Obtaining accurate solutions for mathematical models of neutron diffusion systems may lead to a deeper understanding of processes in reactor physics. The present paper applies the Laplace transform to the time-dependent neutron diffusion equation (together with the delayed neutron precursor equation) under a reflective boundary condition at one edge. The residue theorem is employed to obtain the inverse transform, leading to a series solution structured as a modal expansion associated with the eigenvalues of a transcendental equation. Moreover, the obtained series solution is theoretically proven to converge. The numerical results show acceptable accuracy based on residual errors. Physically, the neutron flux exhibits oscillatory behavior within the spatial domain, resulting in a wave-like alternating surface. Additionally, the delayed neutron precursor concentration stabilizes over time, gradually approaching a stationary profile, which is consistent with the physical expectations. The results also support the effectiveness of the Laplace transform technique in capturing the early-time behavior of the system. Differences between the present results and those reported in the relevant literature are explained.
Citation: Essam R. El-Zahar, Abdelhalim Ebaid, Laila F. Seddek, S. M. Khaled. Solving the 1D neutron diffusion kinetic equation under mixed boundary conditions: Explicit solution[J]. AIMS Mathematics, 2025, 10(11): 27462-27479. doi: 10.3934/math.20251207
Obtaining accurate solutions for mathematical models of neutron diffusion systems may lead to a deeper understanding of processes in reactor physics. The present paper applies the Laplace transform to the time-dependent neutron diffusion equation (together with the delayed neutron precursor equation) under a reflective boundary condition at one edge. The residue theorem is employed to obtain the inverse transform, leading to a series solution structured as a modal expansion associated with the eigenvalues of a transcendental equation. Moreover, the obtained series solution is theoretically proven to converge. The numerical results show acceptable accuracy based on residual errors. Physically, the neutron flux exhibits oscillatory behavior within the spatial domain, resulting in a wave-like alternating surface. Additionally, the delayed neutron precursor concentration stabilizes over time, gradually approaching a stationary profile, which is consistent with the physical expectations. The results also support the effectiveness of the Laplace transform technique in capturing the early-time behavior of the system. Differences between the present results and those reported in the relevant literature are explained.
| [1] | C. Ceolin, M. T. Vilhena, S. B. Leite, C. Z. Petersen, An analytical solution of the one-dimensional neutron diffusion kinetic equation in cartesian geometry, In: International Nuclear Atlantic Conference – INAC 2009, Rio de Janeiro, RJ, Brazil, September 27 to October 2, 2009. |
| [2] |
S. M. Khaled, Exact solution of the one-dimensional neutron diffusion kinetic equation with one delayed precursor concentration in Cartesian geometry, AIMS Math., 7 (2022), 12364–12373. https://doi.org/10.3934/math.2022686 doi: 10.3934/math.2022686
|
| [3] | J. R. Lamarsh, A. J. Baratta, Introduction to nuclear engineering, 3 Eds., Prentice Hall, 2001. |
| [4] | S. Dulla, P. Ravetto, P. Picca, D. Tomatis, Analytical benchmarks for the kinetics of accelerator driven systems, In: Joint International Topical Meeting on Mathematics & Computation and Supercomputing in Nuclear Applications, Monterey-California, on CD-ROM, 2007. |
| [5] |
A. A. Nahla, M. F. Al-Ghamdi, Generalization of the analytical exponential model for homogeneous reactor kinetics equations, J. Appl. Math., 2012. https://doi.org/10.1155/2012/282367 doi: 10.1155/2012/282367
|
| [6] |
F. Tumelero, C. M. F. Lapa, B. E. J. Bodmann, M. T. Vilhena, Analytical representation of the solution of the space kinetic diffusion equation in a one-dimensional and homogeneous domain, Braz. J. Radiat. Sci., 7 (2019), 1–13. https://doi.org/10.15392/bjrs.v7i2B.389 doi: 10.15392/bjrs.v7i2B.389
|
| [7] | A. A. Nahla, F. Al-Malki, M. Rokaya, Numerical techniques for the neutron diffusion equations in the nuclear reactors, Adv. Stud. Theor. Phys., 6 (2012), 649–664. |
| [8] |
S. M. Khaled, Power excursion of the training and research reactor of Budapest University, Int. J. Nucl. Energy Sci. Technol., 3 (2007), 42–62. https://doi.org/10.1504/IJNEST.2007.012440 doi: 10.1504/IJNEST.2007.012440
|
| [9] |
S. M. Khaled, F. A. Mutairi, The influence of different hydraulics models in treatment of some physical processes in super critical states of light water reactors, Int. J. Nucl. Energy Sci. Technol., 8 (2014), 290–309. https://doi.org/10.1504/IJNEST.2014.064940 doi: 10.1504/IJNEST.2014.064940
|
| [10] |
M. A. Al-Sharif, A. Ebaid, H. S. Alrashdi, A. H. Alenazy, N. E. Kanaan, A novel ansatz method for solving the neutron diffusion system in Cartesian geometry, J. Adv. Math. Comput. Sci., 37 (2022), 90–99. https://doi.org/10.9734/jamcs/2022/v37i111723 doi: 10.9734/jamcs/2022/v37i111723
|
| [11] |
H. K. Al-Jeaid, A simple approach for explicit solution of the neutron diffusion kinetic system, Math. Stat., 11 (2023), 107–116, 2023. https://doi.org/10.13189/ms.2023.110112 doi: 10.13189/ms.2023.110112
|
| [12] |
T. M. T. Alsubie, A. Ebaid, A. S. S. Albalawi, S. A. Alghamdi, F. F. M. Alhamdi, O. S. H. Alhamd, et al., Developing ansatz method for solving the neutron diffusion system under general physical conditions, Adv. Differ. Equ. Contr., 31 (2024), 15–26. http://dx.doi.org/10.17654/0974324324002 doi: 10.17654/0974324324002
|
| [13] |
N. Dogan, Solution of the system of ordinary differential equations by combined Laplace transform-Adomian decomposition method, Math. Comput. Appl., 17 (2012), 203–211. https://doi.org/10.3390/mca17030203 doi: 10.3390/mca17030203
|
| [14] | P. V. Pavani, U. L. Priya, B. A. Reddy, Solving differential equations by using Laplace transforms, Int. J. Res. Anal. Rev., 5 (2018), 1796–1799. |
| [15] |
A. B. Albidah, A proposed analytical and numerical treatment for the nonlinear SIR Model via a hybrid approach, Mathematics, 11 (2023), 2749. https://doi.org/10.3390/math11122749 doi: 10.3390/math11122749
|
| [16] |
S. M. Khaled, The exact effects of radiation and joule heating on magnetohydrodynamic Marangoni convection over a flat surface, Therm. Sci., 22 (2018), 63–72. https://doi.org/10.2298/TSCI151005050K doi: 10.2298/TSCI151005050K
|
| [17] |
A. F. Aljohani, A. Ebaid, E. H. Aly, I. Pop, A. O. M. Abubaker, D. J. Alanazi, Explicit solution of a generalized mathematical model for the solar collector/photovoltaic applications using nanoparticles, Alex. Eng. J., 67 (2023), 447–459. https://doi.org/10.1016/j.aej.2022.12.044 doi: 10.1016/j.aej.2022.12.044
|
| [18] |
M. D. Aljoufi, Exact solution of a solar energy model using four different kinds of nanofluids: Advanced application of Laplace transform, Case Stud. Therm. Eng., 50 (2023), 103396. https://doi.org/10.1016/j.csite.2023.103396 doi: 10.1016/j.csite.2023.103396
|
| [19] |
A. F. Aljohani, A. Ebaid, E. A. Algehyne, Y. M. Mahrous, P. Agarwal, M. Areshi, et al., On solving the chlorine transport model via Laplace transform, Sci. Rep., 12 (2022), 12154. https://doi.org/10.1038/s41598-022-14655-3 doi: 10.1038/s41598-022-14655-3
|
| [20] |
A. F. Aljohani, A. Ebaid, E. A. Algehyne, Y. M. Mahrous, C. Cattani, H. K. Al-Jeaid, The Mittag-Leffler function for re-evaluating the chlorine transport model: Comparative analysis, Fractal Fract., 6 (2022), 125. https://doi.org/10.3390/fractalfract6030125 doi: 10.3390/fractalfract6030125
|
| [21] |
Y. Liu, K. Sun, Solving power system differential algebraic equations using differential transformation, IEEE T. Power Syst., 35 (2020), 2289–2299. https://doi.org/10.1109/TPWRS.2019.2945512 doi: 10.1109/TPWRS.2019.2945512
|
| [22] | S. Liao, Beyond perturbation: Introduction to the homotopy analysis method, CRC Press, Boca Raton, FL, USA, 2003. |
| [23] |
A. Chauhan, R. Arora, Application of homotopy analysis method (HAM) to the non-linear KdV equations, Commun. Math., 31 (2023), 205–220. https://doi.org/10.46298/cm.10336 doi: 10.46298/cm.10336
|
| [24] |
M. Nadeem, F. Li, He-Laplace method for nonlinear vibration systems and nonlinear wave equations, J. Low Freq. Noise V. A., 38 (2019), 1060–1074. https://doi.org/10.1177/1461348418818973 doi: 10.1177/1461348418818973
|
| [25] |
M. Nadeem, S. A. Edalatpanah, I. Mahariq, W. H. F. Aly, Analytical view of nonlinear delay differential equations using Sawi iterative scheme, Symmetry, 14 (2022), 2430. https://doi.org/10.3390/sym14112430 doi: 10.3390/sym14112430
|
| [26] |
Z. Ayati, J. Biazar, On the convergence of Homotopy perturbation method, J. Egypt. Math. Soc., 23 (2015), 424–428. https://doi.org/10.1016/j.joems.2014.06.015 doi: 10.1016/j.joems.2014.06.015
|
| [27] |
J. S. Duan, R. Rach, A new modification of the Adomian decomposition method for solving boundary value problems for higher order nonlinear differential equations, Appl. Math. Comput., 218 (2011), 4090–4118. https://doi.org/10.1016/j.amc.2011.09.037 doi: 10.1016/j.amc.2011.09.037
|
| [28] | S. Bhalekar, J. Patade, An analytical solution of fishers equation using decomposition method, Am. J. Comput. Appl. Math., 6 (2016), 123–127. |
| [29] |
A. H. S. Alenazy, A. Ebaid, E. A. Algehyne, H. K. Al-Jeaid, Advanced study on the delay differential equation $y'(t) = ay(t)+by(ct)$, Mathematics, 10 (2022), 4302. https://doi.org/10.3390/math10224302 doi: 10.3390/math10224302
|
| [30] |
C. A. Cruz-López, G. Espinosa-Paredes, A new simplified analytical solution to solve the neutron point kinetics equations using the Laplace transform method, Comput. Phys. Commun., 283 (2023), 108564. https://doi.org/10.1016/j.cpc.2022.108564 doi: 10.1016/j.cpc.2022.108564
|
| [31] |
C. A. Cruz-López, G. Espinosa-Paredes, A new solution of the fractional neutron point kinetics equations using symmetry and the Heaviside's expansion formula, Prog. Nucl. Energ., 171 (2024). https://doi.org/10.1016/j.pnucene.2024.105168 doi: 10.1016/j.pnucene.2024.105168
|
| [32] | J. L. Schiff, The Laplace transform: Theory and applications, Springer Science & Business Media, 1999. |
| [33] | E. C. Titchmarsh, The theory of functions, 2 Eds., Oxford University Press, 1939. |
| [34] | C. Ceolin, M. T. Vilhena, B. E. J. Bodmann, On the analytical solution of the multi-group neutron diffusion kinetic equation in one-dimensional Cartesian geometry by an integral transform technique, In: Constanda, C., Harris, P. (eds) Integral Methods in Science and Engineering, Birkhäuser Boston, 2011. https://doi.org/10.1007/978-0-8176-8238-5_7 |