

2
T

∥Π1∥
X

s,b− 1
2

T

+ ∥Ψ1∥
X

s,b− 1
2

T

∥Υ1∥
X

s,b− 1
2

T

+ ∥Π1∥
X

s,b− 1
2

T

∥Υ1∥
X

s,b− 1
2

T

)
+

(
∥Ψ2∥

X
s,b− 1

2
T

∥Π2∥
X

s,b− 1
2

T

+ ∥Ψ2∥
X

s,b− 1
2

T

∥Υ2∥
X

s,b− 1
2

T

+ ∥Π2∥
X

s,b− 1
2

T

∥Υ2∥
X

s,b− 1
2

T

)
+ 2

(
∥Ψ1∥

X
s,b− 1

2
T

∥Ψ2∥
X

s,b− 1
2

T

+ ∥Π1∥
X

s,b− 1
2

T

∥Π2∥
X

s,b− 1
2

T

+ ∥Υ1∥
X

s,b− 1
2

T

∥Υ2∥
X

s,b− 1
2

T

)
+ 2

(
∥Ψ1∥

X
s,b− 1

2
T

∥Π2∥
X

s,b− 1
2

T

+ ∥Ψ1∥
X

s,b− 1
2

T

∥Υ2∥
X

s,b− 1
2

T

+ ∥Π1∥
X

s,b− 1
2

T

∥Ψ2∥
X

s,b− 1
2

T

+ ∥Π1∥
X

s,b− 1
2

T

∥Υ2∥
X

s,b− 1
2

T

+ ∥Υ1∥
X

s,b− 1
2

T

∥Ψ2∥
X

s,b− 1
2

T

+ ∥Υ1∥
X

s,b− 1
2

T

∥Π2∥
X

s,b− 1
2

T

)]
where α = max{α1, α2, α3, α4}

≲ T 1−b+b′
(
R2 + ∥(Υ1,Υ2)∥2

X
s,b− 1

2
T

+ ∥(Υ1,Υ2)∥2
Y

s,− 3
8 ,b−

1
2

T

+ ∥(ϕ0, φ0)∥2
H s

)
,

∥Γ2(Ψ2(t))∥
X

s,b− 1
2

T

≲ T 1−b+b′
∥∥∥∥∥∂x

(
β1

2

(
Ψ2

1 + Π
2
1 + Υ

2
1 + 2Ψ1Π1 + 2Ψ1Υ1 + 2Π1Υ1

)
+
β2

2

(
Ψ2

2 + Π
2
2 + Υ

2
2 + 2Ψ2Π2 + 2Ψ2Υ2 + 2Π2Υ2

) )
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+ β3

(
Ψ1∂xΨ2 + Π1∂xΨ2 + Υ1∂xΨ2 + Ψ1∂xΠ2

+ Π1∂xΠ2 + Υ1∂xΠ2 + Ψ1∂xΥ2 + Π1∂xΥ2 + Υ1∂xΥ2

)
+ β4

(
Ψ2∂xΨ1 + Π2∂xΨ1 + Υ2∂xΨ2 + Ψ2∂xΠ1

+ Π2∂xΠ1 + Υ2∂xΠ1 + Ψ2∂xΥ1 + Π2∂xΥ1 + Υ2∂xΥ1

)∥∥∥∥∥
Xs,b′

T

≲β T 1−b+b′
[1
2

(
∥Ψ1∥

2

X
s,b− 1

2
T

+ ∥Π1∥
2

X
s,b− 1

2
T

+ ∥Υ1∥
2

X
s,b− 1

2
T

+ ∥Ψ2∥
2

X
s,b− 1

2
T

+∥Π2∥
2

X
s,b− 1

2
T

+ ∥Υ2∥
2

X
s,b− 1

2
T

)
+

(
∥Ψ1∥

X
s,b− 1

2
T

∥Π1∥
X

s,b− 1
2

T

+ ∥Ψ1∥
X

s,b− 1
2

T

∥Υ1∥
X

s,b− 1
2

T

+ ∥Π1∥
X

s,b− 1
2

T

∥Υ1∥
X

s,b− 1
2

T

)
+

(
∥Ψ2∥

X
s,b− 1

2
T

∥Π2∥
X

s,b− 1
2

T

+ ∥Ψ2∥
X

s,b− 1
2

T

∥Υ2∥
X

s,b− 1
2

T

+ ∥Π2∥
X

s,b− 1
2

T

∥Υ2∥
X

s,b− 1
2

T

)
+ 2

(
∥Ψ1∥

X
s,b− 1

2
T

∥Ψ2∥
X

s,b− 1
2

T

+ ∥Π1∥
X

s,b− 1
2

T

∥Π2∥
X

s,b− 1
2

T

+ ∥Υ1∥
X

s,b− 1
2

T

∥Υ2∥
X

s,b− 1
2

T

)
+ 2

(
∥Ψ1∥

X
s,b− 1

2
T

∥Π2∥
X

s,b− 1
2

T

+ ∥Ψ1∥
X

s,b− 1
2

T

∥Υ2∥
X

s,b− 1
2

T

+ ∥Π1∥
X

s,b− 1
2

T

∥Ψ2∥
X

s,b− 1
2

T

+ ∥Π1∥
X

s,b− 1
2

T

∥Υ2∥
X

s,b− 1
2

T

+ ∥Υ1∥
X

s,b− 1
2

T

∥Ψ2∥
X

s,b− 1
2

T

+ ∥Υ1∥
X

s,b− 1
2

T

∥Π2∥
X

s,b− 1
2

T

)]
where β = max{β1, β2, β3, β4}

≲ T 1−b+b′
(
R2 + ∥(Υ1,Υ2)∥2

X
s,b− 1

2
T

+ ∥(Υ1,Υ2)∥2
Y

s,− 3
8 ,b−

1
2

T

+ ∥(ϕ0, φ0)∥2
H s

)
,

so

∥(Γ1(Ψ1(t)), Γ2(Ψ2(t)))∥
X

s,b− 1
2

T

≲ T 1−b+b′
(
R2 + ∥(Υ1,Υ2)∥2

X
s,b− 1

2
T

+ ∥(Υ1,Υ2)∥2
Y

s,− 3
8 ,b−

1
2

T

+ ∥(ϕ0, φ0)∥2
H s

)
,
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and

∥(Γ1(Ψ1(t)), Γ2(Ψ2(t)))∥
Y

s,− 3
8 ,b−

1
2

T

≲ T 1−b+b′
(
R2 + ∥(Υ1,Υ2)∥2

X
s,b− 1

2
T

+ ∥(Υ1,Υ2)∥2
Y

s,− 3
8 ,b−

1
2

T

+ ∥(ϕ0, φ0)∥2
H s

)
.

Then

∥(Γ1(Ψ1(t)), Γ2(Ψ2(t)))∥
X

s,b− 1
2

T

+ ∥(Γ1(Ψ1(t)), Γ2(Ψ2(t)))∥
Y

s,− 3
8 ,b−

1
2

T

≲ 2T 1−b+b′
(
R2 + ∥(Υ1,Υ2)∥2

X
s,b− 1

2
T

+ ∥(Υ1,Υ2)∥2
Y

s,− 3
8 ,b−

1
2

T

+ ∥(ϕ0, φ0)∥2
H s

)
.

Therefore, for (Ψ1.1,Ψ2.1), (Ψ1.2,Ψ2.2) ∈ BR,T , we get

∥(Γ1(Ψ1.1 − Ψ1.2), Γ2(Ψ2.1 − Ψ2.2))∥
X

s,b− 1
2

T

≲ T 1−b+b′
(
R + ∥(Υ1,Υ2)∥

X
s,b− 1

2
T

+ ∥(Υ1,Υ2)∥
Y

s,− 3
8 ,b−

1
2

T

+ ∥(ϕ0, φ0)∥H s

)

×

(
∥(Ψ1.1 − Ψ1.2,Ψ2.1 − Ψ2.2)∥

X
s,b− 1

2
T

+ ∥((Ψ1.1 − Ψ1.2), (Ψ2.1 − Ψ2.2))∥
Y

s,− 3
8 ,b−

1
2

T

)
,

and

∥(Γ1(Ψ1.1 − Ψ1.2), Γ2(Ψ2.1 − Ψ2.2))∥
Y

s,− 3
8 ,b−

1
2

T

≲ T 1−b+b′
(
R + ∥(Υ1,Υ2)∥

X
s,b− 1

2
T

+ ∥(Υ1,Υ2)∥
Y

s,− 3
8 ,b−

1
2

T

+ ∥(ϕ0, φ0)∥H s

)

×

(
∥(Ψ1.1 − Ψ1.2,Ψ2.1 − Ψ2.2)∥

X
s,b− 1

2
T

+ ∥((Ψ1.1 − Ψ1.2), (Ψ2.1 − Ψ2.2))∥
Y

s,− 3
8 ,b−

1
2

T

)
.

So

∥(Γ1(Ψ1.1 − Ψ1.2), Γ2(Ψ2.1 − Ψ2.2))∥
X

b− 1
2 ,s

T

+ ∥(Γ1(Ψ1.1 − Ψ1.2), Γ2(Ψ2.1 − Ψ2.2))∥
Y

s,− 3
8 ,b−

1
2

T

≲ 2T 1−b+b′
(
R + ∥(Υ1,Υ2)∥

X
s,b− 1

2
T

+ ∥(Υ1,Υ2)∥
Y

s,− 3
8 ,b−

1
2

T

+ ∥(ϕ0, φ0)∥H s

)

×

(
∥(Ψ1.1 − Ψ1.2,Ψ2.1 − Ψ2.2)∥

X
s,b− 1

2
T

+ ∥((Ψ1.1 − Ψ1.2), (Ψ2.1 − Ψ2.2))∥
Y

s,− 3
8 ,b−

1
2

T

)
.

Let us choose Tϱ such that

4CT 1−b+b′
ϱ

(
Rϱ + ∥(Υ1,Υ2)∥

X
s,b− 1

2
T

+ ∥(Υ1,Υ2)∥
Y

s,− 3
8 ,b−

1
2

T

+ ∥(ϕ0, φ0)∥H s

)
≤ 1,

AIMS Mathematics Volume 10, Issue 11, 27560–27580.



27575

where

Rϱ = 2C
(
∥(Υ1,Υ2)∥2

X
s,b− 1

2
T

+ ∥(Υ1,Υ2)∥2
Y

s,− 3
8 ,b−

1
2

T

+ ∥(ϕ0, φ0)∥2
H s

)
.

It is easily checked that (Γ1, Γ2) maps BR,T into itself and is a strict contraction in BR,T for the norm

∥(Ψ1,Ψ2)∥
X

s,b− 1
2

T

+ ∥(Ψ1,Ψ2)∥
Y

s,− 3
8 ,b−

1
2

T

:

∥(Γ1(Ψ1.1 − Ψ1.2), Γ2(Ψ2.1 − Ψ2.2))∥
X

b− 1
2 ,s

T

+ ∥(Γ1(Ψ1.1 − Ψ1.2), Γ2(Ψ2.1 − Ψ2.2))∥
Y

s,− 3
8 ,b−

1
2

T

≤
1
2

(
∥(Ψ1.1 − Ψ1.2,Ψ2.1 − Ψ2.2)∥

X
s,b− 1

2
T

+ ∥((Ψ1.1 − Ψ1.2), (Ψ2.1 − Ψ2.2))∥
Y

s,− 3
8 ,b−

1
2

T

)
.

Hence, (Γ1, Γ2) has a unique fixed point in Xs,b− 1
2

Tϱ
∩Y

s,− 3
8 ,b−

1
2

Tϱ
, which is a solution of (3.3) on [0,Tϱ].

It remains only to show that if
ϕ(t) = Π1(t) + Ψ1(t) + Υ1(t) ∈ Xs,b

Tϱ
+ Xs,b− 1

2
Tϱ
∩ Y s,− 3

8 ,b−
1
2

Tϱ

φ(t) = Π2(t) + Ψ2(t) + Υ2(t) ∈ Xs,b
Tϱ
+ Xs,b− 1

2
Tϱ
∩ Y s,− 3

8 ,b−
1
2

Tϱ

(3.4)

then ∫ t

0
U(t − γ)

(
α1ϕ

∂ϕ

∂x
+ α2φ

∂φ

∂x
+ α3ϕ

∂φ

∂x
+ α4φ

∂ϕ

∂x

)
(γ)dγ ∈ C([0,Tϱ],H s(R))

∫ t

0
U(t − γ)

(
β1ϕ

∂ϕ

∂x
+ β2φ

∂φ

∂x
+ β3ϕ

∂φ

∂x
+ β4φ

∂ϕ

∂x

)
(γ)dγ ∈ C([0,Tϱ],H s(R)).

Note that −1/2 < b′ < 0, 0 < b − 1/2 < 1/2, b > 1/2, and b′ = b − 1. By Lemma 2.2, we have

ϕ
∂ϕ

∂x
, φ
∂φ

∂x
, ϕ
∂φ

∂x
, φ
∂ϕ

∂x
∈ Xs,b′ ,

for any prolongation
ϕ̃ of ϕ ∈ Xs,b + Xs,b− 1

2 ∩ Y s,− 3
8 ,b−

1
2 ,

and
φ̃ of φ ∈ Xs,b + Xs,b− 1

2 ∩ Y s,− 3
8 ,b−

1
2 ,

and applying Lemma 3.2 in [12], we get

ψT

∫ t

0
U(t − γ)

(
α1ϕ̃

∂ϕ̃

∂x
+ α2φ̃

∂φ̃

∂x
+ α3ϕ̃

∂φ̃

∂x
+ α4φ̃

∂ϕ̃

∂x

)
(γ)dγ ∈ Xs,1+b′ ⊂ C([0,T ],H s(R)),

ψT

∫ t

0
U(t − γ)

(
β1ϕ̃

∂ϕ̃

∂x
+ β2φ̃

∂φ̃

∂x
+ β3ϕ̃

∂φ̃

∂x
+ β4φ̃

∂ϕ̃

∂x

)
(γ)dγ ∈ Xs,1+b′ ⊂ C([0,T ],H s(R)).

Since 1 + b′ >
1
2

, then

(ϕ̃, φ̃) ∈ C([0,Tϱ],H s(R)) ×C([0,Tϱ],H s(R)).
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4. Global well-posedness (Proof of Theorem 1.2)

We assume here that
(ϕ0, φ0) ∈ L2

(
Ω, L2(R)

)
× L2

(
Ω, L2(R)

)
,

and that the operator
Ξ ∈ L0

2

(
L2(R), L2(R) ∩ Ḣ0,− 3

8 (R)
)
.

In order to show that the solution (ϕ, φ) may be continued on the whole interval [0, 1], we use the
same argument as in [5]. We take a sequence

(Ξn)n∈N ∈ L0
2

(
L2(R),H4(R) ∩ Ḣ0,− 3

8 (R)
)
,

such that
Ξn → Ξ, in L0

2

(
L2(R), L2(R) ∩ Ḣ0,− 3

8 (R)
)
,

and another sequence (
ϕ0,n, φ0,n

)
n∈N ∈ L2

(
Ω,H3(R)

)
× L2

(
Ω,H3(R)

)
,

such that

(ϕ0,n, φ0,n)→ (ϕ0, φ0), in L2
(
Ω, L2(R)

)
× L2

(
Ω, L2(R)

)
.

We know from Lemma 3.2 in [5] that there exists a unique solution

(ϕn, φn) ∈ C
(
[0, 1],H3(R)

)
×C

(
[0, 1],H3(R)

)
,



ϕn(t) = U(t)ϕ0,n −

∫ t

0
U(t − γ)

(
α1ϕn

∂ϕn

∂x
+ α2φn

∂φn

∂x
+ α3ϕn

∂φn

∂x
+ α4φn

∂ϕn

∂x

)
(γ)dγ

+

∫ t

0
U(t − γ)ΞndW(γ),

φn(t) = U(t)φ0,n −

∫ t

0
U(t − γ)

(
β1ϕn

∂ϕn

∂x
+ β2φn

∂φn

∂x
+ β3ϕn

∂φn

∂x
+ β4φn

∂ϕn

∂x

)
(γ)dγ

+

∫ t

0
U(t − γ)ΞndW(γ).

(4.1)

We then use the Itô formula on ∥ϕn∥
2
L2(R), ∥φn∥

2
L2(R) and a Martingale inequality,

E

(
sup

t∈[0,1]

∫ t

0
(ϕn(γ),ΞndW(γ))

)
≤

1
2
E

(
sup

t∈[0,1]
|ϕn(t)|2L2

x

)
+C ∥Ξn∥

2
L0,0

2
,

E

(
sup

t∈[0,1]

∫ t

0
(φn(γ),ΞndW(γ))

)
≤

1
2
E

(
sup

t∈[0,1]
|φn(t)|2L2

x

)
+C ∥Ξn∥

2
L0,0

2
.

We deduce that

E

(
sup

t∈[0,1]
∥ϕn(t)∥2L2

x

)
≤ E

(
∥ϕ0,n∥

2
L2

x

)
+C ∥Ξn∥

2
L0,0

2
,
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E

(
sup

t∈[0,1]
∥φn(t)∥2L2

x

)
≤ E

(
∥φ0,n∥

2
L2

x

)
+C ∥Ξn∥

2
L0,0

2
.

Hence, the sequence (ϕn)n∈N , (φn)n∈N are bounded in L2
(
Ω, L∞

(
[0, 1], L2(R)

))
so that it is weakly

star convergent in this space to a function ϕ̃, φ̃ which satisfies

E

(
sup

t∈[0,1]
∥ϕ̃(t)∥2L2

x

)
≤ E

(
∥ϕ0∥

2
L2

x

)
+C∥Ξ∥2

L0,0
2
,

E

(
sup

t∈[0,1]
∥φ̃(t)∥2L2

x

)
≤ E

(
∥φ0∥

2
L2

x

)
+C∥Ξ∥2

L0,0
2
.

Let us define the mapping (Γ1,n, Γ2,n) in the same way as (Γ1, Γ2). It is easy to check that (Γ1,n, Γ2,n)
is a strict contraction uniformly on BR1,Tϱ1 where

Tϱ1 ⩾ 2C
(sup

n∈N

(∥∥∥(ϖΥ1,n, ϖΥ2,n)
∥∥∥
X0,b− 1

2

+ ∥(ϖΥ1,n, ϖΥ2,n)∥
Y

0,− 3
8 ,b−

1
2

))2

+ C2
1∥(ϕ̃, φ̃)∥2

L∞([0,1],L2(R))2

)
and

4CT (1−b+b′)
ϱ1

(
Tϱ1 +

(
sup
n∈N

(∥∥∥(ϖΥ1,n, ϖΥ2,n)
∥∥∥
X0,b− 1

2

+ ∥(ϖΥ1,n, ϖΥ2,n)∥
Y

0,− 3
8 ,b−

1
2

))

+ C1∥(ϕ̃, φ̃)∥L∞([0,1],L2(R))2

)
≤ 1,

where

Υ1,n(t) =
∫ t

0
U(t − γ)ΞndW(γ), Υ2,n(t) =

∫ t

0
U(t − γ)ΞndW(γ).

According to the fixed point theorem, there exists a unique fixed point

ϕn → ϕ ∈ X0,b
Tϱ1
+ X0,b− 1

2
Tϱ1

∩ Y0,− 3
8 ,b−

1
2

Tϱ1
,

φn → φ ∈ X0,b
Tϱ1
+ X0,b− 1

2
Tϱ1

∩ Y0,− 3
8 ,b−

1
2

Tϱ1
,

such that
(ϕ, φ) = (ϕ̃, φ̃) on [0,Tϱ1] × [0,Tϱ1],

and
∥(ϕ(Tϱ1), φ(Tϱ1))∥L2(R)×L2(R) ≤ ∥(ϕ̃, φ̃)∥L∞([0,1],L2(R))2 .

Thus, we can construct a solution on [Tϱ1, 2Tϱ1] starting from (ϕ(Tϱ1), φ(Tϱ1)). By iterating this
argument, we obtain a solution on [0,T0].
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5. Conclusions

The Stochastic Korteweg–de Vries system models nonlinear wave propagation under random
disturbances, a framework crucial for predicting extreme events like rogue waves in turbulent oceans.
It also describes energy transport in randomly forced plasmas and signal degradation in noisy optical
fibers. The system is instrumental in quantifying the uncertainty and statistical properties of solitons
in disordered media, with applications spanning geophysics, fusion science, and communications
engineering.

This work focuses on a Stochastic Korteweg–de Vries-type system (1.3) in a random environment.
We prove that this system is locally well-posed for initial data in the space H s(R)×H s(R) for s > −5/8,
and demonstrate that its solutions can be extended to global ones on the interval [0,T0].

Inspired by the techniques in [6, 21], we handle the stochastic terms by introducing new,
appropriate stochastic function spaces, specifically, Xs,b, Xs,b− 1

2 ∩ Y s,− 3
8 ,b−

1
2 , and by establishing key

estimates for the stochastic convolution in these spaces. This approach allows us to analyze a more
realistic, stochastically forced KdV-type system. We believe the ideas presented here can be applied
to a broad class of stochastic nonlinear evolution systems in mathematical physics.

As an essential next step, the development of robust numerical schemes will be crucial for
simulating these systems, verifying theoretical predictions, and exploring nonlinear phenomena such
as the interaction of stochastic solitons.
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