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Abstract: Obtaining accurate solutions for mathematical models of neutron diffusion systems
may lead to a deeper understanding of processes in reactor physics. The present paper applies
the Laplace transform to the time-dependent neutron diffusion equation (together with the delayed
neutron precursor equation) under a reflective boundary condition at one edge. The residue theorem is
employed to obtain the inverse transform, leading to a series solution structured as a modal expansion
associated with the eigenvalues of a transcendental equation. Moreover, the obtained series solution is
theoretically proven to converge. The numerical results show acceptable accuracy based on residual
errors. Physically, the neutron flux exhibits oscillatory behavior within the spatial domain, resulting in a
wave-like alternating surface. Additionally, the delayed neutron precursor concentration stabilizes over
time, gradually approaching a stationary profile, which is consistent with the physical expectations.
The results also support the effectiveness of the Laplace transform technique in capturing the early-
time behavior of the system. Differences between the present results and those reported in the relevant
literature are explained.
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1. Introduction

This paper focuses on the following system in reactor physics [1,2]:
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1
V
∂φ(x, t)
∂t

= D
∂2φ(x, t)
∂x2 +

(
−Σa + (1 − β)νΣ f

)
φ(x, t) + λC(x, t), (1)

∂C(x, t)
∂t

= βνΣ fφ(x, t) − λC(x, t), (2)

where φ(x, t) and C(x, t) represent the neutron flux and the delayed neutron precursor concentration,
respectively. The parameters D, V , β, ν, λ, Σa, and Σ f are defined as the diffusion coefficient, the
neutron speed, the delayed neutron fraction, the average number of neutrons per fission, the decay
constant of delayed neutron precursors, the macroscopic absorption cross-section, and the macroscopic
fission cross-section for the fuel, respectively; see Ref. [3] for details. The boundary conditions (BCs)
are taken as

φ(0, t) = 0,
∂φ

∂x
(L, t) = 0, t > 0, (3)

while initial conditions (ICs) are

φ(x, 0) = φ0, C(x, 0) =
βνΣ f

λ
φ0, 0 < x < L. (4)

The second boundary condition in Eq (3) corresponds to a reflective boundary condition at one edge of
the reactor, mainly at x = L. In the literature, several authors applied various analytical and numerical
approaches to solve the coupled partial differential equations (PDEs) (1-2) under distinct BCs:

φ(0, t) = 0, φ(L, t) = 0, t > 0. (5)

For example, Ceolin et al. [1] applied the General Integral Transform Technique (GITT) to solve
the coupled PDEs (1-2) subject to the ICs/BCs (4-5). Their approach was based on adding the fictitious
diffusion term ε ∂

2C
∂x2 to the right-hand side of Eq (2), where ε is an artificial auxiliary parameter.

However, Khaled [2] ignored the addition of this term and systematically employed the Laplace
transform (LT) technique to obtain closed-form series solutions for φ(x, t) and C(x, t). Although the
LT method used by Khaled [2] was found to be effective, it encountered computational difficulties,
particularly when producing the curves describing the behavior of φ(x, t) and C(x, t) at the initial
time t = 0 using the Computer Algebra System (CAS) Wolfram Mathematica. Moreover, several
authors have resorted to other analytical techniques [4–6] in addition to numerical methods [7–9] to
analyze different neutron diffusion systems under various scenarios. On the other hand, the solution
reported by Khaled [2] was later reproduced by Al-Sharif et al. [10], who employed an ansatz method,
and by Al-Jeaid [11] through a simpler approach. Although the authors in Refs. [10,11] showed
some advantages of their analysis over the LT technique, they ignored the computational problems
encountered in Ref. [2], described above. Very recently, the results obtained in Refs. [10,11] are
generalized by the authors [12] through extending the ansatz method [10] to deal with the system (1-2)
under the BCs (5) and general ICs with arbitrary functions. In the literature, the LT was effectively
implemented to solve numerous mathematical models with applications in different fields governed
by ordinary differential equations (ODEs) [13–16] and PDEs [17–20]. Although other methods have
been proposed to solve ODEs and PDEs, such as the DTM [21], the HAM [22,23], the HPM [24–26],
and the ADM [27–29], the LT has its own advantage over such methods because of its capability of
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determining the solution in exact/closed form. Presenting a solution for the problem (1)–(4) via LT is
of interest in studying the neutron diffusion equation under new different ICs/BCs. Regarding this, it
was recently reported by Cruz-López [30] and Espinosa-Paredes [31] that the solutions of classical (or
integer models) that were obtained with the LT can be straightforwardly extended to the fractional case.
The objective of this work is to explore the applicability of the LT to solve the system (1)–(4), which
differs from the previous neutron diffusion system [1,2]. Our problem includes the second BC (3)
instead of the second BC (5), and accordingly, different behavior for the physical system is expected
in contrast to Refs. [1,2]. So, the LT is suggested in this paper to extend the work of Khaled [2],
where the boundary condition at x = L is change, and a new analysis related to the confirmation of the
initial conditions is employed. On this occasion, it will be stated later that the present analysis leads to
closed-form solutions without similar computational problems at t = 0 as arose in Ref. [2]. The paper
is organized as follows. Section 2 applies the LT to the problem, while the residues method is employed
in Section 3. Derivation of the analytic solution and its convergence are presented in Sections 4 and 5,
respectively. Section 6 presents some theoretical and numerical results for the solution and its physical
explanation.

2. Application of the LT

Let us first denote

µ = V
(
−Σa + (1 − β)νΣ f

)
, σ = βνΣ f , ρ =

βνΣ f

λ
=
σ

λ
, (6)

then using a similar procedure to the one followed by Khaled [2], we obtain from the system given in
Eqs (1) and (2) that

φ(x, s) = A1(s) cosh (ω(s)x) + A2(s) sinh (ω(s)x) +
g(s)
ω2(s)

, (7)

where φ(x, s) := L{φ(x, t), s} and

ω2(s) =
1

VD

[
s2 − (µ − λ)s − λ(µ + Vσ)

s + λ

]
, g(s) =

φ0

VD

[
s + λ(1 + Vρ)

s + λ

]
. (8)

The unknowns A1(s) and A2(s) are to be determined from the transformed BCs:

φ(0, s) = 0,
∂φ(L, s)
∂x

= 0, (9)

and thus

A1(s) = −
g(s)
ω2(s)

, A2(s) =
g(s) sinh(ω(s)L)
ω2(s) cosh(ω(s)L)

. (10)

From (7) and (10), we obtain

φ(x, s) =
g(s)
ω2(s)

[
1 −

cosh (ω(s)(x − L))
cosh (ω(s)L)

]
, (11)
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which can be simplified to

φ(x, s) = 2g(s) ·
sinh

(
ω(s) x

2

)
ω(s)

·
sinh

(
ω(s) 2L−x

2

)
ω(s)

·
1

cosh (ω(s)L)
, (12)

or in the form:

φ(x, s) = 2φ0

 (s + λ(1 + Vρ)) sinh
(
ω(s) x

2

)
sinh

(
ω(s) 2L−x

2

)(
s2 − (µ − λ)s − λ(µ + Vσ)

)
cosh (ω(s)L)

 . (13)

3. The residues method

The flux φ(x, t) can be obtained by computing the inverse LT of Eq (12) using the well-known
residues method. It is possible to observe from this expression that any singularity associated with
ω(s) = 0 is removable. Indeed, using that:

lim
ω(s)→0

sinh (ω(s)α)
ω(s)

= α, α > 0, lim
ω(s)→0

cosh (ω(s)β) = 1, (14)

and considering that lims→s0 ω(s) = 0, by the limit composition it follows that:

lim
s→s0

φ(x, s) = 2g(s0) · lim
s→s0

sinh
(
ω(s) x

2

)
ω(s)

·
sinh

(
ω(s) 2L−x

2

)
ω(s)

·
1

cosh (ω(s)L)
=

x(2L − x)
2

g(s0), (15)

which is finite (note that g(s) in Eq (8) is regular at s0 since s0 , −λ). Thus, the zeros of ω2(s) do
not generate poles; they are removable singularities. The only genuine poles relevant for inversion are
from the transcendental condition:

cosh (ω(s)L) = 0, (16)

which requires

ω2(s) = −(2n + 1)2 π
2

4L2 , n ∈ Z. (17)

In Eq (16), the condition cosh (ω(s)L) = 0 leads to ω(s)L = ±i(2n + 1)π2 , with n = 0, 1, 2, . . .
Consequently, for each value of n one obtains two distinct solutions of the quadratic equation (17),
namely:

sn,± =
1
2

[
En ±

√
E2

n + 4Fn

]
, (18)

with En and Fn given by

En = µ − λ − (2n + 1)2VD
π2

4L2 , Fn = λ

[
µ + Vσ − (2n + 1)2VD

π2

4L2

]
. (19)

Therefore, the poles arising from Eq (16) form an infinite sequence of simple poles {sn,±}n≥0.
By this, one can rewrite Eq (13) in the form:

φ(x, s) = h(x, s)
[

s + λ(1 + Vρ)(
s2 − (µ − λ)s − λ(µ + Vσ)

)
cosh (ω(s)L)

]
, (20)
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where h(x, s) is defined by

h(x, s) = 2φ0 sinh
(
ω(s)

x
2

)
sinh

(
ω(s)

2L − x
2

)
, (21)

and observing that:

h(x, sn,±) = −2φ0 sin
[
(2n + 1)πx

4L

]
sin

[
(2n + 1)π

4L
(2L − x)

]
. (22)

In order to calculate the residues at the poles sn,±, we have from Eq (12) that

Res {estφ(x, s)}|s=sn,± = esn,±t ·
2g(sn,±)
ω2(sn,±)

sinh
(
ω(sn,±)

x
2

)
sinh

(
ω(sn,±)

2L − x
2

)
× lim

s→sn,±

s − sn,±

cosh (ω(s)L)
,

= esn,±t ·
g(sn,±)

φ0ω2(sn,±)
h(x, sn,±) lim

s→sn,±

s − sn,±

cosh (ω(s)L)
, (23)

where sn,± are the roots of the equation:

ω2(s) =
1

VD
s2 − (µ − λ)s − λ(µ + Vσ)

s + λ
= −

(2n + 1)2π2

4L2 . (24)

The limit in Eq (23) is undetermined and accordingly, the L’Hôpital’s rule gives

lim
s→sn,±

(
s − sn,±

cosh (ω(s)L)

)
=

1
L ω′(sn,±) sinh

(
ω(sn,±)L

) . (25)

Using the following relationships:

ω′(sn,±) =
(sn,± + λ)2 + λVσ

2VD(sn,± + λ)2ω(sn,±)
, sinh

(
ω(sn,±)L

)
= sinh

(
±i(2n + 1)

π

2

)
= ±i(−1)n, (26)

it then follows

lim
s→sn,±

(
s − sn,±

cosh (ω(s)L)

)
=

2VD(sn,± + λ)2ω(sn,±)
L

(
(sn,± + λ)2 + λVσ

)
sinh

(
ω(sn,±)L

) =
(2n + 1)(−1)nVD π

L2 (sn,± + λ)2(
(sn,± + λ)2 + λVσ

) . (27)

Thus

Res {estφ(x, s)}|s=sn,± = −
4(−1)nh(x, sn,±)

(2n + 1)π
esn,±t

[
(sn,± + λ)(sn,± + λ(1 + Vρ))

(sn,± + λ)2 + λVσ

]
, (28)

which is

Res {estφ(x, s)}|s=sn,± = k(x, n)esn,±t

[
(sn,± + λ)(sn,± + λ(1 + Vρ))

(sn,± + λ)2 + λVσ

]
, (29)

where

k(x, n) = −
4(−1)nh(x, sn,±)

(2n + 1)π

=
8(−1)nφ0

(2n + 1)π
sin

[
(2n + 1)πx

4L

]
sin

[
(2n + 1)π

4L
(2L − x)

]
, n = 0, 1, 2 . . . .

(30)
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Using trigonometric identities, one can show that

sin
[
(2n + 1)πx

4L

]
sin

[
(2n + 1)π

4L
(2L − x)

]
=

1
2

cos
[
(2n + 1)π

2L
(L − x)

]
. (31)

Therefore

k(x, n) =
4(−1)nφ0

(2n + 1)π
cos

[
(2n + 1)π

2L
(L − x)

]
, n = 0, 1, 2 . . . . (32)

4. The analytic solution

Given

f (t) =
1

2πi

∫ γ+i∞

γ−i∞
estF(s)ds,

with γ > R(sk) for all poles of F(s), the Cauchy residue theorem ensures that, provided the contribution
from the large contour vanishes, one can write

f (t) =
∑

k

Res
(
estF(s), s = sk

)
.

This representation holds even when F(s) has infinitely many poles, as discussed in Schiff [32,
pages 160–161]. Based on the residue method, the solution φ(x, t) is given as

φ(x, t) =

 ∞∑
n=0

Res {estφ(x, s)}|s=sn,+ +

∞∑
n=0

Res {estφ(x, s)}|s=sn,−

 . (33)

In view of the results of the previous section, we obtain

φ(x, t) =

∞∑
n=0

k(x, n)
[(

(sn,+ + λ)(sn,+ + λ(1 + Vρ))
(sn,+ + λ)2 + λVσ

)
esn,+t +

(
(sn,− + λ)(sn,− + λ(1 + Vρ))

(sn,− + λ)2 + λVσ

)
esn,−t

]
, (34)

which can be expressed as

φ(x, t) =

∞∑
n=0

k(x, n)
[
Anesn,+t + Bnesn,−t] , (35)

where
An =

(sn,+ + λ)(sn,+ + λ(1 + Vρ))
(sn,+ + λ)2 + λVσ

, Bn =
(sn,− + λ)(sn,− + λ(1 + Vρ))

(sn,− + λ)2 + λVσ
. (36)

One can obtain C(x, t) as

C(x, t) = ρφ0e−λt + σ

∫ t

0
e−λ(t−τ)φ(x, τ)dτ, (37)

or

C(x, t) = ρφ0e−λt + σe−λt
∫ t

0
eλτφ(x, τ)dτ. (38)

Performing the integration in (38) yields

C(x, t) = ρφ0e−λt + σ

∞∑
n=0

k(x, n)
[

An

sn,+ + λ
esn,+t +

Bn

sn,− + λ
esn,−t −

(
An

sn,+ + λ
+

Bn

sn,− + λ

)
e−λt

]
, (39)

where k(x, n) is defined by Eq (32).
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5. Convergence analysis

This section concerns the theoretical analysis of the convergence of the series given in Eq (35). A
bound for the function |k(x, n)| can be stated as

|k(x, n)| ≤
4φ0

(2n + 1)π
. (40)

Define a rational function (related to the coefficients An and Bn) in the form:

(s + λ)(s + λ(1 + Vρ))
(s + λ)2 + λVσ

=
y(y + λVρ)
y2 + λVσ

, y = s + λ. (41)

Using this representation, together with the relation (17), it follows that:

y2 + (an − (µ + λ))y − λVσ = 0, an = VD(2n + 1)2π2/4L2. (42)

The roots of Eq (42) can be written as:

y(±)
n =

−(an − (µ + λ)) ±
√

(an − (µ + λ))2 + 4λVσ
2

, (43)

and they satisfy the relationship sn,± = y(±)
n − λ. Now, it is possible to establish the following bound:

0 < y(+)
n ≤

2λVσ
an

, y(−)
n ≤ −

an

2
. (44)

Therefore, it can be shown that (using elementary inequalities):∣∣∣∣∣∣ (sn,+ + λ)(sn,+ + λ(1 + Vρ))
(sn,+ + λ)2 + λVσ

∣∣∣∣∣∣ =
y(+)

n (y(+)
n + λVρ)(

y(+)
n

)2
+ λVσ

≤
2λVρ

an
+

4λVσ
a2

n
, (45)

and ∣∣∣∣∣∣ (sn,− + λ)(sn,− + λ(1 + Vρ))
(sn,− + λ)2 + λVσ

∣∣∣∣∣∣ =
y(−)

n (y(−)
n + λVρ)(

y(−)
n

)2
+ λVσ

≤ c1, (46)

where c1 = 1+2λVρ/a0, with a0 = VDπ2/4L2. One of the crucial steps is showing that the exponential
terms are bounded. For this task it can be shown that

sn,+ = y(+)
n − λ ≤ −

λ

2
, (n ≥ N), (47)

for some sufficiently large N, and:

sn,− = y(−)
n − λ ≤ −

an

2
−
λ

2
≤ c2(2n + 1)2, (48)

where c2 = VDπ2/16L2 > 0. These inequalities show that, for t ≥ 0, the exponential factors can be
uniformly bounded as:

esn,+t ≤ e−
λ
2 t, esn,−t ≤ e−c2(2n+1)2t. (49)
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6. Verification and results

This section is divided mainly into two parts. The first part verifies the given ICs&BCs through the
obtained solution as a vital/mandatory task before launching to the second part, which focuses on the
behavior of the system with some numerical results.

6.1. Verification of the ICs&BCs

This subsection shows theoretically that our solutions for φ(x, t) and C(x, t) given in (35) and (39),
respectively (along with k(x, n) defined in (32) and An and Bn given in (36)), satisfy the given
ICs&BCs (3,4). To make such a verification as clear as possible, we rewrite the solutions (35) and (39)
in the forms: φ(x, t) =

∑∞
n=0 k(x, n)Tn(t),

C(x, t) = ρφ0e−λt + σ
∑∞

n=0 k(x, n)τn(t),
(50)

such that 

k(x, n) =
4(−1)nφ0
(2n+1)π cos

[
(2n+1)π

2L (L − x)
]
,

Tn(t) = Anesn,+t + Bnesn,−t,

τn(t) = An
sn,++λ

esn,+t + Bn
sn,−+λ

esn,−t −
(

An
sn,++λ

+ Bn
sn,−+λ

)
e−λt,

sn,± = 1
2

[
En ±

√
E2

n + 4Fn

]
,

En = µ − λ − (2n + 1)2VD π2

4L2 , Fn = λ
[
µ + Vσ − (2n + 1)2VD π2

4L2

]
.

(51)

It can be directly seen from Eqs (50) and (51) that the conditions φ(x, t) |x=0= 0 and ∂φ(x,t)
∂x |x=L= 0,

where k(x, n) |x=0= 0 and ∂k(x,n)
∂x |x=L= 0 ∀ n = 0, 1, 2, . . . . Although the conditions φ(x, t) |x=0= 0 and

∂φ(x,t)
∂x |x=L= 0 can be verified in a straightforward way; the verification of the IC φ(x, 0) = φ0 is not an

easy task due to the difficulty of calculating the infinite sum of spatial functions in x over the interval
0 < x ≤ L. We have from Eq (50) that

φ(x, t) |t=0= φ(x, 0) =

∞∑
n=0

k(x, n)Tn(0). (52)

From Eq (51), we have
Tn(0) = An + Bn, (53)

where An and Bn are already given by Eq (36). By algebraic manipulation, one can prove that

Tn(0) = An + Bn = 1. (54)

Accordingly, Eq (52) becomes

φ(x, 0) =

∞∑
n=0

k(x, n). (55)

In the following steps, it is indicated that the infinite sum of the spatial functions k(x, n) approaches the
constant value φ0 over the interval 0 < x ≤ L. Employing k(x, n) in (32), then

φ(x, 0) =
4φ0

π

∞∑
n=0

(−1)n

(2n + 1)
cos

[
(2n + 1)π

2L
(L − x)

]
, (56)
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or
φ(x, 0) = φ0 f (x), (57)

where

f (x) =
4
π

∞∑
n=0

(−1)n

(2n + 1)
cos

[
(2n + 1)π

2L
(L − x)

]
. (58)

Now, our target is to show that f (x)→ 1 over the domain 0 < x ≤ L. One can theoretically find that

∞∑
n=0

(−1)n

(2n + 1)
cos

[
(2n + 1)π

2L
(L − x)

]
=

∞∑
n=0

(−1)n

(2n + 1)
cos

[
(2n + 1)

(
π

2
− a

)]
, a =

πx
2L
,

=

∞∑
n=0

sin ((2n + 1)a)
(2n + 1)

.

(59)

Introducing the Abel’s parameter (0 < r < 1), it follows that

∞∑
n=0

sin ((2n + 1)a)
(2n + 1)

= lim
r→1−

Im

 ∞∑
n=0

r2n+1ei(2n+1)a

2n + 1

 = lim
r→1−

Im
(
1
2

ln
(
1 + reia

1 − reia

))
, (60)

which by continuity gives

∞∑
n=0

sin ((2n + 1)a)
(2n + 1)

= Im
(
1
2

ln
(
1 + eia

1 − eia

))
. (61)

Applying the imaginary part and considering the sign of sin(a) = + (where sin(a) is always positive
over the problem’s domain 0 < x ≤ L), then

∞∑
n=0

sin ((2n + 1)a)
(2n + 1)

=
1
2

arg
e−

ia
2 + e

ia
2

e−
ia
2 − e

ia
2

 =
1
2

arg
(
i cot

(a
2

))
=
π

4
sgn(sin(a)) =

π

4
. (62)

In this case, Abel’s theorem guarantees the convergence (see Ref. [33, page 9]). Thus, f (x) = 1 which
implies that φ(x, 0) = φ0. Also, it is easy to verify that the IC C(x, 0) = ρφ0 is satisfied. As a final note,
it can be verified that the present closed-form series solutions for φ(x, t) and C(x, t) satisfy the system
of PDEs (1-2) if the infinity is replaced by any finite number of terms.

6.2. Numerical results and behavior of the system

Numerically, one can show that f (x) → 1 over the domain 0 < x ≤ L. For this purpose, let us
approximate the infinity in (58) by a finite number N of terms to give the finite sum:

S N(x) =
4
π

N∑
n=0

(−1)n

(2n + 1)
cos

[
(2n + 1)π

2L
(L − x)

]
. (63)

Hence,
f (x) = lim

N→∞
S N(x). (64)
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Our target is now moved to prove that S N(x)→ 1 as N → ∞; this yields f (x)→ 1. Consider L = 22.9
cm as taken in Ref. [2]; the curves of S N(x) are displayed in Figures 1–3 at different values of N. It is
observed from Figures 1 and 2 that S N(x) oscillates about 1 at relatively low numbers of terms. As N is
increased, one can observe in Figure 3 that S N(x)→ 1, i.e., limN→∞ S N(x) over the domain 0 < x ≤ L.
This confirms that f (x) → 1 as N → ∞ and consequently, the satisfaction of the IC φ(x, 0) = φ0.
This conclusion can also be confirmed through performing calculations at other values for L, such as
L = 160 cm [34, page 62]; see Figure 4.

Figure 1. Plots of approximations S N(x) (N = 5, 10, 15) over the domain 0 < x ≤ L,
L = 22.9 cm.

Figure 2. Plots of approximations S N(x) (N = 20, 25, 30) over the domain 0 < x ≤ L,
L = 22.9 cm.
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Figure 3. Plots of approximations S N(x) (N = 35, 40, 45) over the domain 0 < x ≤ L,
L = 22.9 cm.

Figure 4. Plots of approximations S N(x) (N = 35, 40, 45) over the domain 0 < x ≤ L,
L = 160 cm [34].

This subsection also extracts some numerical results about the behavior of the neutron flux and the
delayed neutron precursor concentration. In order to do that, the infinite sums appearing in Eq (50)
should be replaced with a finite number of terms. Regarding, the m-term approximations of φ(x, t) and
C(x, t) are defined as

φ(x, t) ≈
m∑

n=0

k(x, n)Tn(t), C(x, t) ≈ ρφ0e−λt + σ

m∑
n=0

k(x, n)τn(t). (65)

The accuracy of the above approximations can be estimated by calculating the residuals from the
governing PDEs (1-2) as

REφ =

∣∣∣∣∣∣ 1
V
∂φ

∂t
− D

∂2φ

∂x2 −

(
−

∑
a
+(1 − β)ν

∑
f

)
φ(x, t) − λC(x, t)

∣∣∣∣∣∣ , (66)
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REC =

∣∣∣∣∣∂C
∂t
− βν

∑
f
φ(x, t) + λC(x, t)

∣∣∣∣∣ . (67)

The following parameter values are implemented, as considered in Ref. [2], to produce the numerical
results: D = 0.96343 [cm], V = 1.103497 × 107 [cm/s],

∑
a = 1.58430 × 10−2 [1/cm], ν

∑
f =

3.33029 × 10−2 [1/cm], L = 22.9 [cm], β = 0.0045, and λ = 0.08 [1/s].
In Figures 5 and 6, the residuals REφ and REC are depicted using m = 700 to ensure accuracy of the

approximations. It is obvious from these figures that the obtained residuals reflect acceptable accuracy.
Hence, the present approach may be viewed as an effective tool to deal with the system (1)–(4) with
acceptable accuracy. Here, it should also be noted that the number of terms m can be increased to
achieve the desired accuracy. This point can be seen from the plots in Figures 7 and 8 for the residuals
REφ and REC at different values of m when t = 10 and L = 22.9 cm. Figures 9 and 10 illustrate the
surface plots of the neutron flux and the delayed neutron precursor concentration, respectively, over
the domain 0 < x ≤ 22.9 and 0 < t ≤ 100. Figure 9 shows that the neutron flux exhibits oscillatory
behavior within the spatial domain, resulting in a wave-like, alternating surface. This differs from the
findings in Ref. [2], where a purely asymptotic decay was observed under the boundary condition
φ(L, t) = 0. The current oscillatory pattern arises due to the boundary condition ∂φ

∂x (L, t) = 0, which
represents a reflective boundary at one edge of the reactor. Physically, this condition implies that no
neutron current exists in the domain at the edge x = L, leading to partial reflection of neutron flux and
constructive/destructive interference of neutron modes. This reflective effect gives rise to non-uniform
oscillations that are fully consistent with the reactor physics under such boundary conditions.

Figure 5. Plots of the residual REφ (Eq (66)) at m = 700.
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Figure 6. Plots of the residual REC (Eq (67)) at m = 700.

Figure 7. Plots of the residual REφ (Eq (66)) at different values of m when t = 10, L =

22.9 cm.

Figure 8. Plots of the residual REC (Eq (67)) at different values of m when t = 10, L =

22.9 cm.
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Figure 9. Behavior of the neutron flux φ(x, t).

Figure 10. Behavior of the precursor concentration flux C(x, t).

In contrast, Figure 10 shows that the delayed neutron precursor concentration stabilizes over
time, gradually approaching a stationary profile. This behavior is consistent with both the physical
expectation and the results of Ref. [2], owing to the fact that, regardless of boundary conditions, the
delayed neutron precursor concentration tends to a steady state once the balance between its production
(driven by the neutron flux) and its radioactive decay is achieved. As a final remark, it is worth
noting that while Khaled [2] encountered computational issues with Mathematica at t = 0, the present
approach successfully overcomes these difficulties. Consequently, no such numerical problems arise
in this work, owing to the reflective boundary condition imposed at one edge of the reactor.
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7. Conclusions

In this paper, the Laplace Transform (LT) technique was applied to solve the neutron diffusion
system under mixed boundary conditions in contrast with the approach of Khaled [2], where the
condition φ(L, t) = 0 was replaced by ∂φ(L, t) = 0, which physically corresponds to modelling a
reflected reactor rather than a bare one. The transformed system involves an infinite number of poles
determined by a transcendental equation. The residue method was then applied to evaluate the residues
at these poles, and consequently, the inverse LT was obtained. Accordingly, an explicit analytical
solution was derived for the present system. The resulting expressions for the neutron flux and the
delayed neutron precursor concentration were established in closed-form series representations. The
convergence of the series solution was theoretically proven. Moreover, it was verified that the obtained
solutions satisfy the prescribed initial and boundary conditions. Both theoretical and numerical
analyses were performed to examine the solution and its physical behavior.

From a physical standpoint, this work revealed oscillatory patterns, distinctive wave-like
distributions, in the neutron flux, in contrast to the monotonic decay reported by Khaled [2] under
conventional vacuum boundary conditions. These findings provide a novel physical insight relevant
to reactor safety analysis. At the same time, the study confirmed that the delayed neutron precursor
concentration gradually stabilizes over time. Its equilibrium behavior is aligned with the predictions
of nuclear system dynamics, further validating the physical rationality of the current model. Finally,
the results reveal that the proposed analysis is straightforward and effective. Moreover, the present
analysis may deserve further considerations to include other complex ICs/BCs as future works.
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