Research article Special Issues

Solitary waves in elastic materials based on modified strain gradient elasticity

  • Published: 24 November 2025
  • MSC : 74B20, 74J30, 74J35

  • In the present study, we derive a Boussinesq–type nonlinear partial differential equation to describe solitary wave propagation in isotropic elastic materials. The mathematical formulation is based on the modified strain gradient elasticity (MSGE) framework, which accounts for micro–deformations arising from micro–structural effects as well as macro–scale deformation due to surface effects. The derivation is based on Hamilton's principle, which equates the variation of the strain energy functional to the virtual work done by external forces. The resulting mathematical model is formulated in tensor form to maintain generality and is subsequently specialized to the one–dimensional case to elucidate the nonlinear nature of solitary wave propagation and the influence of micro–structural effects on the material's dynamic response. A key result of this study is the demonstration that the type of wave propagation in the medium can be controlled by appropriately selecting the length–scale parameter associated with micro–inertia, as well as the material length–scale parameters. Three types of initial and boundary conditions are considered: (ⅰ) Constant initial and boundary conditions, (ⅱ) dynamic boundary conditions, and (ⅲ) static initial conditions, moreover; all physical quantities are plotted and discussed in detail.

    Citation: A. R. El-Dhaba. Solitary waves in elastic materials based on modified strain gradient elasticity[J]. AIMS Mathematics, 2025, 10(11): 27247-27276. doi: 10.3934/math.20251198

    Related Papers:

  • In the present study, we derive a Boussinesq–type nonlinear partial differential equation to describe solitary wave propagation in isotropic elastic materials. The mathematical formulation is based on the modified strain gradient elasticity (MSGE) framework, which accounts for micro–deformations arising from micro–structural effects as well as macro–scale deformation due to surface effects. The derivation is based on Hamilton's principle, which equates the variation of the strain energy functional to the virtual work done by external forces. The resulting mathematical model is formulated in tensor form to maintain generality and is subsequently specialized to the one–dimensional case to elucidate the nonlinear nature of solitary wave propagation and the influence of micro–structural effects on the material's dynamic response. A key result of this study is the demonstration that the type of wave propagation in the medium can be controlled by appropriately selecting the length–scale parameter associated with micro–inertia, as well as the material length–scale parameters. Three types of initial and boundary conditions are considered: (ⅰ) Constant initial and boundary conditions, (ⅱ) dynamic boundary conditions, and (ⅲ) static initial conditions, moreover; all physical quantities are plotted and discussed in detail.



    加载中


    [1] A. R. Hadjesfandiari, G. F. Dargush, Couple stress theory for solids, Int. J. Solids Struct., 48 (2011), 2496–2510. https://doi.org/10.1016/j.ijsolstr.2011.05.002 doi: 10.1016/j.ijsolstr.2011.05.002
    [2] A. C. Eringen, Mechanics of micromorphic materials, In: H. Görtler, Applied mechanics, Springer, Berlin, Heidelberg, 1966,131–138. https://doi.org/10.1007/978-3-662-29364-5_12
    [3] A. C. Eringen, Nonlocal continuum field theories, Appl. Mech. Rev., 56 (2003), B20–B22. https://doi.org/10.1115/1.1553434 doi: 10.1115/1.1553434
    [4] R. D. Mindlin, Micro-structure in linear elasticity, Arch. Rational Mech. Anal., 16 (1964), 51–78. https://doi.org/10.1007/BF00248490 doi: 10.1007/BF00248490
    [5] E. Cosserat, F. Cosserat, Théorie des corps déformables, Nature, 81 (1909), 67. https://doi.org/10.1038/081067a0 doi: 10.1038/081067a0
    [6] C. B. Kafadar, A. C. Eringen, Micropolar media–Ⅰ the classical theory, Int. J. Eng. Sci., 9 (1971), 271–305. https://doi.org/10.1016/0020-7225(71)90040-1 doi: 10.1016/0020-7225(71)90040-1
    [7] A. C. Eringen, Theory of micropolar continua, Proc. Ninth Midwest. Mech. Conf., University of Wisconsin, New York: Wiley, 1965.
    [8] L. Dragos, Fundamental solutions in micropolar elasticity, Int. J. Eng. Sci., 22 (1984), 265–275. https://doi.org/10.1016/0020-7225(84)90007-7 doi: 10.1016/0020-7225(84)90007-7
    [9] G. A. Maugin, Solitons in elastic solids (1938–2010), Mech. Res. Commun., 38 (2011), 341–349. https://doi.org/10.1016/j.mechrescom.2011.04.009 doi: 10.1016/j.mechrescom.2011.04.009
    [10] V. Krylov, P. Rosenau, Solitary waves in an elastic string, Phys. Lett. A, 217 (1996), 31–42. https://doi.org/10.1016/0375-9601(96)00285-X doi: 10.1016/0375-9601(96)00285-X
    [11] G. A. Maugin, A. Miled, Solitary waves in micropolar elastic crystals, Int. J. Eng. Sci., 24 (1986), 1477–1499. https://doi.org/10.1016/0020-7225(86)90158-8 doi: 10.1016/0020-7225(86)90158-8
    [12] H. Demiray, S. Dost, Solitary waves in a thick walled elastic tube, Appl. Math. Model., 22 (1998), 583–599. https://doi.org/10.1016/S0307-904X(98)10051-3 doi: 10.1016/S0307-904X(98)10051-3
    [13] N. A. Fleck, G. M. Muller, M. F. Ashby, J. W. Hutchinson, Strain gradient plasticity: theory and experiment, Acta Metall. Mater., 42 (1994), 475–487. https://doi.org/10.1016/0956-7151(94)90502-9 doi: 10.1016/0956-7151(94)90502-9
    [14] D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, 51 (2003), 1477–1508. https://doi.org/10.1016/S0022-5096(03)00053-X doi: 10.1016/S0022-5096(03)00053-X
    [15] R. D. Mindlin, N. N. Eshel, On first strain-gradient theories in linear elasticity, Int. J. Solids Struct., 4 (1968), 109–124. https://doi.org/10.1016/0020-7683(68)90036-X doi: 10.1016/0020-7683(68)90036-X
    [16] B. S. Altan, E. C. Aifantis, On some aspects in the special theory of gradient elasticity, J. Mech. Behav. Mater., 8 (2011), 231–282. https://doi.org/10.1515/jmbm.1997.8.3.231 doi: 10.1515/jmbm.1997.8.3.231
    [17] D. Y. Yang, Z. Du, Asymptotic analysis of double-hump solitons for a coupled fourth-order nonlinear Schrödingier system in a birefringent optical fiber, Chaos, Soliton. Fract., 199 (2025) 116831. https://doi.org/10.1016/j.chaos.2025.116831 doi: 10.1016/j.chaos.2025.116831
    [18] Y. Zhang, D. Qiu, W. Liu, The Darboux transformation for the Tu equation: the kink and dromion solutions, Eur. Phys. J. Plus, 140 (2025), 657. https://doi.org/10.1140/epjp/s13360-025-06572-x. doi: 10.1140/epjp/s13360-025-06572-x
    [19] P. Germain, The method of virtual power in continuum mechanics. Part 2: microstructure, SIAM J. Appl. Math., 25 (1973), 556–575.
    [20] V. L. Berdichevsky, Variational principles of continuum mechanics Ⅱ: applications, Springer, Dordrecht, 2009. https://doi.org/10.1007/978-3-540-88469-9.
    [21] J. Kim, G. F. Dargush, Y. K. Ju, Extended framework of Hamilton's principle for continuum dynamics, Int. J. Solids Struct., 50 (2013), 3418–3429. https://doi.org/10.1016/j.ijsolstr.2013.06.015 doi: 10.1016/j.ijsolstr.2013.06.015
    [22] F. Dell'Isola, G. Sciarra, S. Vidoli, Generalized Hooke's law for isotropic second gradient materials, Proc. R. Soc. A Math. Phys. Eng. Sci., 465 (2009), 2177–2196. https://doi.org/10.1098/rspa.2008.0530 doi: 10.1098/rspa.2008.0530
    [23] L. Placidi, A. R. El-Dhaba, Semi-inverse method à la Saint-Venant for two-dimensional linear isotropic homogeneous second-gradient elasticity, Math. Mech. Solids, 22 (2017), 919–937. https://doi.org/10.1177/1081286515616043 doi: 10.1177/1081286515616043
    [24] A. R. El-Dhaba, Nonlinear deformation waves based on new Boussinesq-type equation within simplified strain gradient elasticity, Math. Methods Appl. Sci., 48 (2025), 10841–10853. https://doi.org/10.1002/mma.10924 doi: 10.1002/mma.10924
    [25] A. R. El-Dhaba, Periodic solutions for nonlinear deformation waves based on new Boussinesq-type equation within strain gradient elasticity and reductive perturbation technique, Mech. Adv. Mater. Struct., 2024, 1–13. https://doi.org/10.1080/15376494.2024.2438905
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(161) PDF downloads(13) Cited by(0)

Article outline

Figures and Tables

Figures(30)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog