Logarithmic functions are widely used in mathematics and other fields for various applications. As far as we know, no one has used the bounds for the third Hankel determinant using the coefficients of logarithmic functions. This article examined various classes of starlike functions and addressed the problem of the third Hankel determinant concerning logarithmic coefficients for special subclasses related to nephroid functions. Several coefficient estimates were derived, and some of these results were proven to be sharp.
Citation: Wahid Ullah, Sarfraz Nawaz Malik, Daniel Breaz, Luminita-Ioana Cotirla. On logarithmic coefficients for starlike functions related to nephroid domain[J]. AIMS Mathematics, 2025, 10(11): 26905-26925. doi: 10.3934/math.20251183
Logarithmic functions are widely used in mathematics and other fields for various applications. As far as we know, no one has used the bounds for the third Hankel determinant using the coefficients of logarithmic functions. This article examined various classes of starlike functions and addressed the problem of the third Hankel determinant concerning logarithmic coefficients for special subclasses related to nephroid functions. Several coefficient estimates were derived, and some of these results were proven to be sharp.
| [1] |
L. De Branges, A proof of the Bieberbach conjecture, Acta Math., 154 (1985), 137–152. https://doi.org/10.1007/BF02392821 doi: 10.1007/BF02392821
|
| [2] | L. Bieberbach, Über die koeffizienten derjenigen potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzingsber. Preuss. Akad. Wiss., 138 (1916), 940–955. |
| [3] | W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the conference on complex analysis, New York: International Press, 1994,157–169. |
| [4] |
L. A. Wani, A. Swaminathan, Starlike and convex functions associated with a Nephroid domain, Bull. Malays. Math. Sci. Soc., 44 (2021), 79–104. https://doi.org/10.1007/s40840-020-00935-6 doi: 10.1007/s40840-020-00935-6
|
| [5] |
C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika, 14 (1967), 108–112. https://doi.org/10.1112/S002557930000807X doi: 10.1112/S002557930000807X
|
| [6] | C. Pommerenke, Univalent functions, In: Studia mathematica mathematische lehrbucher, Gottingen: Vandenhoeck and Ruprecht, 1975. |
| [7] |
C. Pommerenke, On starlike and close-to-convex functions, Proc. Lond. Math. Soc., 13 (1963), 290–304. https://doi.org/10.1112/plms/s3-13.1.290 doi: 10.1112/plms/s3-13.1.290
|
| [8] | K. O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions, Inequality Theory and Applications: 6, New York: Nova Science Publishers, 2010, 1–7. |
| [9] |
H. M. Srivastava, G. Murugusundaramoorthy, T. Bulboca, The second Hankel determinant for subclasses of Bi-univalent functions associated with a nephroid domain, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 116 (2022), 145. https://doi.org/10.1007/s13398-022-01286-6 doi: 10.1007/s13398-022-01286-6
|
| [10] |
H. M. Srivastava, M. Kamli, A. Urdaletova, A study of the Fekete-Szego functional and coefficient estimates for subclasses of analytic functions satisfying a certain subordination condition and associated with the Gegenbauer polynomials, AIMS Mathematics, 7 (2022), 2568–2584. http://doi.org/10.3934/math.2022144 doi: 10.3934/math.2022144
|
| [11] | H. M. Srivastava, S. Kumar, V. Kumar, N. E. Cho, Hermitian-Toeplitz and Hankel determinants for starlike functions associated with a rational function, J. Nonlinear Convex A., 23 (2022), 2815–2833. |
| [12] |
H. M. Srivastava, T. G. Shaba, G. Murugusundaramoorthy, A. K. Wanas, G. I. Oros, The Fekete-Szeg$\ddot{^{\ }}$ o functional and the Hankel determinant for a certain class of analytic functions involving the Hohlov operator, AIMS Mathematics, 8 (2023), 340–360. http://doi.org/10.3934/math.2023016 doi: 10.3934/math.2023016
|
| [13] | H. M. Srivastava, G. Kaur, G. Singh, Estimates of the fourth Hankel determinant for a class of analytic functions with bounded turnings involving cardioid domains, J. Nonlinear Convex A., 22 (2021), 511–526. |
| [14] |
R. J. Libera, E. J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85 (1982), 225–230. https://doi.org/10.1090/S0002-9939-1982-0652447-5 doi: 10.1090/S0002-9939-1982-0652447-5
|
| [15] | F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8–12. https://doi.org/10.2307/2035949 |
| [16] |
V. Ravichandran, S. Verma, Bound for the fifth coefficient of certain starlike functions, CR Math., 353 (2015), 505–510. https://doi.org/10.1016/j.crma.2015.03.003 doi: 10.1016/j.crma.2015.03.003
|
| [17] |
M. Arif, M. Raza, H. Tang, S. Hussain, H. Khan, Hankel determinant of order three for familiar subsets of analytic functions related to the sine function, Open Math., 17 (2019), 1615–1630. https://doi.org/10.1515/math-2019-0132 doi: 10.1515/math-2019-0132
|
| [18] | S. L. Krushkal, A short geometric proof of the Zalcman and Bieberbach conjectures, 2014, arXiv: 1408.1948. https://doi.org/10.48550/arXiv.1408.1948 |
| [19] |
W. Ma, Generalized Zalcman conjecture for starlike and typically real functions, J. Math. Anal. Appl., 234 (1999), 328–339. https://doi.org/10.1006/jmaa.1999.6378 doi: 10.1006/jmaa.1999.6378
|
| [20] | Z.-G. Wang, H. M. Srivastava, M. Arif, Z.-H. Liu, K. Ullah, Sharp bounds on Hankel determinants of bounded turning functions involving the hyperbolic tangent function, Appl. Anal. Discr. Math., 18 (2024), 551–571. |
| [21] |
S. Kazımoğlu, E. Deniz, H. M. Srivastava, Sharp coefficients bounds for Starlike functions associated with Gregory coefficients, Complex Anal. Oper. Theory, 18 (2024), 6. https://doi.org/10.1007/s11785-023-01445-6 doi: 10.1007/s11785-023-01445-6
|
| [22] | K. Marımuthu, J. Uma, T. Bulboaca, Coefficient estimates for starlike and convex functions associated with cosine function, Hacet. J. Math. Stat., 52 (2023), 596–618. |
| [23] |
Z. T. Li, D. Guo, J. R. Liang, Hankel determinant for a subclass of starlike functions with respect to symmetric points subordinate to the exponential function, Symmetry, 15 (2023), 1604. https://doi.org/10.3390/sym15081604 doi: 10.3390/sym15081604
|
| [24] |
H. Tang, M. Arif, M. Abbas, F. M. O. Tawfiq, S. N. Malik, Analysis of coefficient-related problems for starlike functions with symmetric points connected with a three-leaf-shaped domain, Symmetry, 15 (2023), 1837. https://doi.org/10.3390/sym15101837 doi: 10.3390/sym15101837
|
| [25] |
A. Riaz, M. Raza, M. A. Binyamin, A. Saliu, The second and third Hankel determinants for starlike and convex functions associated with three-leaf function, Heliyon, 9 (2023), e12748. https://doi.org/10.1016/j.heliyon.2022.e12748 doi: 10.1016/j.heliyon.2022.e12748
|
| [26] |
Z.-G. Wang, M. Arif, Z.-H. Liu, S. Zainab, R. Fayyaz, M. Ihsan, et al., Sharp bounds of Hankel determinants for certain subclass of starlike functions, J. Appl. Anal. Comput., 13 (2023), 860–873. https://doi.org/10.11948/20220180 doi: 10.11948/20220180
|