A degree-based topological index of a tree $ T $ is termed as
$ TI_f(T) = \sum\limits_{v_1v_2\in E(T)} f(d(v_1), d(v_2)), $
in which $ f(x, y) = f(y, x) $ denotes a real-valued function with $ x, y\geq 1 $. This paper mainly focuses on the extremal topological index problems for trees with a given segment number. We respectfully present the sufficient conditions for achieving the smallest and largest values of $ TI_f $, as well as depict the associated extremal graphs. As an application, it is verified that there are eight types of degree-based indices that meet these sufficient conditions, including the recently proposed Euler Sombor index and diminished Sombor index.
Citation: Zhenhua Su. Extremal degree-based topological indices for trees with given segment number[J]. AIMS Mathematics, 2025, 10(11): 27677-27695. doi: 10.3934/math.20251217
A degree-based topological index of a tree $ T $ is termed as
$ TI_f(T) = \sum\limits_{v_1v_2\in E(T)} f(d(v_1), d(v_2)), $
in which $ f(x, y) = f(y, x) $ denotes a real-valued function with $ x, y\geq 1 $. This paper mainly focuses on the extremal topological index problems for trees with a given segment number. We respectfully present the sufficient conditions for achieving the smallest and largest values of $ TI_f $, as well as depict the associated extremal graphs. As an application, it is verified that there are eight types of degree-based indices that meet these sufficient conditions, including the recently proposed Euler Sombor index and diminished Sombor index.
| [1] | R. Todeschini, V. Consonni, Handbook of molecular descriptors, Wiley-VCH, Weinheim, 2000. http://dx.doi.org/10.1002/9783527613106 |
| [2] |
H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1947), 17–20. http://dx.doi.org/10.1021/ja01193a005 doi: 10.1021/ja01193a005
|
| [3] |
I. Redžepović, Chemical applicability of Sombor indices, J. Serb. Chem. Soc., 86 (2021), 445–457. http://dx.doi.org/10.2298/JSC201215006R doi: 10.2298/JSC201215006R
|
| [4] |
P. Nithya, S. Elumalai, Smallest ABS index of unicyclic graphs with given girth, J. Appl. Math. Comput., 69 (2023), 3675–3692. http://dx.doi.org/10.1007/s12190-023-01898-0 doi: 10.1007/s12190-023-01898-0
|
| [5] |
M. Imran, R. Luo, M. Jamil, M. Azeem, K. M. Fahd, Geometric perspective to degree-based topological indices of supramolecular chain, Results Eng., 16 (2022), 100716. http://dx.doi.org/10.1016/j.rineng.2022.100716 doi: 10.1016/j.rineng.2022.100716
|
| [6] |
M. Ghorbani, Z. Vaziri, R. A. Ravandi, Y. Shang, The symmetric division Szeged index: A novel tool for predicting physical and chemical properties of complex networksh, Heliyon, 11 (2025), e42280. http://dx.doi.org/10.1016/j.heliyon.2025.e42280 doi: 10.1016/j.heliyon.2025.e42280
|
| [7] |
M. Imran, M. Azeem, M. K. Jamil, M. Deveci, Some operations on intuitionistic fuzzy graphs via novel versions of the Sombor index for internet routing, Granul. Comput., 9 (2024), 53. http://dx.doi.org/10.1007/s41066-024-00467-5 doi: 10.1007/s41066-024-00467-5
|
| [8] |
A. Ali, B. Furtula, I. Redžepović, I. Gutman, Atom-bond sum-connectivity index, J. Math. Chem., 60 (2022), 2081–20093. http://dx.doi.org/10.1007/s10910-022-01403-1 doi: 10.1007/s10910-022-01403-1
|
| [9] | D. Vukičević, Q. Li, J. Sedlar, T. Došlić, Lanzhou index, MATCH Commun. Math. Comput. Chem., 80 (2018), 863–876. |
| [10] |
T. Došlić, I. Martinjak, R. Škrekovski, S. Tipurić Spužević, I. Zubac, Mostar index, J. Math. Chem., 56 (2018), 2995–3013. https://doi.org/10.1007/s10910-018-0928-z doi: 10.1007/s10910-018-0928-z
|
| [11] | I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021), 11–16. |
| [12] |
I. Gutman, Relating Sombor and Euler indices, Vojnoteh. Glas., 72 (2024), 1–12. http://dx.doi.org/10.5937/vojtehg72-48818 doi: 10.5937/vojtehg72-48818
|
| [13] |
Z. Tang, Y. Li, H. Deng, The Euler Sombor index of a graph, Int. J. Quantum Chem., 124 (2024), e27387. http://dx.doi.org/10.1002/qua.27387 doi: 10.1002/qua.27387
|
| [14] |
I. Gutman, B. Furtula, M. Oz, Geometric approach to vertex-degree-based topological indices-elliptic Sombor index, theory and application, Int. J. Quantum Chem., 124 (2024), e27346. http://dx.doi.org/10.1002/qua.27346 doi: 10.1002/qua.27346
|
| [15] |
J. Barman, S. Das, Geometric approach to degree-based topological index: Hyperbolic Sombor index, MATCH Commun. Math. Comput. Chem., 95 (2026), 63–94. http://dx.doi.org/10.46793/match95-1.03425 doi: 10.46793/match95-1.03425
|
| [16] |
F. Movahedi, I. Gutman, I. Redžepović, B. Furtula, Diminished Sombor index, MATCH Commun. Math. Comput. Chem., 95 (2026), 141–162. http://dx.doi.org/10.46793/match95-1.14125 doi: 10.46793/match95-1.14125
|
| [17] |
H. Chen, W. Li, J. Wang, Extremal values on the Sombor index of trees, MATCH Commun. Math. Comput. Chem., 87 (2022), 23–49. http://dx.doi.org/10.46793/match.87-1.023C doi: 10.46793/match.87-1.023C
|
| [18] |
F. Li, Q. Ye, Extremal graphs with given parameters in respect of general ABS index, Appl. Math. Comput., 482 (2024), 128974. http://dx.doi.org/10.1016/j.amc.2024.128974 doi: 10.1016/j.amc.2024.128974
|
| [19] |
S. Ahmad, K. C. Das, R. Farooq, On elliptic Sombor index with applications, Bull. Malays. Math. Sci. Soc., 48 (2025), 108. http://dx.doi.org/10.1007/s40840-025-01894-6 doi: 10.1007/s40840-025-01894-6
|
| [20] | X. Li, J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem., 54 (2005), 195–208. |
| [21] |
X. Li, D. Peng, Extremal problems for graphical function-indices and $f$-weighted adjacency matrix, Discrete Math. Lett., 9 (2022), 5–66. http://dx.doi.org/10.47443/dml.2021.s210 doi: 10.47443/dml.2021.s210
|
| [22] |
W. Gao, Extremal graphs with respect to vertex-degree-based topological indices for $c$-cyclic graphs, MATCH Commun. Math. Comput. Chem., 93 (2025), 549–566. http://dx.doi.org/10.46793/match.93-2.549G doi: 10.46793/match.93-2.549G
|
| [23] |
J. Du, X. Sun, On bond incident degree index of chemical trees with a fixed order and a fixed number of leaves, Appl. Math. Comput., 464 (2024), 128390. http://dx.doi.org/10.1016/j.amc.2023.128390 doi: 10.1016/j.amc.2023.128390
|
| [24] |
Z. Su. H. Deng, On the minimum vertex-degree-based topological indices of trees with given pendent vertices, MATCH Commun. Math. Comput. Chem., 95 (2026), 179-192. http://dx.doi.org/10.46793/match.95-1.17225 doi: 10.46793/match.95-1.17225
|
| [25] | J. A. Bondy, U. S. R. Murty, Graph theory with applications, 1976. |
| [26] | H. Lin, On segments, vertices of degree two and the first Zagreb index of trees, MATCH Commun. Math. Comput. Chem., 72 (2014), 825–834. |