Research article Special Issues

The conjugation diameters of finite dihedral groups

  • Published: 24 November 2025
  • MSC : 05E16, 20D15

  • Let $ G $ be a group. A subset $ S $ of $ G $ is said to normally generate $ G $ if the normal closure of $ S $ in $ G $ is equal to $ G $ itself. This means that every element of $ G $ can be represented as a product of conjugates of elements of $ S $ and their inverses. Given an element $ g $ of $ G $ and a normally generating set $ S, $ we define the length of $ g $ with respect to $ S $ as the smallest number of conjugates of elements of $ S $ or their inverses needed to express $ g $ as a product. Then, for each such $ S $, the diameter of $ G $ with respect to $ S $ is defined as the supremum of the lengths of elements of $ G $ with respect to $ S. $ The conjugacy diameter of $ G $ is the supremum of all diameters of $ G $ over all finite normally generating subsets. It measures how efficiently $ G $ is normally generated by its finite normally generating subsets.

    In this paper, we found the conjugacy diameters of finite dihedral groups. It is worth noting that the conjugacy diameters of other families, such as semidihedral $ 2 $-groups, generalized quaternion groups, and modular $ p $-groups, have already been investigated.

    Citation: Fawaz Aseeri. The conjugation diameters of finite dihedral groups[J]. AIMS Mathematics, 2025, 10(11): 27277-27289. doi: 10.3934/math.20251199

    Related Papers:

  • Let $ G $ be a group. A subset $ S $ of $ G $ is said to normally generate $ G $ if the normal closure of $ S $ in $ G $ is equal to $ G $ itself. This means that every element of $ G $ can be represented as a product of conjugates of elements of $ S $ and their inverses. Given an element $ g $ of $ G $ and a normally generating set $ S, $ we define the length of $ g $ with respect to $ S $ as the smallest number of conjugates of elements of $ S $ or their inverses needed to express $ g $ as a product. Then, for each such $ S $, the diameter of $ G $ with respect to $ S $ is defined as the supremum of the lengths of elements of $ G $ with respect to $ S. $ The conjugacy diameter of $ G $ is the supremum of all diameters of $ G $ over all finite normally generating subsets. It measures how efficiently $ G $ is normally generated by its finite normally generating subsets.

    In this paper, we found the conjugacy diameters of finite dihedral groups. It is worth noting that the conjugacy diameters of other families, such as semidihedral $ 2 $-groups, generalized quaternion groups, and modular $ p $-groups, have already been investigated.



    加载中


    [1] M. P. Allocca, J. M. Graham, C. R. Price, S. N. Talbott, J. F. Vasquez, Word length perturbations in certain symmetric presentations of dihedral groups, Discrete Appl. Math., 221 (2017), 33–45. https://doi.org/10.1016/j.dam.2017.01.002 doi: 10.1016/j.dam.2017.01.002
    [2] M. Aschbacher, Finite group theory, 2 Eds, Cambridge University Press, 2012. https://doi.org/10.1017/CBO9781139175319
    [3] F. Aseeri, Uniform boundedness of $(SL_2(\mathbb{C}))^{n}$ and $(PSL_2(\mathbb{C}))^{n}$, AIMS Mathematics, 9 (2024), 33712–33370. https://doi.org/10.3934/math.20241609 doi: 10.3934/math.20241609
    [4] F. Aseeri, J. Kaspczyk, The conjugacy diameters of non-abelian finite $p$-groups with cyclic maximal subgroups, AIMS Mathematics, 9 (2024), 10734–10755. https://doi.org/10.3934/math.2024524 doi: 10.3934/math.2024524
    [5] V. Bardakov, V. Tolstykh, V. Vershinin, Generating groups by conjugation-invariant sets, J. Algebra Appl., 11 (2012), 1250071. https://doi.org/10.1142/S0219498812500715 doi: 10.1142/S0219498812500715
    [6] M. Brandenbursky, Ś. R. Gal, J. Kȩdra, M. Marcinkowski, The cancellation norm and the geometry of bi-invariant word metrics, Glasgow Math. J., 58 (2015), 153–176. https://doi.org/10.1017/S0017089515000129 doi: 10.1017/S0017089515000129
    [7] M. Brandenbursky, J. Kȩdra, Fragmentation norm and relative quasimorphisms, Proc. Amer. Math. Soc., 150 (2022), 4519–4531. https://doi.org/10.1090/proc/14683 doi: 10.1090/proc/14683
    [8] D. Burago, S. Ivanov, L. Polterovich, Conjugation-invariant norms on groups of geometric origin, Adv. Stud. Pure Math., 52 (2008), 221–250. https://doi.org/10.2969/aspm/05210221 doi: 10.2969/aspm/05210221
    [9] S. K. Chebolu, K. Lockridge, Fuchs' problem for dihedral groups, J. Pure Appl. Algebra, 221 (2017), 971–982. https://doi.org/10.1016/j.jpaa.2016.08.015 doi: 10.1016/j.jpaa.2016.08.015
    [10] M. Kawasaki, Relative quasimorphisms and stably unbounded norms on the group of symplectomorphisms of the Euclidean spaces, J. Symplect. Geom., 14 (2016), 297–304. https://doi.org/10.4310/JSG.2016.v14.n1.a11 doi: 10.4310/JSG.2016.v14.n1.a11
    [11] J. Kȩdra, On Lipschitz functions on groups equipped with conjugation-invariant norms, Colloq. Math., 174 (2023), 89–99. https://doi.org/10.4064/cm9173-8-2023 doi: 10.4064/cm9173-8-2023
    [12] J. Kȩdra, A. Libman, B. Martin, Strong and uniform boundedness of groups, J. Topol. Anal., 15 (2023), 707–739. https://doi.org/10.1142/S1793525321500497 doi: 10.1142/S1793525321500497
    [13] B. Klopsch, V. F. Lev, How long does it take to generate a group? J. Algebra, 261 (2003), 145–171. https://doi.org/10.1016/S0021-8693(02)00671-3 doi: 10.1016/S0021-8693(02)00671-3
    [14] A. Libman, C. Tarry, Conjugation diameter of the symmetric groups, Involve, 13 (2020), 655–672. https://doi.org/10.2140/involve.2020.13.655 doi: 10.2140/involve.2020.13.655
    [15] A. Muranov, Finitely generated infinite simple groups of infinite square width and vanishing stable commutator length, J. Topol. Anal., 2 (2010), 341–384. https://doi.org/10.1142/S1793525310000380 doi: 10.1142/S1793525310000380
    [16] A. A. Trost, Strong boundedness of $SL_2(R)$ for rings of $S$-algebraic integers with infinitely many units, 2021, arXiv: 2105.10972. https://doi.org/10.48550/arXiv.2105.10972
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(212) PDF downloads(21) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog