Research article

An SMC strategy for neutral-type systems with time-varying delays using improved integral inequality and practical applications

  • Published: 24 November 2025
  • MSC : 34D23, 93C10, 93C43, 93D30

  • In this paper, we investigates the sliding mode control (SMC) strategy for neutral-type systems with distributed time-varying delay using novel improved integral inequality, which has significant applications in fields such as control systems, communication networks, and biological systems. A standard Lyapunov-Krasovskii functional is introduced, complemented by improved integral inequality techniques and two types of time-delay methods (neutral type and distributed). These methodologies enabled the derivation of sufficient conditions, formulated as linear matrix inequalities, that ensured the asymptotic stability of the system utilizing the SMC technique. The proposed approach reduced conservatism in stability criteria by investigating improved integral inequalities and delay-dependent techniques, offering more accurate and efficient stability conditions. Numerical examples are presented to validate the theoretical findings with the practical application of partial element equivalent circuit (PEEC), showcasing the effectiveness and superiority of the proposed methodology over existing results.

    Citation: Saravanan Shanmugam, Vadivel Rajarathinam, K. Chaisena, Mohamed Rhaima, Nallappan Gunasekaran. An SMC strategy for neutral-type systems with time-varying delays using improved integral inequality and practical applications[J]. AIMS Mathematics, 2025, 10(11): 27290-27313. doi: 10.3934/math.20251200

    Related Papers:

  • In this paper, we investigates the sliding mode control (SMC) strategy for neutral-type systems with distributed time-varying delay using novel improved integral inequality, which has significant applications in fields such as control systems, communication networks, and biological systems. A standard Lyapunov-Krasovskii functional is introduced, complemented by improved integral inequality techniques and two types of time-delay methods (neutral type and distributed). These methodologies enabled the derivation of sufficient conditions, formulated as linear matrix inequalities, that ensured the asymptotic stability of the system utilizing the SMC technique. The proposed approach reduced conservatism in stability criteria by investigating improved integral inequalities and delay-dependent techniques, offering more accurate and efficient stability conditions. Numerical examples are presented to validate the theoretical findings with the practical application of partial element equivalent circuit (PEEC), showcasing the effectiveness and superiority of the proposed methodology over existing results.



    加载中


    [1] Z. S. Aghayan, A. Alfi, Y. Mousavi, A. Fekih, Robust delay-dependent output-feedback PD controller design for variable fractional-order uncertain neutral systems with time-varying delays, IEEE Trans. Syst. Man Cybernet. Syst., 55 (2025), 1986–1996. https://doi.org/10.1109/TSMC.2024.3508573 doi: 10.1109/TSMC.2024.3508573
    [2] M. S. Ali, S. Saravanan, Q. X. Zhu, Finite-time stability of neutral-type neural networks with random time-varying delays, Int. J. Syst. Sci., 48 (2017), 3279–3295. https://doi.org/10.1080/00207721.2017.1367434 doi: 10.1080/00207721.2017.1367434
    [3] A. Bellen, N. Guglielmi, A. E. Ruehli, Methods for linear systems of circuit delay differential equations of neutral type, IEEE Trans. Circuits Syst. Ⅰ Fundam. Theory Appl., 46 (1999), 212–215. https://doi.org/10.1109/81.739268 doi: 10.1109/81.739268
    [4] W. B. Chen, S. H. Wang, F. Gao, G. M. Zhuang, W. Liu, Robust stability analysis for uncertain neutral type descriptor systems with mixed delays, IET Control Theory Appl., 17 (2023), 2485–2495. https://doi.org/10.1049/cth2.12533 doi: 10.1049/cth2.12533
    [5] H. B. Chen, Y. Zhang, Y. Zhao, Stability analysis for uncertain neutral systems with discrete and distributed delays, Appl. Math. Comput., 218 (2012), 11351–11361. https://doi.org/10.1016/j.amc.2012.04.043 doi: 10.1016/j.amc.2012.04.043
    [6] J. L. Feng, F. Hao, Event-triggered sliding mode control for time-delay uncertain systems, Asian J. Control, 23 (2021), 1407–1418. https://doi.org/10.1002/asjc.2285 doi: 10.1002/asjc.2285
    [7] H. Ghadiri, M. R. Jahed-Motlagh, M. B. Yazdi, Robust stabilization for uncertain switched neutral systems with interval time-varying mixed delays, Nonlinear Anal. Hybrid Syst., 13 (2014), 2–21. https://doi.org/10.1016/j.nahs.2014.03.001 doi: 10.1016/j.nahs.2014.03.001
    [8] X. He, L. J. Song, Y. B. Wu, Z. Y. Zhou, Novel robust stability criteria of uncertain systems with interval time-varying delay based on time-delay segmentation method and multiple integrals functional, Complexity, 2020 (2020), 8841137. https://doi.org/10.1155/2020/8841137 doi: 10.1155/2020/8841137
    [9] Y. He, M. Wu, J. H. She, G. P. Liu, Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays, Syst. Control Lett., 51 (2004), 57–65. https://doi.org/10.1016/S0167-6911(03)00207-X doi: 10.1016/S0167-6911(03)00207-X
    [10] P. L. Liu, Improved results on delay-interval-dependent robust stability criteria for uncertain neutral-type systems with time-varying delays, ISA Trans., 60 (2016), 53–66. https://doi.org/10.1016/j.isatra.2015.11.004 doi: 10.1016/j.isatra.2015.11.004
    [11] Z. Y. Li, Y. X. Song, X. Li, B. Zhou, On stability analysis of stochastic neutral-type systems with multiple delays, Automatica, 171 (2025), 111905. https://doi.org/10.1016/j.automatica.2024.111905 doi: 10.1016/j.automatica.2024.111905
    [12] X. G. Liu, M. Wu, R. Martin, M. L. Tang, Stability analysis for neutral systems with mixed delays, J. Comput. Appl. Math., 202 (2007), 478–497. https://doi.org/10.1016/j.cam.2006.03.003 doi: 10.1016/j.cam.2006.03.003
    [13] D. P. Li, S. Q. Ye, C. Ge, Sampled-data-based local stability of neutral time-delay systems with actuator saturation, IEEE Access, 13 (2025), 40923–40930. https://doi.org/10.1109/ACCESS.2025.3547496 doi: 10.1109/ACCESS.2025.3547496
    [14] L. Li, X. Y. Zhang, W. X. Feng, Further robust stability analysis for time-delayed neutral-type systems by a modified Lyapunov-Krasovskii functional, Int. J. Control Autom. Syst., 19 (2021), 1785–1797. https://doi.org/10.1007/s12555-020-0216-0 doi: 10.1007/s12555-020-0216-0
    [15] P. Park, W. I. Lee, S. Y. Lee, Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems, J. Franklin Inst., 352 (2015), 1378–1396. https://doi.org/10.1016/j.jfranklin.2015.01.004 doi: 10.1016/j.jfranklin.2015.01.004
    [16] S. Saravanan, M. S. Ali, A. Alsaedi, B. Ahmad, Finite-time passivity for neutral-type neural networks with time-varying delays–via auxiliary function-based integral inequalities, Nonlinear Anal. Model. Control, 25 (2020), 206–224. https://doi.org/10.15388/namc.2020.25.16513 doi: 10.15388/namc.2020.25.16513
    [17] S. Shanmugam, M. S. Ali, G. Narayanan, M. Rhaima, Finite-time boundedness of switched time-varying delay systems with actuator saturation: applications in water pollution control, IEEE Access, 12 (2023), 11700–11710. https://doi.org/10.1109/ACCESS.2023.3347613 doi: 10.1109/ACCESS.2023.3347613
    [18] S. Shanmugam, M. S. Ali, K. S. Hong, Q. X. Zhu, Robust resilient ${H}_\infty$ performance for finite-time boundedness of neutral-type neural networks with time-varying delays, Asian J. Control, 23 (2021), 2474–2483. https://doi.org/10.1002/asjc.2361 doi: 10.1002/asjc.2361
    [19] A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: application to time-delay systems, Automatica, 49 (2013), 2860–2866. https://doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030
    [20] S. K. Soni, S. Kamal, S. Ghosh, Delayed output feedback sliding mode control for uncertain non-linear systems, IET Control Theory Appl., 14 (2020), 2106–2115. https://doi.org/10.1049/iet-cta.2020.0269 doi: 10.1049/iet-cta.2020.0269
    [21] A. Seuret, K. Liu, F. Gouaisbaut, Generalized reciprocally convex combination lemmas and its application to time-delay systems, Automatica, 95 (2018), 488–493. https://doi.org/10.1016/j.automatica.2018.06.017 doi: 10.1016/j.automatica.2018.06.017
    [22] O. P. K. Sharma, R. K. Vats, A. Kumar, Results on controllability of impulsive delayed neutral-type fractional stochastic integro-differential system, Math. Control Related Fields, 16 (2026), 157–183. https://doi.org/10.3934/mcrf.2025012 doi: 10.3934/mcrf.2025012
    [23] R. Vadivel, P. Hammachukiattikul, S. Vinoth, K. Chaisena, N. Gunasekaran, An extended dissipative analysis of fractional-order fuzzy networked control systems, Fractal Fract., 6 (2022), 1–20. https://doi.org/10.3390/fractalfract6100591 doi: 10.3390/fractalfract6100591
    [24] R. Vadivel, Z. T. Njitacke, L. Shanmugam, P. Hammachukiattikul, N. Gunasekaran, Dynamical analysis and reachable set estimation of T-S fuzzy system with permanent magnet synchronous motor, Commun. Nonlinear Sci. Numer. Simul., 125 (2023), 107407. https://doi.org/10.1016/j.cnsns.2023.107407 doi: 10.1016/j.cnsns.2023.107407
    [25] R. Vadivel, S. Sabarathinam, Y. B. Wu, K. Chaisena, N. Gunasekaran, New results on T-S fuzzy sampled-data stabilization for switched chaotic systems with its applications, Chaos Solitons Fract., 164 (2022), 112741. https://doi.org/10.1016/j.chaos.2022.112741 doi: 10.1016/j.chaos.2022.112741
    [26] R. P. Xu, Z. Liu, Y. L. Liu, State-estimation-based adaptive sliding mode control for a class of uncertain time-delay systems: a new design, Int. J. Syst. Sci., 53 (2022), 375–387. https://doi.org/10.1080/00207721.2021.1958024 doi: 10.1080/00207721.2021.1958024
    [27] W. Wang, C. X. Li, A. Q. Luo, H. Q. Xiao, Stability analysis of linear systems with a periodical time-varying delay based on an improved non-continuous piecewise Lyapunov functional, AIMS Math., 10 (2025), 9073–9093. https://doi.org/10.3934/math.2025418 doi: 10.3934/math.2025418
    [28] L. G. Wu, X. J. Su, P. Shi, Sliding mode control with bounded $\mathcal{L}_2$ gain performance of Markovian jump singular time-delay systems, Automatica, 48 (2012), 1929–1933. https://doi.org/10.1016/j.automatica.2012.05.064 doi: 10.1016/j.automatica.2012.05.064
    [29] W. Wang, H. B. Zeng, K. L. Teo, Y. J. Chen, Relaxed stability criteria of time-varying delay systems via delay-derivative-dependent slack matrices, J. Franklin Inst., 360 (2023), 6099–6109. https://doi.org/10.1016/j.jfranklin.2023.04.019 doi: 10.1016/j.jfranklin.2023.04.019
    [30] H. Y. Yuan, Q. Zhu, Stabilities of delay stochastic Mckean-Vlasov equations in the G-framework, Sci. China Inform. Sci., 68 (2025), 112203. https://doi.org/10.1007/s11432-024-4075-2 doi: 10.1007/s11432-024-4075-2
    [31] Q. X. Zhu, Event-triggered sampling problem for exponential stability of stochastic nonlinear delay systems driven by Lévy processes, IEEE Trans. Automat. Control, 70 (2025), 1176–1183. https://doi.org/10.1109/TAC.2024.3448128 doi: 10.1109/TAC.2024.3448128
    [32] H. B. Zeng, Y. J. Chen, Y. He, X. M. Zhang, A delay-derivative-dependent switched system model method for stability analysis of linear systems with time-varying delay, Automatica, 175 (2025), 112183. https://doi.org/10.1016/j.automatica.2025.112183 doi: 10.1016/j.automatica.2025.112183
    [33] X. M. Zhang, Q. L. Han, A new stability criterion for a partial element equivalent circuit model of neutral type, IEEE Trans. Circuits Syst. Ⅱ Express Briefs, 56 (2009), 798–802. https://doi.org/10.1109/TCSII.2009.2030363 doi: 10.1109/TCSII.2009.2030363
    [34] C. K. Zhang, Y. He, L. Jiang, M. Wu, Q. G. Wang, An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay, Automatica, 85 (2017), 481–485. https://doi.org/10.1016/j.automatica.2017.07.056 doi: 10.1016/j.automatica.2017.07.056
    [35] H. B. Zeng, Y. He, M. Wu, J. H. She, Free-matrix-based integral inequality for stability analysis of systems with time-varying delay, IEEE Trans. Automat. Control, 60 (2015), 2768–2772. https://doi.org/10.1109/TAC.2015.2404271 doi: 10.1109/TAC.2015.2404271
    [36] J. S. Zhang, Y. K. Li, X. L. Ma, Z. L. Lin, C. L. Wang, Improved results on delay-dependent robust ${H}_\infty$ control of uncertain neutral systems with mixed time-varying delays, Math. Probl. Eng., 2021 (2021), 6360923. https://doi.org/10.1155/2021/6360923 doi: 10.1155/2021/6360923
    [37] Y. S. Zhao, X. D. Li, S. J. Song, Observer-based sliding mode control for stabilization of mismatched disturbance systems with or without time delays, IEEE Trans. Syst. Man Cybernet. Syst., 51 (2021), 7337–7345. https://doi.org/10.1109/TSMC.2020.2967032 doi: 10.1109/TSMC.2020.2967032
    [38] X. P. Zhang, C. C. Shen, D. J. Xu, Reachable set estimation for neutral semi-Markovian jump systems with time-varying delay, AIMS Math., 9 (2024), 8043–8062. https://doi.org/10.3934/math.2024391 doi: 10.3934/math.2024391
    [39] H. Zhang, T. B. Wang, Finite-time sliding mode control for uncertain neutral systems with time delays, IEEE Access, 9 (2021), 140446–140455. https://doi.org/10.1109/ACCESS.2021.3119628 doi: 10.1109/ACCESS.2021.3119628
    [40] H. B. Zeng, Z. L. Zhai, Y. He, K. L. Teo, W. Wang, New insights on stability of sampled-data systems with time-delay, Appl. Math. Comput., 374 (2020), 125041. https://doi.org/10.1016/j.amc.2020.125041 doi: 10.1016/j.amc.2020.125041
    [41] B. Y. Zhang, S. S. Zhou, S. Y. Xu, Delay-dependent ${H}_\infty$ controller design for linear neutral systems with discrete and distributed delays, Int. J. Syst. Sci., 38 (2007), 611–621. https://doi.org/10.1080/00207720701433033 doi: 10.1080/00207720701433033
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(274) PDF downloads(17) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog