In this paper, we investigated in a class of Sturm-Liouville vibrating string problems involving conformable fractional derivatives and studied the behavior of their eigenvalue ratios. Under the assumptions that the potential function is of single-barrier type or the density function is of single-well type, we rigorously established the optimal upper bound for the eigenvalue ratios $ \lambda_n / \lambda_m $, namely
$ \frac{\lambda_n}{\lambda_m} \le \left(\frac{n}{m}\right)^2 \quad (n>m). $
Moreover, we showed that equality holds if and only if the density or the potential is constant. Our novelty was in extending the classical Sturm–Liouville eigenvalue inequalities to the conformable fractional setting.
Citation: Mengze Gu. Eigenvalue ratios for the conformable fractional vibrating string equations with single-well densities[J]. AIMS Mathematics, 2025, 10(11): 27235-27246. doi: 10.3934/math.20251197
In this paper, we investigated in a class of Sturm-Liouville vibrating string problems involving conformable fractional derivatives and studied the behavior of their eigenvalue ratios. Under the assumptions that the potential function is of single-barrier type or the density function is of single-well type, we rigorously established the optimal upper bound for the eigenvalue ratios $ \lambda_n / \lambda_m $, namely
$ \frac{\lambda_n}{\lambda_m} \le \left(\frac{n}{m}\right)^2 \quad (n>m). $
Moreover, we showed that equality holds if and only if the density or the potential is constant. Our novelty was in extending the classical Sturm–Liouville eigenvalue inequalities to the conformable fractional setting.
| [1] |
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
|
| [2] |
J. B. Amara, J. Hedhly, Eigenvalue ratios for Schrödinger operators with indefinite potentials, Appl. Math. Lett., 76 (2018), 96–102. https://doi.org/10.1016/j.aml.2017.07.006 doi: 10.1016/j.aml.2017.07.006
|
| [3] |
M. S. Ashbaugh, R. D. Benguria, Optimal bounds for ratios of eigenvalues of one-dimensional Schrödinger operators with Dirichlet boundary conditions and positive potentials, Commun. Math. Phys., 124 (1989), 403–415. https://doi.org/10.1007/BF01219657 doi: 10.1007/BF01219657
|
| [4] |
A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 1–10. https://doi.org/10.1515/math-2015-0081 doi: 10.1515/math-2015-0081
|
| [5] |
Y. H. Cheng, The dual eigenvalue problems of the conformable fractional Sturm–Liouville problems, Boundary Value Probl., 1 (2021), 83. https://doi.org/10.1186/s13661-021-01556-z doi: 10.1186/s13661-021-01556-z
|
| [6] |
M. Horváth, M. Kiss, A bound for ratios of eigenvalues of Schrödinger operators with single-well potentials, Proc. Am. Math. Soc., 134 (2006), 1425-1434. https://doi.org/10.1090/S0002-9939-05-08100-1 doi: 10.1090/S0002-9939-05-08100-1
|
| [7] |
M. J. Huang, On the eigenvalue ratio for vibrating strings, Proc. Am. Math. Soc., 127 (1999), 1805–1813. https://doi.org/10.1090/S0002-9939-99-05015-7 doi: 10.1090/S0002-9939-99-05015-7
|
| [8] |
M. J. Huang, The eigenvalue ratio for a class of densities, J. Math. Anal. Appl., 435 (2016), 944–954. https://doi.org/10.1016/j.jmaa.2015.10.079 doi: 10.1016/j.jmaa.2015.10.079
|
| [9] |
J. Hedhly, Eigenvalue ratios for vibrating string equations with single-well densities, J. Differ. Equations, 307 (2022), 476–485. https://doi.org/10.1016/j.jde.2021.11.006 doi: 10.1016/j.jde.2021.11.006
|
| [10] |
R. Khalil, M. Horani, A. Yousef, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
|
| [11] |
M. Kiss, Eigenvalue ratios of vibrating strings, Acta Math. Hung., 110 (2006), 253–259. https://doi.org/10.1007/s10474-006-0020-1 doi: 10.1007/s10474-006-0020-1
|
| [12] |
H. Mortazaasl, A. A. Jodayree, Trace formula and inverse nodal problem for a conformable fractional Sturm-Liouville problem, Inverse Probl. Sci. Eng., 28 (2020), 524–555. https://doi.org/10.1080/17415977.2019.1615909 doi: 10.1080/17415977.2019.1615909
|