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Abstract: This paper studied the Cauchy problem for a system of coupled Korteweg-de Vries (KdV)
equations driven by multiplicative space-time white noise. We established local well-posedness for the
system, proving that for ¥j-measurable initial data (¢, ¢) in the Sobolev space H*(R) x H*(R) with
s > —5/8, and with the noise operator = belonging to the intersection of Hilbert-Schmidt spaces Lg’s N

0,5,—3 . . . .
L, 7% there exists a unique local solution. Furthermore, we demonstrated global well-posedness in the

energy space L*(R)x L*(R) for L-valued initial data and with Z € L’ Lg’o’_%. The analysis employed
Fourier restriction norm methods, utilizing Bourgain-type spaces X*? and Y*">*. Key to the proofs was
the establishment of crucial linear and bilinear estimates within these spaces and a detailed analysis
of the stochastic convolution via It6 calculus. A fixed-point argument was then applied to obtain the
local solution, while global existence followed from an invariance property (conservation) of the L
norm, a martingale inequality, and an approximation procedure. The work extends previous results
on single stochastic KdV equations to a more complex coupled system, providing a robust framework
for analyzing nonlinear wave propagation subject to random perturbations, with applications in plasma
physics and fluid dynamics.
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1. Introduction

The noise-driven Korteweg—de Vries equation

op P 0p _ B
ot T aw %% T Chx

(1.1)
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arises naturally in the study of weakly nonlinear wave propagation in plasmas subject to random
fluctuations [1]. It provides a more realistic description than the deterministic KdV equation by
incorporating the effects of stochastic perturbations. Such random terms may model thermal noise,
external forcing, or uncertainties in the medium properties. Beyond plasma physics, stochastic
KdV-type equations are also relevant in fluid dynamics, nonlinear optics, and other dispersive wave
phenomena. In these broader contexts, the stochastic terms can be interpreted as effective
representations of physical effects neglected or averaged out in the deterministic model.

Bourgain introduced new space-time function spaces, now known as Bourgain spaces, based on the
linear Airy group in his work [2]. Using these spaces, he demonstrated the global well-posedness of
the Korteweg-de Vries equation in L*(R). Following his approach, Kenig et al. established existence
and uniqueness results in Sobolev spaces of negative index, specifically in H*(R) for s > —3/4 ( [3,4]).
The main challenge in applying Bourgain’s method to the Korteweg-de Vries equation is proving a
suitable bilinear estimate in Bourgain spaces.

10:(@P)lxs1 < llpllxsellepllxse

which is crucial for controlling the quadratic nonlinearity. Once this estimate is established, the
contraction mapping principle can be applied to obtain local well-posedness, which in turn leads to
global results through conservation laws.

The stochastic Korteweg-de Vries equation, as discussed in Eq (1.1), has been studied by various
authors. For further reading, we refer the reader to sources [5—7]. Notably, de Bouard et al. [6]
demonstrated that for almost every w € Q, there exists a time 7, > 0 and a unique solution ¢(#) to
Eq (1.1) defined on the interval [0, T,,].

¢ € CAOT,LH®)N (X X", ).
5 =3

under the assumptions that ¢o(x,w) € H’(R) with s > -5/8,¢¢ is Fo — measurable, and
E € Ly’ n LY(L*(R), H75(R)). Moreover, they showed that if Z € L} n L (L*(R), H*¥(R)) and

oo € L? (Q, LZ(R)) is Fp-measurable, then the solution of (1.1) is global and belongs to

1 (Q, C ([o, T1, LZ(R))) .

While the single stochastic KdV equation provides a fundamental model, many physical systems
are inherently characterized by the interaction of multiple wave modes. This necessitates the study of
coupled KAV systems. The KdV-type systems (1.2) have garnered significant attention in the literature
(see, e.g., [8—11]). For instance, in plasmas, they can describe the resonant interaction of long-wave
and short-wave modes [10], while in fluid dynamics, they model bidirectional wave propagation or the
interaction of internal waves in stratified fluids [12, 13]. In this context, Tadahiro Oh [9] examined the
local well-posedness problem for

9 »Pe d¢ dp dg op

— 4+ =+ — + — + —+ —=0
FrR a]¢8x @ 0/3¢6,x (o217

ox ox
dp Py 0 Dy Dy 0
O 87¢ 532?59, 54% 5.9 0 0<p<l.
Y +'863x +'81¢8x +/3290ax +'83¢6x +/34908x <p

(1.2)
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in both periodic and non-periodic settings, with initial data (¢¢, ¢g) € H* (T,) x H* (T,) or H’(R) X
H’(R). In particular, he established sharp local well-posedness thresholds depending on the coupling
parameter . In the periodic case, resonance phenomena were analyzed using Diophantine conditions,
leading to local well-posedness results in H* (T,) for s > s*(8), where s*(8) € (1/2, 1] is determined
by the Diophantine properties of specific constants that arise from 8. In the non-periodic case, he
proved a sharp result in the energy space, showing local well-posedness (and in some cases global
well-posedness) in L*(R).

However, in realistic environments, these interactions are subject to random perturbations.
Extending the well-posedness theory from single equations to stochastically driven coupled systems
presents significant new challenges. While our focus is on theoretical well-posedness, the phenomena
modeled by these systems, such as the complex soliton interactions studied numerically for
higher-order KdV equations [14, 15], highlight the need for a rigorous foundation. Furthermore, the
robust analysis of such nonlinear systems can provide valuable insights for related computational and
inverse problems [16, 17], establishing a theoretical benchmark for future numerical studies of
stochastic soliton dynamics.

In this paper, inspired by the works of [6, 18-21], we study the Cauchy problem for a system of
coupled Korteweg-de Vries equations driven by white noise (1.3).

op ¢ 0p 17 7 op  _ 0'B

o g TGy Ty Ty e

dp o ¢ Oy g o _0"B (1.3)
ot * x +'8]¢6x +'82"06x +'B3¢8x +'84"06x © T otdx

d(x,0) = ¢o(x), ¢(x,0) = o(x),

where «;,;,i = 1 -- -4, are real constants and (x,7) € R x R*.

We demonstrate that the stochastic Korteweg—de Vries-type system is locally well-posed in the
Sobolev spaces H*(R) x H’(R) for all s > —5/8. Furthermore, we establish that solutions can be
extended globally in time when the initial data belongs to the energy space L*(R) x L*(R). In this
context, ¢ = ¢(x,1) and ¢ = @(x,1) are random processes defined for the pairs (x,7) € R X R*. The
symbol = denotes a linear operator, while B represents a two-parameter Brownian motion on R X R™.
This means B is a zero-mean Gaussian process with the following correlation function:

EB(x, DB(y, 5)) = (t A ) (x Ay),

where 7, s € R", x,y € R, and (-, -) denotes the L*(R) space duality product.
To articulate our results clearly, we will first define the notation we will use. We begin with function
spaces. For s € R, H*(R) denotes the standard Sobolev space of order s, which is defined by the norm

1/2
lwllgs®) = llwllys = (f(l + lél)zsld)lzdg) .
R

Additionally, for s, s, € R, we consider the anisotropic Sobolev space H***(R), which is defined by
the norm

12
lollgsiszry = Nlwllgsisr = (f 1C172(1 + |{|)2‘”|d)|2d§) )
R
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Here, & represents the spatial Fourier transform, given by
Q) = f w(x)e ™ dx.
R

Given real parameters s and b, the Bourgain spaces X*’(R?) and the Bourgain-type spaces
Y28 (R?) are defined by the norms

1/2
[Dlxs0e2) = [Pxsr = (fR2(1 +IEDPA + by = DP9, §)|2d§dy) ;

1/2
[Blys15202) = [P lysi o0 = ( f N4 P2+ 12D (1 + by = D10y, §)|2d§d7’) ;
R

with 9 representing the spacetime Fourier transform.
3e.n = [ pne e dxa
R2

For T > 0, we also consider the restricted spaces Y;l’sz’b and X’ consisting of the restrictions to the
interval [0, T'] of functions in Y*'*>* and X**, respectively. These spaces are equipped with the norms

||ﬂ||x;,b=inf{||z||xs,h: 9(x,0) =z(x,H) on Rx[0,T]}.

191lys1.00 = inf {[2llyser : - 9Cr.0) =2(x,1) on Rx[0,T1}.

Given that our analysis involves systems of equations, we require the use of product function spaces.
Accordingly, we define

Xs,h — Xs,b X Xs,b’ X;b — X]s:b X X;:b’

ysl,xz,b — YS[,Sz,b X YSl,Sz,b yxl,sz,b — YS],SQ,b X Ysl,xz,b
’ T T T ’

and
7_{3 - H'x H* 7_'{s.,sz — HS],S2 X Hsl,sz
with norms
1(&, Pl xsv = max{||pllxs», llllxso}s
(P, Pl xse = maxiligllyss, lellxse
1(&, Plys1520 = max{||@llysisob, [l@llysiso}s
(¢, Pl yoat = max{l|¢||y;l-s2,b, IIQDIIY;I,sz,b},
(o> ol = maxtligollue lpolliss),
and

(@0, @ollggs12 = maxtllgollgsiz s lloll g1 }-
Finally, the space of Hilbert-Schmidt operators from L*(R) into H*(R) will be denoted by
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LY = LS (LA(R), H'(R)).

and is equipped with the norm

[ee)
=12 —__ 12
1E1s. = D I1Eedf-
i=1

We also denote by
Ly = L R), H" ()

the space of Hilbert—Schmidt operators from L*(R) into H*"**(R), endowed with the norm

[se]
=112 —_ 2
[ 2 S
: i=1

where (¢;);»; denotes an orthonormal basis of L*(R).

With the above notation, we now present the principal results of this work. Let (Q2, 7, P) denote a
probability space endowed with a filtration (¥ #)¢ > 0. For system (1.3), the following local and global
well-posedness theorems hold:

3
Theorem 1.1. Let s > —5/8 and assume = € Lg’s N Lg’b’ . Suppose the initial data (¢o(x, w), @o(x, W))

satisfy
(¢, o) € H*  for weQ, (¢o, o) is Fo— measurable.

There exists a time T, > 0 such that the initial value problem (1.3) admits a unique solution
(¢(1), p(1)) on [0, T,], with

(el peclonlr ) (5 )z )

When s = 0, global existence follows from the conservation of the L*(R) x L*(R) norm for solutions
of the Cauchy problem associated with the coupled Korteweg—de Vries-type system driven by white
noise (1.3). More precisely, we state

Theorem 1.2. Assume E € Lg,o N Lg,o,—%’ and suppose that
(¢0.00) € L* (QL2(R)) X L (. L*(R)),  (do.0) is Fo— measurable.
Then the unique solution (¢, ¢) obtained in Theorem 1.1 exists globally in time and satisfies
(¢, ) € L*(Q.C ([0, To] . L(R))) x L* (Q., C ([0, To] . L*(R))). YTy > 0.
To conclude our preliminary discussion, we introduce the notation y <, . x, 0 to mean that y < ¢d
for some constant ¢ > 0 depending only on A4, ..., 4,. When c is an absolute constant, independent of

any parameters, we simply write y < 9.
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2. Linear and bilinear estimates in Bourgain spaces

To establish our main results, we first introduce several key estimates. In order to state them, we
rewrite system (1.3) in its Itd form, namely,

&
dé +( ¢ + C¥1¢a—¢ + aw(?_go + a3¢— + G4¢Z¢)dt = ZdW

Ox
2.1
Py 0
de +( +ﬁ1¢—¢ +ﬁ290—(p +ﬁ3¢— + Bap ¢)dt = EdW.
Where W(t) = ‘% denotes a cylindrical Wiener process on L*(R), which can equivalently be

represented as

W = > Bines

i=0

with (e;);cy an orthonormal basis of L*(R) and (Bi)ien @ sequence of mutually independent real-valued
Brownian motions defined on a fixed probability space.

System (2.1) is equipped with the initial conditions

¢, 0) = o), ¢@(-,0) = @o(-). (2.2)

We start by considering the linear equation, which highlights the assumptions required on =.

A,

—dt = Z2dW
03x

de¢ +

3

Fy
dQD + aTdt ==dW

(¢0(x), @o(x)) = (0,0),

which can be represented through the stochastic Ito integral

¢u(1) = j; Uz = y)=dW(y)
(2.3)

oit) = fo Wt - Y)EdW (),

where U(7) = e ~% denotes the Airy group. By the unitarity of (#), one readily verifies that ¢(¢) and

(1) belong to H*(R) only if Z is a Hilbert—Schmidt operator from L*(R) into H*(R).
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In order to solve (2.1) with the initial data (2.2), we employ its mild form

! 0 0¢
¢(t) = Uy + fo U -y) (al¢—¢ + aztpa—"o + oz3¢— taspo )(7) Y

+[) Ut —y)=dW(y)

2.4)
, 9 b b b (
o) = U+ [ UG- (B85 + Pt +Bio5E + B oy
0 0x 0x 0x 0x
!
+f U(t — y)EdW(y).
0
Mild solutions are obtained using the following estimates.
Proposition 2.1 (Linear estimates [6]). For any s,b € R, we have
@ ollyss < Nipollzzss Dol < ligolls- (2.5)
1 s—3
Further, if_§ <b <0<b<b +1,0<T<1l,and F EX;’bﬂ Y, S’b, then
t ’
[ue-nroa| < TIFEQ 2.6)
0 X;v" T
and t
fll(t—y) Fiydy|| , sTIF) b 2.7
O Y;:—g,

Lemma 2.2 (Bilinear estimates in X** [6]). Let s > =3/4,1/2 <b <1, -1/2<b' <0,and b’ =b -1
such that for all ¢, ¢ € X*¥', we have

H O5cll.., S (min Il gl oy . ) 2.8)
“ el S (min{liglhon el oy . ) (2.9)
“ el S (in {0l 191y gy }) ¢ (min {llelios, By oot ), (2.10)
"P@—i oy S (min el 0llomy gy )X (min {iglheoss 100l g oot ) 2.11)

Lemma 2.3 (Bilinear estimates in Y*""*>” [6]). Let s > =5/8,1/2 < b < 1, =1/2 < b' < 0, and
«_3
b’ = b — 1 such that for all ¢, ¢ € Y>3 we have

AIMS Mathematics Volume 10, Issue 11, 27560-27580.
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le22] . < (min{ieton. ety s} @13
H¢‘;—f i (min {ligllys, Bl ooy oozt }) % (min{llgllxes, Il oy oozns}) (2.14)
le22] o, < (min{ieton. el sy o ) i i WLy o)) 219

We choose a function @ such that @w(f) = 0 for t < 0 and |¢f| > 2, and w(¢) = 1 for ¢ € [0, 1], with
1
@ € Cy’. Note that such a @ belongs to Hf’ = H’([0, T],R) for any b > 7 where

| () — W(U2)|2

g2 | — |t

2 2
@l = @l + dndn,.

We show the following lemma.

Lemma 2.4 (Stochastic convolution in X**). Let s,b € R, with b < 1/2, and assume that = € Lg’s.
Then ¢,(1), ¢)(t) defined by (2.3) satisfies

o € L*(Q.X"), wg e l’(QX")

and
E 2 < =112 E 2 < = 2
l@illxes ) St 1E] 0,55 l@eillxes ) Sb.a 1Bl o
2 2

Proof. Let us introduce the function
fG. 1) =) [)t U(—y)2dW(y), teR". (2.16)
This implies that 2(7) (-, 1) = @w(t)P(¢). Thus, we have
E (|l@¥|l}..) = E ( fR A1)+ |fof dydg)

- [avare(lieol,)d.
R t

According to the expansion W(r) = Z Bi(t)e; of the cylindrical Wiener process and (2.3),, we have
i=0

B(|7@ ) =2+ e

where,
(o) A 2
S =) [gef [E[me f " dBi(y) H
i=0 0 LI2(R)

171 . 72 )
2 ]w(m) f M dBi(y) - @ (1) f e’743d/31-(y>|
=S g e f 0 0 dmdn,
— B2 i1 — mal %
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From the Itd isometry formula, we have

- 2 2 ! 3
- 2 j
S =) |Ee f lw(t)’E ‘ f " dp;
i=0 0 0
. a2
o G Y
=

2
)dt

1
It

To estimate &,, we get

m 5 mn 5
|w(m) f ¢ dBi(y) — @ (n) f ¢ d/s,-m'

S, = ; EA€i|2 E LZ - 71— ol 2 : dmdn,
o 1
. E(] @ (1) fo " dBi(y) - @ (12) fo e
= 2; = i| fT; oﬁmn n 1_772|1+2b dmdn
. @ () E | f " ‘7‘3dﬁi<7>|2)
_ L>0L<o I — ol dmd:

+2 f 1+2b
m>0 JO<m<m |771 - 772'

mo mo o 2
E( @ () f () - () f By + () f 7 dBi(y) ) dmdnz]
0 m

3 2
i ) f f @ P E(| " e ason)
< Ee; dmdn,
m>0 Ji1<0 I _772|1+2b

1 3 2
@ () — @ () E(l [ e apiy)| )
+4f f 152b dind
>0 O<771<T]2 | ]7 |

1+2b
I =l

@ P B(|[ e ani)] )
+4 f f di]] d7]2
m>0 JO<n<m

= Y Eel 1 + 1+ 1)
i=0

Now, we limit 3, 3, and 33 separately:

t

2
1 1
31 < Zf m @ () —— = dmdn <M, ”lﬂz '@
0 1<0 |1 — 12l
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Using Eq (2.16) and the assumption that 25 € (0, 1), we have

00 72 2
m o (1) — @ ()|
: 4f0 fo T

2 2 2
m o () — @ (o))
= 4f0 fo TN

771| (771)|
+4f f e — a2 e

00 2
L 1
< 8||@l, +4H|t|5wH f f . _dndm
H L Jo Jo m —ml"?

2
2 1
< Sl + M, H"'WHLM
1

2 72 2
<4 f f TGNy <, ot
o Jo | —mnl

E(” ¢, -)||i,[,,) < K(b, @) Z |Eei|

Similarly,

So, we have

where K(b, @) = M, (llwlle; +|

1 1
|z|in + Hmm“ ) 0
E Iy

Lemma 2.5 (Stochastic convolution in Y*"*>?). Let s,b € R, with b < 1/2, and assume that = € Lg"”’”.
Then ¢,(1), ¢(t) defined by (2.3) satisfies

ot € (Y, o e 12 (@, v)
and

2 =2 2 =2
B (I04ill3,0) Sho 18 0s s E (1@l 00) S 120
2

2

Proof. The proof is similar with that of Lemma 2.4. m|
3. Local well-posedness (Proof of Theorem 1.1)
Based on the stochastic estimates established in the previous section and the Banach fixed-point

theorem, we derive a local well-posedness result for system (1.3). Accordingly, this section is dedicated
to the proof of Theorem 1.1. Let

L) = U)o,  1L(1) = W1)go,

AIMS Mathematics Volume 10, Issue 11, 27560-27580.
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Ti(r) = fo Ut = y)2dW(y), T2(1) = fo Ut = y)ZdW(y),

and

¥() = f U -y) (al¢_¢ + 0290(;—90 + 0/3¢— + aqp ¢) (ndy,
0

V(1) = f Wt~ ) (,81¢—¢ + B0 + 02 + B (f) Wdy.

Now, assume that

Vi) = ¢i(1) = I1, (1) = 11 (1)
¥a(t) = @i(t) = IL(1) = T2(2),

SO

V() = f U —y) (0/1¢—¢ + aztpg—‘p + C¥3¢— + a4<ﬁa¢) (y)dy
0

! 0 0 0 0
Wa(r) = f @ - ) (B1¢a—¢ Bt + B+ ,8490—¢) My,
0 X 0x 0x 0x

and then (3.2) is equivalent to

+as(Wi 0+ 110 + ‘rlm)ax(%(r) +IL(0) +120)

¥ a4(‘Pz(t) +IL(0) + ‘rzm)ax(%(r) F L) + ‘rlm)](y)dy

¥ ,33(‘1’1(0 +IL() + Tl(o)ax(%(r) +IL() + ‘I‘z(r))

¥ m(%(t) +IL() + T2<t>)ax(%(t> + L) + ‘m))](y)dy.

Simplifying this expression yields

() = f’ A(r - y)[ ( > ( () + I (1) + Tl(t)) + %(‘Pz(t) +ID(1) + Tz(l))z)

! ﬁl 2 ﬁZ 2
¥ = U(r — 0| =¥ Il T —|¥Y Il T
(1) fo (t y)[ (2( () + I (1) + 1<r>) 4 2( A0 + II(1) + 2<r>))

3.1

(3.2)
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!
¥ = f u(r - y)[ax(% (W2 + 177 + 03 + 29,0, + 29,7, + 211,
0

+ 2 (I3 + 034 21T 4 205 + 2172‘1'2))
+ a3 (‘Plaxqu + Hlaxlljz + Tlﬁx‘Pg + ‘P10XH2 + Hlaxnz
+ Tlaxnz + TlaxTz + HlaxTz + TlaxTz)

+ ay (“Pzax\}ll + Hzax\}ll + Tzaxqu + \Ijzaxnl + Hzaxnl

+ Tzaxnl + \Pzale + Hzale + Tzale) (’)/)d’)/
(3.3)

!
V() = f W - y)[ax(%‘ (W2 + 172+ 72 + 2%, 1T, + 2, + 2077
0

LB
2

(\{% + 112 + Y2 + 2¥,1T, + 29,05 + 2172‘1’2))
+ﬁ3 (Tlaxlyz + Hlaxll’z + Tlax\PZ + ‘I’lﬁxﬂz + Hlaxnz
+ Tlﬁxﬂz + ‘P16XT2 + HlﬁxTz + TlaxTz)

+ﬁ4 (Tzaxlyl + Hzax\yl + Tzaxl{lz + \Pzaxnl + Hzaxnl

+ 10,01 + Y10, T + 11,0, + 120, Ty) |(y)dy.
Next, we define the ball B 1 by

3
S.—g»b—
T

2

sh—1 s—3p-L
By = {(%,%) XY LI g IRy SRR o}.
T

Therefore, the goal of this section becomes to prove that (‘\V(7), ¥,(#)) is a contraction mapping in
Brr. According to Lemmas 2.1, 2.2, and 2.4, we obtain

1INy s T
XT

ax(% (W3 + 177 + 03 + 2911, + 29, + 201,
@2 (42 2 2

+ (I3 B+ 034 D00 4 2O + 2172‘1’2))

+ a3(‘1’10x‘1’2 + Hlax\yz + Tlaxq’z + ‘Plaxnz
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172 (F2 DI, -y

AIMS Mathematics

+ 171(9XH2 + ‘I’]@xﬂz + TlaxTz + Hlang + TlaxTz)
+ 04(\1"20;{11 + Hgax‘Pl + Tzax\ljz + \Pzaxnl

+ Hzaxnl + Tzaxnl + \Pzale + Hzale + Tzale)

s,b’
XT

2

’ l
Tl—b b 7 2 IT 2 T 2
Se i [ (” il spl [1Z1;]] apl (104l apl
2 X; x"'72 X, 2

<

~

<

~

T

2 2 2
IR,y + IR, +ICIE, )
XT’ 2 XT’ 2 XT’ 2
# (AL LIy 4 ATy Iy
X, X, X; X,
oS LT S A, AT
X; X; X, X,
Il g 10y + WAy I o)
XT XT XT XT
(R TR 1, AT ;AT
XT XT XT XT
Iy Iy )+ 2(AIL o WDy
XT XT XT XT
Iy Il oy + WLy Iy
XT XT XT XT
Ty T2l ey + Iy NIy
XT XT XT XT
Il W0 )|
X, Xy

where « = max{a,, az, @3, as}

1=+ (RQ + 107y, TZ)“is,bf% +[1(7y, T2)||2 5= 3.b-

Y,

p t+ ||(¢0’ CPO)H(%-{S) P

2

b’ 3x(% (\p% +IT7 + (2 + 29,17, + 2, + 2171T1)

+ ﬁ2—2 (‘I’§ + 112 + Y2 + 29,11, + 29,7, + 2172‘1’2))
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+ﬁ3(‘1’18x‘1’2 + Hlax\PZ + Tlax“}lz + \Plaxﬂz
+ HI(?XHZ + Tlaxnz + \Plang + HlﬁxTz + Tlﬁng)
+ﬁ4(‘P28x‘P1 + Hzax\yl + Tzax\Pz + ‘1’28x]71

+ ILOIT + TadodT, + Wad, Yy + IO, Y + Tzﬁx‘l’l)

4
XT

’ 1
1-b+b 2 2 2 2
g T [—(II‘Plll R 8 1771 | O Tl | &
2 X, *Z X, Z X, ? X, ?
2 2
HILI AT, )+ (A s AT oy
$.b- 3 s.b ) X 2 X 2
X X T T

IV g I oy + ML g 1L .c,b_%)
X, X, X; X;

2 2

2

(Il g Iy + 0] Iy + Iy
X X Xy X, X, X,
# 21y 9]y + I oy Wy
X; X; X; X,

Ty 0oy )+ 21 IR oy

XT XT XT XT
TR TR S 1/ A Y 2 [

X, X, X, X,
T TR S P [ oY [T 2

XT XT XT XT
Tl W0 )|

XT XT

where B = max{Bi, 5, B3, B4}

N

a1 F @0, 05 |-

g

[N}

T1-b+b’ (732 +HICCL TP,y + IO TN
X2 Yy

SO

MM%@%WMWW;SW%%WHWﬂm%yWWEWMM
X, Xf 2 yf 8772

+ 1o, €0)3)
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and

I CE ), (V2O gy S T (R2+|I(T1,Tz)ll , 1+|I(T1,Tz)ll .

m\u:

b—

N\—

T

+ 1o, ¢0)l3) -
Then

I CFL @), (V2 OD -y + I FL D), CF2ODN -4

T

bh—

=

s 27! (732 + |I(T1,Tz)llis,,,,% + (0, Tl + ||(¢o,900)||§,s).

-
‘yT

Therefore, for (‘P;1, ¥2.1), (W12, ¥22) € Brr , we get

[CATCSRER SEINAIE SR ‘Pz.z))HXs,bg
T

< T (R+ T2y + IO DI, gy + ||(¢o,<po>||ﬂ.v)
T T

X (||(‘I’1,1 - W2, ¥o - le.z)”Xs,b—% + (11 = Wi2), (Far - TZ-Z))”ya‘sé’bi)’

T T
and
[CRTCINI SEVY BIC SRR X0l [T

< T (R IO O g + 0O Ty + “<¢0’9"0)”W)

X (||(‘P1.1 W2, ¥ - ‘P2.2)||X.;,b_% + (Y11 —Yi2), (W1 - ‘Pz.z))”ys,—éfb-%)'
T T

So

I (¥ 1y = ¥i2), Fo(Wor = W2l oy + I (F 1y = W), Fo(¥on = Fo)) gy
T T

8§72

) aald (R + 10y, TZ)”XX.})—% + 117y, Tz)”yx,i 1+ [[(do, 900)||7+Y)
T T

T

X (||(‘P1.1 = V12, Wou =Wl oy + I(Frs = W), (Fa = ‘Pz.z))Hys,_g,b_;).

Let us choose T, such that

ACT) (Rg + (T, L) xS + ”(TI,TZ)“y P ||(¢o,900)||74s) <1

T
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where

Ro = 2C | ICCL LI, + IO, TP s, o+ (o, @0l ) -
X, 2 vy, ¥

T
It is easily checked that (I}, ;) maps Bg 7 into itself and is a strict contraction in Bg 7 for the norm

(¥, T -} ull |G ST 9] [ PRSI

S

T

I (Fry = Wh2), Fo(Wan = Fo2 Dl g + I (W 1s = Fi2), 1 (W - \PZ.Z))”y.r,—%,b—%
T T

1
< 3 (||(‘P1.1 W5, ¥y - ‘{’2.2)||Xs,bf% + [[((P1.1 = P12), (P21 — F2))I
T

3 1
s, 8,b

VAR

1

splL s—3.p-1 . )
Hence, (I'y, I;) has a unique fixed point in X Tf Ny T’g o *, which is a solution of (3.3) on [0, 7].
It remains only to show that if

o) = IL(0) +¥1(0) + 1) € X3+ X, Ay 30
(3.4)
o1) = (1) + ¥o(0) + To() € X+ X; 72 Ay 40
then

! 0 0 op 0
f - y) (m«»a—‘b + a2 + a3+ asp ¢) (Ddy € C(0, T, 1, H'(R)
0 X 0x 0x

! 0 0 0 0
f 1t =) (8102 + b 2L + 10 2L + il |y € C(10, T, ), HE(R).
0 0x 0x 0x 0x
Note that -1/2 <b" <0,0<b—-1/2<1/2,b>1/2,and b’ = b — 1. By Lemma 2.2, we have

0p  dp Op 0¢
¢— —¢ N e X+ ,
ox " Ox T Ox

for any prolongation

D=

1 3
of ¢eX+ X2y s

asS!

and
1

@ of peX X InysEbl,
and applying Lemma 3.2 in [12], we get

0o ~ 00 0
Yr f Ut —y) (m—“’ + ar af: 3¢—90 + ¢) (y)dy € X*'** ¢ C([0, T1, H'(R)),
0

0 _ O ¢ ,
w‘fua~w@mﬁ+mz§ &ﬁ¥+maﬁywweXW*camJLm®»
X ox

Since 1 + 5" > %, then
(¢.@) € C([0,T,], H'(R)) x C([0, T, 1, H (R)).
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4. Global well-posedness (Proof of Theorem 1.2)

We assume here that
(¢o- o) € L* (. L*(R)) x L? (Q, L*(R)),

and that the operator
. 3
E e LY (L’(R), L’(R) N H* 5 (R)).

In order to show that the solution (¢, ¢) may be continued on the whole interval [0, 1], we use the
same argument as in [5]. We take a sequence

(Ennar € L (LX(R), H*R) 0 HO3(R)),

such that

[1]

» o Ein LY (LAR),LAR) N H*F(R)),

and another sequence
(Goum G0y € L (Q HY(R)) x L2 (Q. H*(R)),
such that

(Gom p00) = ($0.90),  in L2 (QL(R)) x L’ (Q, L*(R)).

We know from Lemma 3.2 in [5] that there exists a unique solution

(- o) € C (10,11, H'(R)) x C ([0, 11, H*(R)),

¢n(t) :u(t)¢0,n_f u(t_)/)(al(pn ¢ +02‘Pn
+ f Ut = y)E,dW(y),
0 o6
o) = W(Dpo,, — f U —y) (/31¢n P ﬁchn ,33¢n + B4 ")(y)dy
+ fo Ut — ), dW(y).

dou L Ben O
ox 0

4.1)

We then use the It6 formula on ||¢n|| L®) ||gon|| ®) and a Martingale inequality,

(SUP f (6n (1), ~ndW(7))) < 2E( sup |¢n(t)|Lz) + C”'—'n”LOOa

1€[0,1] 1€[0,1]

1
(SUP f (en(y), undW(Y))) 3 (SUP Isﬂn(t)le) +C ”'—'n”Loo

1€[0,1] 1€[0,1]
We deduce that
= 12
( sup ||¢n(t>||Lz) < E (Iéo,l3;) + C 1Moo -

t€[0,1]
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E( sup ||son(t>||i§) < E (llgosl};) + ClIEM 0 -

t€[0,1]

Hence, the sequence (¢,),cy > (), are bounded in [? (Q, L” ([0, 1], Lz(R))) so that it is weakly
star convergent in this space to a function ¢, $ which satisfies

E( sup ||<7b<r>||§§) < E (Iolff,) + CIEIEs.

te[0,1

E( sup ||¢<r>||§§) < E (llgoll3;) + CIEIE .

te[0,1]

Let us define the mapping (I} »,, [ >,,) in the same way as (I'1, [). It is easy to check that (I ,, [2,)
is a strict contraction uniformly on Bg, 7,, where
)

=

T >2C ((sup (ll(w‘rl,n, T2y @ T @2l o0
neN 0.7

+ CTlI(g, ¢)||iw([0,1],Lz(R))2)
and
(1-b+b")
4CT,, (Tgl + (ilelg (”(W‘T],n, @) Xop-) @Y1, sz,n)Hyo,g,b;))
+ Cil|(4, ¢)||L°°([0,1LL2<R>)2) =1
where

Tia(t) = fo U(r = Y)E,dW(y), Tou(t) = f Ut = )ZdW(y).

0

According to the fixed point theorem, there exists a unique fixed point

0b , 3 0b=3 L O3}
O — P E XTQ1 + XTgl N YTQ1 ,

_1 31
O — goeX%f +X2Z 2 ﬁY?;)]S’b ’,
such that
,P) = ~a¢ s 4ol s Lolls
(@,0) = (¢, ¢) on[0,Ty]Xx[0,T,]
and

||(¢(T,Ql)a QO(TQI))”LZ(R)XLz(R) < ”((}’ ¢)||L°°([O,1],L2(R))2 .

Thus, we can construct a solution on [T, 27,] starting from (¢(T,), ¢(T,1)). By iterating this
argument, we obtain a solution on [0, 7}].
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5. Conclusions

The Stochastic Korteweg—de Vries system models nonlinear wave propagation under random
disturbances, a framework crucial for predicting extreme events like rogue waves in turbulent oceans.
It also describes energy transport in randomly forced plasmas and signal degradation in noisy optical
fibers. The system is instrumental in quantifying the uncertainty and statistical properties of solitons
in disordered media, with applications spanning geophysics, fusion science, and communications
engineering.

This work focuses on a Stochastic Korteweg—de Vries-type system (1.3) in a random environment.
We prove that this system is locally well-posed for initial data in the space H*(R)x H*(R) for s > —5/8,
and demonstrate that its solutions can be extended to global ones on the interval [0, T)].

Inspired by the techniques in [6, 21], we handle the stochastic terms by introducing new,
appropriate stochastic function spaces, specifically, X*, X3 A ySTE071 ) and by establishing key
estimates for the stochastic convolution in these spaces. This approach allows us to analyze a more
realistic, stochastically forced KdV-type system. We believe the ideas presented here can be applied
to a broad class of stochastic nonlinear evolution systems in mathematical physics.

As an essential next step, the development of robust numerical schemes will be crucial for
simulating these systems, verifying theoretical predictions, and exploring nonlinear phenomena such
as the interaction of stochastic solitons.
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