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1. Introduction

As communication network technology advances, closed-loop control systems are widely
implemented in networked contexts. Nonetheless, inevitable delays in communication channels can
substantially impair system performance and, in key instances, result in instability [10,33]. Mitigating
these delays is crucial for ensuring instability and attaining optimal performance in contemporary
control systems. In practical systems, delays frequently occur due to sensing, computing, and
transmission operations, with transmission delays usually being the most significant. Neutral-type
systems, distinguished by delays in both the state and its derivative, commonly manifest in uncertain
neural networks, multi-agent coordination, and switching systems with mixed delays [23–25]. These
delays induce memory effects that hamper stability analysis, frequently increasing oscillations and
degrading transient behavior. For example, He et al. [9] investigated the stability of uncertain neutral
systems with mixed delays. Research has enhanced the stability and control of neutral-type systems
characterized by delays. Aghayan et al. [1] proposed a robust delay-dependent PD controller for
uncertain variable fractional-order neutral systems characterized by time-varying delays. Li et al. [11]
proposed the stability of stochastic neutral systems characterized by multiple delays. Sharma et al. [22]
investigated controllability in impulsive fractional stochastic integro-differential systems. Li et al. [13]
examined local stability in sampled-data neutral systems considering actuator saturation constraints.

Distributed delays, commonly represented as finite integrals across historical intervals, inherently
occur in several engineering and physical systems, including process control, population dynamics,
and electromagnetic field modeling [4]. In these applications, delays arise from the transmission
and propagation of signals or materials, as observed in communication networks, smart grids, and
partial element equivalent circuit (PEEC) models utilized in electromagnetic simulations. The presence
of dispersed and time-varying delays presents significant analytical difficulties, sometimes leading
to excessively cautious stability requirements. As a result, several researchers have introduced
advanced delay-dependent methodologies employing segmentation and decomposition techniques to
increase precision in stability evaluation [8, 17, 36]. These advancements underscore the increasing
need for sophisticated control techniques that guarantee resilient stability and superior performance
in systems influenced by intricate and variable delays. The study of neutral-type systems with
delays has progressed recently. With applications to water pollution control, Shanmugam et al. [17]
examined the finite-time boundedness of switching delay systems under actuator saturation. Moreover,
to accommodate time-varying delays in real-world scenarios, Shanmugam et al. [18] highlighted
resilient H∞ performance for neutral-type neural networks. To improve finite-time passivity analysis,
Saravanan et al. [16] used integral inequalities based on auxiliary functions. Neutral-type neural
networks with random time-varying delays were studied for robust finite-time stability in stochastic
contexts [2]. Stabilization techniques for uncertain switched neutral systems with interval time-varying
delays were proposed by the researchers in [7]. Together, these studies highlight the need for advanced
approaches to enhance neutral-type systems’ performance, stability, and robustness in dynamic and
unpredictable circumstances.

Sliding mode control (SMC) is an effective method for addressing these difficulties because of its
inherent resilience to parameter uncertainty and external disruptions [26, 28]. In recent decades, SMC
has been effectively utilized across categories of systems characterized by delays and uncertainties,
encompassing Markovian jump systems, adaptive and observer-based frameworks, and event-triggered
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schemes that minimize computational expenses [6, 20]. Nevertheless these advancements, the proper
integration of SMC design with less conservative delay-dependent stability requirements, continues to
be an unresolved issue, especially for neutral-type systems exhibiting scattered delays. In practical
applications, like networked control, robotics, and electromagnetic circuit modeling, attaining rapid
convergence and dependable performance amidst various delay effects remains a significant research
impetus [37, 39].

An essential analytical difficulty is to precisely estimate the impacts of delay terms without
imposing unwarranted conservatism. Traditional inequalities, like Jensen’s and Wirtinger’s methods,
frequently yield imprecise limits and constrain optimal performance [19,34]. Advancements in integral
inequalities, including free-matrix-based, Bessel-Legendre, and generalized reciprocally convex
inequalities [15, 21], provide more tighter estimates and facilitate enhanced delay-dependent stability
analysis [35]. Incorporating these approaches into Lyapunov-Krasovskii functional (LKF) results
in enhanced linear matrix inequality (LMI) conditions characterized by diminished conservatism
and better analytical precision. Recent improvements have enhanced the examination of stability
in systems characterized by delays. Wang et al. [29] proposed relaxed stability criteria utilizing
delay-derivative-dependent slack matrices, thus broadening the stability region while maintaining
the computational effectiveness. Wang et al. [27] examined stability in systems characterized by
periodically varying delays, utilizing advanced non-continuous piecewise Lyapunov functionals to
achieve improved analytical accuracy. The delay-derivative-dependent switched system model method
reported in [32] provides an effective way to reduce conservatism for time-delay systems. The work
by the researchers in [40] enhances the stability assessment of sampled-data systems through the
formulation of novel delay-dependent criteria that consider the effects of sampling and associations
with time delays.

As far as we know, few researchers consider the proposed model, including all types of delays
(distributed, neutral, and etc.), with sliding mode control. Based on the discussions, we establish
a sliding mode control framework for neutral-type distributed delay systems characterized by time-
varying delays. By including an enhanced integral inequality into the Lyapunov-Krasovskii stability
analysis, fewer conservative delay-dependent criteria are formulated. The suggested design offers a
methodical approach to ascertain the sliding gain K, guaranteeing finite-time attainment of the sliding
surface and strong asymptotic stability. The proposed model is further validated through a PEEC-based
example, showcasing enhanced performance and robustness relative to previous methodologies. This
paper’s main contributions are summarized as follows:

• We develop a category of neutral-type distributed systems and devise a sliding mode control
approach to tackle time-varying delays.
• A designed LKF is utilized to thoroughly encapsulate discrete, neutral, and distributed delay

influences.
• Enhanced integral inequalities (Lemmas 1.1 and 1.2) are employed to provide more stringent

delay-dependent LMI-based stability criteria with less conservatism.
• A systematic SMC design is formulated to calculate the control gain K, guaranteeing the

asymptotic stability.
• The practical usability and superiority of the suggested method are validated using the PEEC

model, demonstrating improved stability and performance amid time-varying delays.
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Let us consider the following neutral system with a distributed time-delay:ϖ̇(t) = Aϖ(t) + Bϖ(t − τ(t)) +Cϖ̇(t − d) + D
∫ t

t−h
ϖ(s)ds + Eu(t), ∀t ≥ 0,

ϖ(t) = ϕ(t), t ∈ [τ, d, h, 0],
(1.1)

where ϖ(t) ∈ Rn denotes the state vector, u(t) ∈ Rm denotes the control input, and the initial condition
ϕ(t) is a continuously differentiable vector-valued function; A ∈ Rn×n, B ∈ Rn×n, C ∈ Rn×n, D ∈ Rn×n,
and E ∈ Rn×m are known matrices; τ(t) is a time-varying delay with the condition 0 ≤ τ(t) ≤ τ, τ̇(t) ≤ µ;
and d and h are a neutral delay and distributed delay, respectively, with a positive constant.

Our goal is to develop an SMC law that ensures the state trajectories converge to the desired sliding
surface and stay on it thereafter. From this result, we choose the sliding surface s(t) as

s(t) = H
(
ϖ(t) −Cϖ(t − d)

)
− H
∫ t

0

[
(A + EK)ϖ(θ) − Bϖ(θ − τ(θ)) − D

∫ θ

θ−h
ϖ(s)ds

]
dθ, (1.2)

where K and H are real matrices to be determined later. H is designed such that HE is a non-singular.

To design SMC: The derivative of the s(t) from (1.2) is

ṡ(t) = H
(
ϖ̇(t) −Cϖ̇(t − d)

)
− H(A + EK)ϖ(t) − HBϖ(t − τ(t)) − HD

∫ t

t−h
ϖ(s)ds,

= −HEKϖ(t) + HEu(t). (1.3)

As the state trajectories approach the sliding mode, both s(t) = 0 and ṡ(t) = 0 hold. Hence, the
system is governed by the equivalent controller:

ueq(t) = Kϖ(t). (1.4)

When we enforce ṡ(t) = 0, the control u(t) that satisfies this condition is called the equivalent
control, denoted by ueq(t), and we substitute ueq(t) (1.4) into system (1.1)

ϖ̇(t) = (A + EK)ϖ(t) + Bϖ(t − τ(t)) +Cϖ̇(t − d) + D
∫ t

t−h
ϖ(s)ds, ∀t ≥ 0. (1.5)

Next, we present key lemmas that establish essential conditions for analyzing the system’s behavior.
These results are foundational for proving the main theorems of the paper.

Lemma 1.1. [38] Letϖ(t) be any continuously differentiable function, and let Q4 be a positive definite
symmetric matrix that satisfies the following inequality:

−

∫ t

t−τ
ϖ̇T (s)Q4ϖ̇(s) ds ≤ ηT (t)Ξη(t),

where

Ξ =



−18Q4
τ

6Q4
τ

0 0 −96Q4
τ2

0 480Q4
τ3

∗
−36Q4
τ

6Q4
τ

−96Q4
τ2

144Q4
τ2

480Q4
τ3

−480Q4
τ3

∗ ∗
−18Q4
τ

144Q4
τ2

0 −480Q4
τ3

0
∗ ∗ ∗

−1536Q4
τ3

0 5760Q4
τ4

0
∗ ∗ ∗ ∗

−1536Q4
τ3

0 5760Q4
τ4

∗ ∗ ∗ ∗ ∗
−23040Q4
τ5

0
∗ ∗ ∗ ∗ ∗ ∗

−23040Q4
τ5


,
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η(t) =
[
ϖT (t) ϖT (t −

τ

2
) ϖT (t − τ)

∫ t− τ2

t−τ
ϖT (s) ds

∫ t

t− τ2

ϖT (s) ds∫ t

t−τ

∫ t− τ2

u
ϖT (s) ds du

∫ t

t− τ2

∫ t

u
ϖT (s) ds du

]T
.

Lemma 1.2. [19] For a symmetric matrix R, scalars a and b, where a > 0, b > 0, and vector
ϖ ∈ [a, b], the corresponding integral is defined by the following inequality:

(b − a)
∫ b

a
ϖ̇T (s)Rϖ̇(s)ds ≥ χT

1 Rχ1 + 3χT
2 Rχ2, (1.6)

where

χ1 = ϖ(b) −ϖ(a), χ2 = ϖ(b) −ϖ(a) −
2

b − a

∫ b

a
ϖ(s)ds.

2. Main results

In this section, we establish asymptotically stable criteria by constructing the corresponding positive
definite LKF. We proceed by designing a SMC and deriving a control law that guarantees the
trajectories of the time-delay system in (1.1) to converge to the predefined sliding surface s(t) = 0
within a finite time.

Theorem 2.1. Consider K as the known matrix, and let τ, h, d, and µ be given scalars. System (1.5)
is asymptotically stable if there exist positive definite matrices P, Q1, . . . ,Q6, and Z2 that satisfy the
following matrix inequalities:

[ω] = [ωn×n] , n = 1, 2, ..., 12 < 0, (2.1)

where

ω11 = Q1 + Q3 −
18Q4

τ
+ 2Q5 + Q6 + F1A + AT FT

1 + F1EK + KT ET FT
1 −

1
d

Z2,

ω13 = F1C +
1
d

Z2, ω14 =
6Q4

τ
, ω16 = −

96Q4

τ
, ω18 =

480Q4

τ3 , ω19 = 2P − F1 + AT FT
1 + KT ET FT

1 ,

ω1,10 = −2Q5, ω1,11 =
6Q5

h
+ F1D, ω1,12 = F1B, ω22 = −Q1 −

18Q4

τ
, ω25 =

144Q4

τ2 ,

ω27 = −
480Q4

τ3 , ω33 = −Q2 −
1
d

Z2, ω39 = CT FT
1 , ω44 = −

36Q4

τ
, ω45 = −

96Q4

τ2 , ω46 =
144Q4

τ2 ,

ω47 =
480Q4

τ3 , ω48 = −
480Q4

τ3 , ω55 = −
1536Q4

τ3 , ω57 =
5760Q4

τ4 , ω66 = −
1536Q4

τ3 , ω68 =
5760Q4

τ4 ,

ω77 = −
23040Q4

τ5 , ω88 = −
23040Q4

τ5 , ω99 = Q2 + τQ4 + h2Q5 − F1 − FT
1 + dZ2, ω9,11 = F1D,

ω9,12 = F1B, ω10,10 = −Q3 − 4Q5, ω10,11 =
6Q5

h
, ω11,11 = −

12Q5

h2 , ω12,12 = −(1 − µ)Q6.
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Proof. Consider the following LKF:

V(t) =
7∑

j=1

V j(t), (2.2)

where

V1(t) = ϖT (t)Pϖ(t),

V2(t) =
∫ t

t−τ
ϖT (s)Q1ϖ(s)ds+

∫ t

t−τ(t)
ϖT (s)Q6ϖ(s)ds,

V3(t) =
∫ t

t−d
ϖ̇T (s)Q2ϖ̇(s)ds,

V4(t) =
∫ t

t−h
ϖT (s)Q3ϖ(s)ds,

V5(t) =
∫ 0

τ

∫ t

t+θ
ϖ̇T (s)Q4ϖ̇(s)dsdθ,

V6(t) = h
∫ 0

−h

∫ t

t+θ
ϖ̇T (s)Q5ϖ̇(s)dsdθ,

V7(t) =
∫ 0

−d

∫ t

t+s
ϖ̇T (θ)Z2ϖ̇(θ)dθds.

We calculate the derivatives V̇ j(t), j = 1, 2, ..., 7 along the trajectories of system (1.1), which gives

V̇(t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t) + V̇5(t) + V̇6(t) + V̇7(t),

where

V̇1(t) = 2ϖT (t)Pϖ̇(t), (2.3)
V̇2(t) ≤ ϖT (t)Q1ϖ(t) −ϖT (t − τ)Q1ϖ(t − τ) +ϖT (t)Q6ϖ(t)

− (1 − µ)ϖT (t − τ(t))Q6ϖ(t − τ(t)), (2.4)
V̇3(t) = ϖ̇T (t)Q2ϖ̇(t) − ϖ̇T (t − d)Q2ϖ̇(t − d), (2.5)
V̇4(t) = ϖT (t)Q3ϖ(t) −ϖT (t − h)Q3ϖ(t − h), (2.6)

V̇5(t) =
∫ 0

−τ

ϖ̇T (t)Q4ϖ̇(t)dθ −
∫ 0

−τ

ϖ̇T (t + θ)Q4ϖ̇(t + θ)dθ

= ϖ̇T (t)Q4ϖ̇(t)
∫ 0

−τ

dθ−
∫ t

t−τ
ϖ̇T (s)Q4ϖ̇(s)ds,

= τϖ̇T (t)Q4ϖ̇(t) −
∫ t

t−τ
ϖ̇T (s)Q4ϖ̇(s)ds. (2.7)

Next, consider −
∫ t

t−τ
ϖ̇T (s)Q4ϖ̇(s)ds as follows:

Using Lemma 1.1, we have

−

∫ t

t−τ
ϖ̇T (s)Q4ϖ̇(s)ds ≤ ηT (t)Ξη(t), (2.8)
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where

Ξ =



−18Q4
τ

6Q4
τ

0 0 −96Q4
τ2

0 480Q4
τ3

∗
−36Q4
τ

6Q4
τ

−96Q4
τ2

144Q4
τ2

480Q4
τ3

−480Q4
τ3

∗ ∗
−18Q4
τ

144Q4
τ2

0 −480Q
τ3

0
∗ ∗ ∗

−1536Q4
τ3

0 5760Q4
τ4

0
∗ ∗ ∗ ∗

−1536Q4
τ3

0 5760Q4
τ4

∗ ∗ ∗ ∗ ∗
−23040Q4
τ5

0
∗ ∗ ∗ ∗ ∗ ∗

−23040Q4
τ5


,

η(t) =
[
ϖT (t)ϖT (t − τ2 )ϖT (t − τ)

∫ t− τ2
t−τ
ϖT (s)ds∫ t

t− τ2
ϖT (s)ds

∫ t

t−τ

∫ t− τ2
u
ϖT (s)dsdu

∫ t

t− τ2

∫ t

u
ϖT (s)dsdu

]
,

V̇6(t) =
∫ 0

−h
ϖ̇T (t)Q5ϖ̇(t)dθ − h

∫ 0

−h
ϖ̇T (t + θ)Q5ϖ̇(t + θ)dθ

= hϖ̇T (t)Q5ϖ̇(t)
∫ 0

−h
dθ−h

∫ t

t−h
ϖ̇T (s)Q5ϖ̇(s)ds

= h2ϖ̇T (t)Q5ϖ̇(t) − h
∫ t

t−h
ϖ̇T (s)Q5ϖ̇(s)ds. (2.9)

Next, using Lemma 1.2, we get

(b − a)
∫ b

a
ϖ̇T (s)Rϖ̇(s)ds ≥ χT

1 Rχ1 + 3χT
2 Rχ2, (2.10)

where

χ1 = ϖ(b) −ϖ(a),

χ2 = ϖ(b) −ϖ(a) −
2

b − a

∫ b

a
ϖ(s)ds.

Given a = t − h, b = t and R = Q5, we get

−h
∫ t

t−h
ϖ̇T (s)Q5ϖ̇(s)ds ≤ −ϖT (t)Q5ϖ(t) +ϖT (t)Q5ϖ(t − h) +ϖT (t − h)Q5ϖ(t)

−ϖT (t − h)Q5ϖ(t − h) −ϖT (t)3Q5ϖ(t) −ϖT (t)3Q5ϖ(t − h)

+ϖT (t)3Q5
2
h

∫ t

t−h
ϖ(s)ds −ϖT (t − h)3Q5ϖ(t) −ϖT (t − h)Q5ϖ(t − h)

+ϖT (t − h)3Q5
2
h

∫ t

t−h
ϖ(s)ds+

2
h

∫ t

t−h
ϖT (s)ds3Q5ϖ(t)

+
2
h

∫ t

t−h
ϖT (s)ds3Q5ϖ(t − h) −

2
h

∫ t

t−h
ϖT (s)ds3Q5

2
h

∫ t

t−h
ϖT (s)ds,

(2.11)
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V̇7(t) = dϖ̇T (t)Z2ϖ̇(t) −
∫ t

t−d
ϖ̇T (θ)Z2ϖ̇(θ)dθ. (2.12)

By applying Jensen’s inequality and the Newton-Leibniz formula
∫ t

t−d
ϖ̇(θ)dθ = ϖ(t) −ϖ(t − d),

we get

−

∫ t

t−d
ϖ̇T (θ)Z2ϖ̇(θ)dθ ≤ −

1
d

[∫ t

t−d
ϖ̇(θ)dθ

]T
Z2

[∫ t

t−d
ϖ̇(θ)dθ

]
= −

1
d

[ϖ(t) −ϖ(t − d)]T Z2 [ϖ(t) −ϖ(t − d)] . (2.13)

Additionally, according to the system ϖ(t), for any appropriately sized matrix F1, the following
conditions must be satisfied:

2
[
ϖT (t)F1 + ϖ̇

T (t)F1

] [
(A + EK)ϖ(t) + Bϖ(t − τ(t)) +Cϖ̇(t − d) + D

∫ t

t−h
ϖ(s)ds − ϖ̇(t)

]
= 0.

(2.14)

We obtain the following zero equation:

0 =2ϖT (t)F1(A + EK)ϖ(t) + 2ϖT (t)F1Bϖ(t − τ(t)) + 2ϖT (t)F1Cϖ̇(t − d) + 2ϖT (t)F1D
∫ t

t−h
ϖ(s)ds

− 2ϖT (t)F1ϖ̇(t) + 2ϖ̇T (t)F1(A + EK)ϖ(t) + 2ϖ̇T (t)F1Bϖ(t − τ(t)) + 2ϖ̇T (t)F1Cϖ̇(t − d)

+ 2ϖ̇T (t)F1D
∫ t

t−h
ϖ(s)ds − 2ϖ̇T (t)F1ϖ̇(t). (2.15)

Combining the results of the proofs from (2.3) to (2.15), we obtain

V̇(t) ≤ ζT (t)ωζ(t), (2.16)

where

ζT (t) =
[
ϖT (t) ϖT (t − τ)ϖ̇T (t − d)ϖT (t − τ2 )

∫ t− τ2
t−τ
ϖT (s)ds

∫ t

t− τ2
ϖT (s)ds∫ t

t−τ

∫ t− τ2
u
ϖT (s)dsdu

∫ t

t− τ2

∫ t

u
ϖT (s)dsduϖ̇T (t)ϖT (t − h)

∫ t

t−h
ϖT (s)ds ϖT (t − τ(t))

]
.

If this is equivalent to the linear matrix inequality, it follows from expression (2.16) that V̇(t) < 0,
which ensures the asymptotic stability of the system (2.5), thus concluding the proof.

Theorem 2.2. Suppose that there exist matrices P > 0, Qi > 0 (i = 1, 2, ...6), Z2 > 0; and let τ, h, d,
and µ be given scalars, and the sliding surface is given by (1.2). Then, the neutral delay system (1.5)
is asymptotically stable if the following inequalities holds:[

ω̂
]
=
[
ω̂n×n
]
, n = 1, 2, ..., 12 < 0, (2.17)

where

ω̂11 = Q1 + Q3 −
18Q4

τ
+ 2Q5 + Q6 + F1A + AT FT

1 −
1
d

Z2 + EY + YT ET , ω̂13 = F1C +
1
d

Z2,
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ω̂14 =
6Q4

τ
, ω̂16 = −

96Q4

τ
, ω̂18 =

480Q4

τ3 , ω̂19 = 2P − F1 + AT FT
1 + YT ET , ω̂1,10 = −2Q5,

ω̂1,11 =
6Q5

h
+ F1D, ω̂1,12 = F1B, ω̂22 = −Q1 −

18Q4

τ
, ω̂25 =

144Q4

τ2 ,

ω̂27 = −
480Q4

τ3 , ω̂33 = −Q2 −
1
d

Z2, ω̂39 = CT FT
1 , ω̂44 = −

36Q4

τ
, ω̂45 = −

96Q4

τ2 , ω̂46 =
144Q4

τ2 ,

ω̂47 =
480Q4

τ3 , ω̂48 = −
480Q4

τ3 , ω̂55 = −
1536Q4

τ3 , ω̂57 =
5760Q4

τ4 , ω̂66 = −
1536Q4

τ3 , ω̂68 =
5760Q4

τ4 ,

ω̂77 = −
23040Q4

τ5 , ω̂88 = −
23040Q4

τ5 , ω̂99 = Q2 + τQ4 + h2Q5 − F1 − FT
1 + dZ2, ω̂9,11 = F1D,

ω̂9,12 = F1B, ω̂10,10 = −Q3 − 4Q5, ω̂10,11 =
6Q5

h
, ω̂11,11 = −

12Q5

h2 , ω̂12,12 = −(1 − µ)Q6.

Proof. We begin with the term F1K = Y . To isolate K, we multiply both sides by F−1
1 , obtaining

K = F−1
1 Y. (2.18)

Substituting this expression for K into LMI (2.1), we can conclude the result in LMI (2.17). Thereby,
the proof of Theorem 2.2 is completed.

Remark 2.1. Consider systems of the following type without being affected by distributed time delays:ϖ̇(t) = Aϖ(t) + Bϖ(t − τ(t)) +Cϖ̇(t − d),
ϖ(t) = ϕ(t).

(2.19)

According to Theorem 2.1, we have the following proof for stability depending on the system’s inherent
delay.

Corollary 2.1. Given a scalar τ, we assume the existence of positive definite matrices P, Q1, Q2, Q3,
Q4, Q6, and F1 in Rn×n. These matrices must satisfy the following LMIs, which ensure the stability and
proper behavior of the system under consideration:

[ω] = [ωn×n] , n = 1, 2, ..., 10 < 0, (2.20)

and the other elements are defined in Theorem 2.1.

Proof. Consider the LKF with the same constraints as in Theorem 2.1, V1(t), V2(t), V3(t), V4(t), V5(t),
V7(t). The proof of this statement is similar to Theorem 2.1, so it is omitted.

ζT (t) = [ϖT (t), ϖT (t − τ), ϖ̇T (t − d), ϖT (t −
τ

2
),
∫ t− τ2

t−τ
ϖT (s)ds,∫ t

t− τ2

ϖT (s)ds,
∫ t

t−τ

∫ t− τ2

u
ϖT (s)dsdu,

∫ t

t− τ2

∫ t

u
ϖT (s)dsdu, ϖ̇T (t)ϖT (t − τ(t))]. (2.21)

At the next step of the sliding-mode control design, in the following, we investigate the reachability
of the sliding surface.
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Theorem 2.3. Consider the system in (1.1), where the initial condition ϕ is a continuously
differentiable vector-valued function. Assume that the matrices A, B, C, D, and E are constant, and
τ(t), d, and h are time-delay parameters that satisfy 0 ≤ τ(t) ≤ τ and d, h > 0. Define the sliding
surface s(t) as from (1.3):

s(t) = H
(
ϖ(t) −Cϖ(t − d)

)
− H
( ∫ t

0

[
(A + EK)ϖ(θ) − Bϖ(θ − τ(θ)) − D

∫ θ

θ−h
ϖ(s) ds

]
dθ
)
, (2.22)

where H is a real matrix and K is a positive definite matrix to be determined. Suppose that a control
law u(t) is designed as

u(t) = Kϖ(t) − η sign(s(t)), (2.23)

where η is a positive scalar gain, and sign(s(t)) denotes the component-wise sign function. Then, under
the assumption that HE is nonsingular, all system trajectories reach the sliding surface s(t) = 0 in finite
time. Furthermore, the finite reaching time T satisfies

T ≤
λmax((HE)−1) ∥s(0)∥

2η
. (2.24)

Proof. Consider the Lyapunov candidate function:

V(s(t)) =
1
2

sT (t)(HE)−1s(t), (2.25)

which is nonnegative and vanishes only when s(t) = 0, implying that V(s(t)) serves as a measure of the
distance from the sliding surface.

Differentiating V(s(t)) with respect to time along the trajectory of s(t), we get

V̇(s(t)) = sT (t)(HE)−1 ṡ(t). (2.26)

Substitute the expression for ṡ(t):

(HE)−1 ṡ(t) = −HEKϖ(t) + HEu(t). (2.27)

Therefore,

V̇(s(t)) = sT (t)(HE)−1 (−HEKϖ(t) + HEu(t)) . (2.28)

Using the sliding-mode control law u(t) = Kϖ(t) − η sign(s(t)), we substitute into the derivative of
V(s(t)):

V̇(s(t)) = sT (t)
(
Kϖ(t) − Kϖ(t) − η sign(s(t))

)
. (2.29)

Simplifying, we have

V̇(s(t)) = −η∥s(t)∥, (2.30)
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where ∥s(t)∥ denotes the Euclidean norm of s(t). This expression implies that V̇(s(t)) ≤ 0, showing that
V(s(t)) is a nonincreasing function.

To prove finite-time reachability, we observe that V̇(s(t)) = −η∥s(t)∥ ensures that V(s(t)) decreases
as long as s(t) , 0.

V̇(s(t)) ≤ −η∥s(t)∥. (2.31)

Since V(s) ≤ 1
2λmax((HE)−1)∥s(t)∥2, we can write

∥s(t)∥ ≥

√
2V(s(t))

λmax((HE)−1)
. (2.32)

Substituting this relation into the inequality (2.31) gives

V̇(s(t)) ≤ −η

√
2V(s(t))

λmax((HE)−1)
= −

√
2η√

λmax((HE)−1)

√
V(s(t)). (2.33)

Integrating both sides from t = 0 to t = T , we obtain∫ T

0

V̇(s(t))
√

V(s(t))
≤ −

√
2 η√

λmax((HE)−1)

∫ T

0
dt, (2.34)

which simplifies to

2
( √

V(T ) −
√

V(0)
)
≤ −

√
2 η√

λmax((HE)−1)
T. (2.35)

Since
√

V(T ) ≥ 0, the finite reaching time satisfies

T ≤

√
2 λmax((HE)−1)

√
V(0)

η
. (2.36)

Substituting V(0) = 1
2 sT(0)((HE)−1)s(0) ≤ 1

2λmax((HE)−1)∥s(0)∥2, we obtain

T ≤
λmax((HE)−1) ∥s(0)∥

2η
. (2.37)

Thus, the trajectories of the system reach the sliding surface s(t) = 0 in finite time, and the sliding
mode control law maintains the state trajectories on the surface thereafter. This completes the proof.

Remark 2.2. Traditional Lyapunov-Krasovskii functionals and classical inequalities (e.g., Jensen’s,
reciprocal convex) usually lead to conservative results. The proposed improved integral inequalities
(Lemmas 1.1 and 1.2) provide tighter estimations of delay-dependent terms, thereby reducing
conservatism. Moreover, unlike SMC designs that treat neutral-type and distributed delays separately,
the proposed method simultaneously considers both types, ensuring stability under combined delay
effects. In addition, the proposed framework accommodates time-varying delays with less restrictive
bounds compared to conventional constant or fixed-delay assumptions and guarantees the asymptotic
stability of system (1.1).
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Remark 2.3. The use of improved integral inequalities, such as the extended reciprocally convex matrix
inequality, helps make the stability analysis less conservative and more precise. These inequalities
provide better estimates for integral terms, leading to more reliable results. While the use of extra free
weighting matrices adds to the computational effort, the benefits are clear. The method shows better
performance by achieving stability conditions and more accurate control gains, as proven through
Examples 3.2 and 3.3 and comparisons with existing methods.

3. Numerical examples

In this section, we have given numerical examples to demonstrate the validity of the proposed
design method. We also compare our findings with those in [9] and [12] to illustrate the reduced
conservativeness of our findings.

Example 3.1. Consider the following neutral-type system:ϖ̇(t) = Aϖ(t) + Bϖ(t − τ(t)) +Cϖ̇(t − d) + D
∫ t

t−h
ϖ(s)ds + Eu(t), ∀t ≥ 0,

ϖ(t) = ϕ(t), ∀t ∈ [τ, d, h, 0],
(3.1)

where τ(t) = 0.5 + 0.1sin(t), h = 0.2, d = 0.1, and µ = 0.2.
The corresponding coefficient matrices are selected as follows:

A =
[
−2 1
0 −2

]
, B =

[
−0.5 0
−0.4 −0.5

]
, C =

[
0.3 0
0 −0.3

]
, D =

[
0.1 0
0 0.1

]
, E =

[
0.2 0
0 0.2

]
.

Utilizing the value of the above parameter and MATLAB to solve the LMIs in Theorem 2.2, we then
establish the asymptotic stability conditions for system (3.1) and the possibility of the calculation
P,Qi (i = 1, 2, ..., 6), as given as follows:

P =

[
16.3900 0.1423
0.1423 15.8629

]
, Q1 =

[
4.4174 −0.5816
−0.5816 4.0314

]
, Q2 =

[
3.1408 0.0102
0.0102 2.1430

]
,

Q3 =

[
3.6090 −0.5196
−0.5196 3.3001

]
, Q4 =

[
0.8516 0.0001
0.0001 0.8517

]
, Q5 =

[
0.8004 −0.0582
−0.0582 0.7804

]
,

Q6 =

[
6.6344 0.2636
0.2636 5.0700

]
, Z2 =

[
5.1141 0.1494
0.1494 3.7658

]
.

According to Theorem 2.2 LMIs with the designed SMC, we obtain the following controller gain K
matrix:

K =
[

1.9577 −0.0777
−0.0777 2.6585

]
.

The simulation results are presented in Figures 1–6. Under the parameters given above, Figure 1
illustrates the evolution of the state variables ϖ1(t) and ϖ2(t) for a closed-loop system with different
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initial states ϖ(0) = [0.6 − 0.6]T and ϖ(0) = [0.1 − 0.1]T . In contrast, Figure 2 shows that the open-
loop system, initialized withϖ(0) = [0.6 − 0.6]T , is unstable. However, under the designed SMC law,
the proposed neutral-type system with distributed delay achieves asymptotic stability. This highlights
the effectiveness of the SMC in stabilizing the system.
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Figure 1. State responses of ϖ1(t) and ϖ2(t) of Example 3.1.
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Figure 2. State responses of ϖ1(t) and ϖ2(t) of Example 3.1 without control.

Figures 3 and 4 compare the state variable trajectories with and without the SMC, demonstrating the
system’s improved tracking performance under the control law. Figure 5 displays the sliding variable
s(t), which converges to zero, confirming the system’s ability to reach the sliding surface. The control
input u(t) is shown in Figure 6. Overall, the simulation results in Figures 1 and 2 indicate that the
state ϖ(t) achieves stability, validating the proposed stability conditions and the effectiveness of the
designed controller presented in Theorem 2.2.
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Figure 3. State of ϖ1(t) and ϖ2(t) tracking with SMC under control in Example 3.1.
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Figure 4. State of ϖ1(t) and ϖ2(t) tracking with SMC not under control in Example 3.1.
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Figure 5. Sliding variable s(t) in Example 3.1.
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Figure 6. Control input u(t) in Example 3.1.

Example 3.2. Consider the following delayed neutral type system with the following parameters:

ϖ̇(t) −
[
−0.2 0
0.2 −0.1

]
ϖ̇(t − d) =

[
−0.9 0.2
0.1 −0.9

]
ϖ(t) +

[
−1.1 −0.2
−0.1 −1.1

]
ϖ(t − τ(t)). (3.2)

By solving the LMIs presented in Corollary 2.1, Table 1 lists the maximum upper bounds for the state
delay τ that guarantee the stability of system (3.2) for varying values of parameter d, with µ = 0.01.
The findings demonstrate that the results obtained in this study exhibit considerably lower error rates
compared to those reported in other works, such as [9] and [12].

Table 1. Maximum upper bounds for different values of τ (Example 3.2).

d 0.1 0.5 1.0 1.5 1.6527
[9] 1.7100 1.6718 1.6543 1.6527 1.6527
[12] 1.7844 1.7495 1.7201 1.7191 1.7191
Corollary 2.1 1.7932 1.7592 1.7230 1.7200 1.7195

Table 1 provides the maximum allowable state delays that ensure system stability as d ranges from
0.1 to 1.6527, based on the stability criterion derived in Corollary 2.1. In contrast, our system has a
time-varying state delay τ(t), making the proposed criterion more general and useful for a wider range
of systems. This innovation enhances the results in [9] and [12]. For example, with d = 1.6527, the
maximum permissible state delay τ is 1.7195, highlighting how the new stability criterion extends the
range of permissible time-varying delays.

Figures 7–9 present the state trajectories for Example 3.2, where the initial conditions are set as
ϖ(0) = [0.6,−0.6]T , ϖ(0) = [0.2,−0.2]T , and ϖ(0) = [0.1,−0.1]T , while the time-varying delay
is defined as τ(t) = 0.5| sin(t)|. The results shown in these figures indicate that both state variables
asymptotically approach zero, confirming the effectiveness of the proposed stability criterion. This
outcome is particularly noteworthy as it demonstrates that the system remains stable despite the
presence of time-varying delays, extending the applicability of the stability analysis to a broader class
of systems than those typically considered in other studies. This further emphasizes the robustness and
generality of the proposed approach in handling time-varying delay systems.
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Figure 7. State responses of variables ϖi(t), i = 1, 2 with the initial condition ϖ(0) =
[0.6,−0.6]T in Example 3.2.
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Figure 8. Variation of ϖ1(t) and ϖ2(t) with the different condition ϖ(0) = [0.2,−0.2]T in
Example 3.2.
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Figure 9. Responses of ϖi(t), i = 1, 2 with the initial condition ϖ(0) = [0.1,−0.1]T in
Example 3.2.
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Remark 3.1. In [5, 41], we investigated stability criteria for neutral systems with delays using the
free weighting matrix method. However, this technique significantly increases the number of decision
variables, resulting in higher computational complexity and greater time requirements, particularly
when implemented with MATLAB’s LMI Toolbox. In comparison, we have implemented novel integral
inequality techniques, yielding less conservative results and offering a more computationally efficient
solution compared to the methods in Table 2 from the literature [5, 41].

Table 2. Maximum upper bounds of τ for different values of h (Example 3.3).

h 0.1 0.2 0.5 1.0 1.5 Decision variables
[41] 1.6953 1.6720 1.6546 1.4995 1.4022 10.5n2 + 2.5n + 2
[5] 3.5250 3.4208 3.1362 2.7400 2.4174 21n2 + 7n + 3
Theorem 2.1 4.1250 4.0241 3.5251 3.2210 2.9895 6n2 + 4n + 4

Example 3.3. Consider a neutral-type system described by the following differential equation:

ϖ̇(t) = Aϖ(t) + Bϖ(t − τ +Cϖ̇(t − d) + D
∫ t

t−h
ϖ(s)ds, ∀t ≥ 0,

A =
[
−0.9 0.2
0.1 −0.9

]
, B =

[
−1.1 −0.2
−0.1 −1.1

]
, C =

[
−0.2 0

0 −0.1

]
, D =

[
−0.2 0
0.2 −0.1

]
.

By solving the same linear matrix inequalities presented in Theorem 2.1, using the same LKF in
Eq (2.2) and setting Q6 = 0, Table 2 shows the maximum allowable upper bound (MAUB) of the
state delay τ for various values of h, ensuring the system’s stability. Additionally, Table 3 provides
the MAUB of h for the system’s stability across different values of τ. The results demonstrate that the
stability criterion proposed in this paper is much less conservative compared to those in [41] and [5],
indicating an improved and more practical approach to handling time delays in the system.

Table 3. Maximum upper bounds of h for different values of τ (Example 3.3).

τ 0.1 0.2 0.5 1.0 1.5
[41] 17.3740 17.1379 12.3343 4.2393 0.9975
[5] 17.3732 17.1055 12.6229 6.3284 3.7774
Theorem 2.1 18.2121 17.5210 13.1245 8.1241 4.0013

Figures 10–12 illustrate the state trajectories for Example 3.3, with initial conditions ϖ(0) =
[0.6,−0.6]T , ϖ(0) = [0.2,−0.2]T , and ϖ(0) = [0.1,−0.1]T , and a constant time delay τ = 0.5. These
figures confirm that, regardless of the initial conditions, both state variables converge to zero over time.
This demonstrates the effectiveness of the stability criterion in ensuring the system’s stability, even in
the presence of time delays. The results show that the proposed method guarantees stable system
behavior, even when subjected to constant delays, which is critical for real-world applications where
such delays are often unavoidable. This further emphasizes the robustness of the stability criterion in
handling time delays effectively.
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Figure 10. Trajectories of the state variable ϖ1(t) and ϖ2(t) along the initial condition
ϖ(0) = [0.6,−0.6]T in Example 3.3.
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Figure 11. The state curves of ϖ1(t) and ϖ2(t) with ϖ(0) = [0.2,−0.2]T in Example 3.3.
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Figure 12. State responses of ϖ1(t) and ϖ2(t) with differential initial values ϖ(0) =
[0.1,−0.1]T in Example 3.3.
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Example 3.4. As discussed in [3, 14], the PEEC model shown in Figure 13 incorporates additional
circuit elements, particularly those that account for retarded mutual coupling between partial
inductances of the form Lpi ji j(t − τ). This model also includes retarded-dependent current sources,
expressed as pi j/piiic j(t − τ), where Lpi j represents partial inductances and pi j denotes partial
coefficients related to potential. In this framework, the state vector captures the partial inductance
branch currents, while the input corresponds to the unknown nodal voltages. The PEEC model thus
offers a generalized approach for modeling complex circuits by integrating the effects of time delays in
mutual couplings and current sources, which are essential to accurately analyze the dynamic behavior
of such systems in practical applications. In the general form of modeling, PEEC can be modeled as

C0ϖ̇(t) +G0ϖ(t) +C1ϖ̇(x − τ) +G1ϖ(x − τ) = Bu(t, t − τ), ϖ(t) = ϕ(t), t ≤ t0. (3.3)

I

1 2 3

1 2 3LP11 LP22

i1 i2ic1 ic2 ic3

1/P221/P11 1/P33

I1 I2 I3

(a)

(b)

Figure 13. (a) Metal strip with two Lp cells (three capacitive cells dashed) and (b) a small
PEEC model for the metal strip.

Choosing the known parameters and utilizing the MATLAB LMI toolbox in Corollary 2.1 LMIs,
we conclude that there is a feasible solution of inequalities (2.20) when the delay upper bound is 0.5.
Figure 14 illustrates the state responses of the system for the initial conditionϖ(0) = [0.9 − 0.9 0.5]T .
The responses are shown for two different values of the neutral delay. In both cases, the state
variables exhibit clear convergence to zero over time, demonstrating the stability and effectiveness of
the proposed approach. The results highlight the ability of the system to handle varying neutral delay
values while maintaining stability. This convergence emphasizes the accuracy of the derived stability
conditions, confirming their capability to mitigate the effects of neutral delays on system dynamics.
Such performance is significant for systems with discrete and neutral delays, as the results validate the
theoretical findings and showcase the practical applicability of the proposed method.
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Figure 14. State responses of ϖ1(t), ϖ2(t), and ϖ3(t) in Example 3.4.

If we take the different time-varying delays commonly existing in the modeling of a real circuit into
account, a more general form of PEEC (3.3) can be described by the following system [14]:

 ϖ̇(t) = Aϖ(t) + Bϖ(t − τ(t)) +Cϖ̇(t − d), ∀t ≥ t0,

ϖ(t) = ϕ(t), ∀t ≤ t0.
(3.4)

In the model, the coefficient matrices are given as [14]

A
100
=


−2.105 1 2

3 −9 0
1 2 −6

 , B
100
=


1 0 −3
−0.5 −0.5 −1
−0.5 −1.5 0

 , C × 72 =


−1 5 2
4 0 3
−2 4 1

 .
4. Conclusions

In this paper, we presented an SMC strategy for stabilizing neutral-type distributed systems
with time-varying delays. By employing an LKF and using an improved integral inequality, we
provided less conservative stability conditions with tighter bounds, ensuring the system’s stability
and performance. The proposed method also demonstrated its practical applicability through the
PEEC model, showcasing its potential for real-world systems such as electromagnetic field simulations
and circuit analysis. The results highlight the effectiveness of the method in handling time delays,
offering a more precise solution compared to existing techniques. In future studies, researchers may
extend the proposed SMC framework to nonlinear and stochastic systems to enhance its robustness
and applicability in uncertain environments [30]. Incorporating event-triggered mechanisms could
further improve communication efficiency and system responsiveness [31]. In addition, applying the
approach to large-scale interconnected systems, such as power grids and multi-agent networks, while
integrating fault detection and adaptive learning strategies, would be a valuable direction. Practical
implementation and experimental validation on autonomous platforms like UAVs and UUVs could
also provide deeper insights into real-world performance.
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delay systems driven by Lévy processes, IEEE Trans. Automat. Control, 70 (2025), 1176–1183.
https://doi.org/10.1109/TAC.2024.3448128

32. H. B. Zeng, Y. J. Chen, Y. He, X. M. Zhang, A delay-derivative-dependent switched system model
method for stability analysis of linear systems with time-varying delay, Automatica, 175 (2025),
112183. https://doi.org/10.1016/j.automatica.2025.112183

33. X. M. Zhang, Q. L. Han, A new stability criterion for a partial element equivalent circuit
model of neutral type, IEEE Trans. Circuits Syst. II Express Briefs, 56 (2009), 798–802.
https://doi.org/10.1109/TCSII.2009.2030363

AIMS Mathematics Volume 10, Issue 11, 27290–27313.

https://dx.doi.org/https://doi.org/10.1016/j.automatica.2018.06.017
https://dx.doi.org/https://doi.org/10.3934/mcrf.2025012
https://dx.doi.org/https://doi.org/10.3390/fractalfract6100591
https://dx.doi.org/https://doi.org/10.1016/j.cnsns.2023.107407
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2022.112741
https://dx.doi.org/https://doi.org/10.1080/00207721.2021.1958024
https://dx.doi.org/https://doi.org/10.3934/math.2025418
https://dx.doi.org/https://doi.org/10.1016/j.automatica.2012.05.064
https://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2023.04.019
https://dx.doi.org/https://doi.org/10.1007/s11432-024-4075-2
https://dx.doi.org/https://doi.org/10.1109/TAC.2024.3448128
https://dx.doi.org/https://doi.org/10.1016/j.automatica.2025.112183
https://dx.doi.org/https://doi.org/10.1109/TCSII.2009.2030363


27313

34. C. K. Zhang, Y. He, L. Jiang, M. Wu, Q. G. Wang, An extended reciprocally convex matrix
inequality for stability analysis of systems with time-varying delay, Automatica, 85 (2017), 481–
485. https://doi.org/10.1016/j.automatica.2017.07.056

35. H. B. Zeng, Y. He, M. Wu, J. H. She, Free-matrix-based integral inequality for stability analysis
of systems with time-varying delay, IEEE Trans. Automat. Control, 60 (2015), 2768–2772.
https://doi.org/10.1109/TAC.2015.2404271

36. J. S. Zhang, Y. K. Li, X. L. Ma, Z. L. Lin, C. L. Wang, Improved results on delay-dependent robust
H∞ control of uncertain neutral systems with mixed time-varying delays, Math. Probl. Eng., 2021
(2021), 6360923. https://doi.org/10.1155/2021/6360923

37. Y. S. Zhao, X. D. Li, S. J. Song, Observer-based sliding mode control for stabilization of
mismatched disturbance systems with or without time delays, IEEE Trans. Syst. Man Cybernet.
Syst., 51 (2021), 7337–7345. https://doi.org/10.1109/TSMC.2020.2967032

38. X. P. Zhang, C. C. Shen, D. J. Xu, Reachable set estimation for neutral semi-
Markovian jump systems with time-varying delay, AIMS Math., 9 (2024), 8043–8062.
https://doi.org/10.3934/math.2024391

39. H. Zhang, T. B. Wang, Finite-time sliding mode control for uncertain neutral systems with time
delays, IEEE Access, 9 (2021), 140446–140455. https://doi.org/10.1109/ACCESS.2021.3119628

40. H. B. Zeng, Z. L. Zhai, Y. He, K. L. Teo, W. Wang, New insights on stability
of sampled-data systems with time-delay, Appl. Math. Comput., 374 (2020), 125041.
https://doi.org/10.1016/j.amc.2020.125041

41. B. Y. Zhang, S. S. Zhou, S. Y. Xu, Delay-dependent H∞ controller design for linear
neutral systems with discrete and distributed delays, Int. J. Syst. Sci., 38 (2007), 611–621.
https://doi.org/10.1080/00207720701433033

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 11, 27290–27313.

https://dx.doi.org/https://doi.org/10.1016/j.automatica.2017.07.056
https://dx.doi.org/https://doi.org/10.1109/TAC.2015.2404271
https://dx.doi.org/https://doi.org/10.1155/2021/6360923
https://dx.doi.org/https://doi.org/10.1109/TSMC.2020.2967032
https://dx.doi.org/https://doi.org/10.3934/math.2024391
https://dx.doi.org/https://doi.org/10.1109/ACCESS.2021.3119628
https://dx.doi.org/https://doi.org/10.1016/j.amc.2020.125041
https://dx.doi.org/https://doi.org/10.1080/00207720701433033
https://creativecommons.org/licenses/by/4.0

	Introduction
	Main results
	Numerical examples
	Conclusions

