This paper established a stochastic HIV model that incorporates population mobility to analyze the role of stochastic noise in HIV dynamics. First, the existence and uniqueness of a globally positive solution for the stochastic system were proven, and sufficient conditions for the stochastic extinction of the disease were derived. Second, by constructing a Lyapunov function, it was demonstrated that the stochastic system possesses a unique ergodic stationary distribution when $ \hat{R_0^s } > 1 $. Finally, theoretical findings were illustrated through numerical simulations. From an epidemiological perspective, our study reveals that an increased response to infection risks and higher white noise intensity appear advantageous for limiting HIV transmission.
Citation: Juhui Yan, Wanqin Wu, Xuewen Tan. A stochastic HIV model based on population mobility[J]. AIMS Mathematics, 2025, 10(11): 26926-26957. doi: 10.3934/math.20251184
This paper established a stochastic HIV model that incorporates population mobility to analyze the role of stochastic noise in HIV dynamics. First, the existence and uniqueness of a globally positive solution for the stochastic system were proven, and sufficient conditions for the stochastic extinction of the disease were derived. Second, by constructing a Lyapunov function, it was demonstrated that the stochastic system possesses a unique ergodic stationary distribution when $ \hat{R_0^s } > 1 $. Finally, theoretical findings were illustrated through numerical simulations. From an epidemiological perspective, our study reveals that an increased response to infection risks and higher white noise intensity appear advantageous for limiting HIV transmission.
| [1] | HIV and AIDS, World Health Organization, 2025. Available from: https://www.who.int/news-room/fact-sheets/detail/hiv-aids. |
| [2] |
J. Ðorđević, K. R. Dahl, Stochastic optimal control of pre-exposure prophylaxis for HIV infection for a jump model, J. Math. Biol., 89 (2024), 55. https://doi.org/10.1007/s00285-024-02151-3 doi: 10.1007/s00285-024-02151-3
|
| [3] |
C. J. Silva, D. F. M. Torres, A TB-HIV/AIDS coinfection model and optimal control treatment, Discrete Cont. Dyn. Syst., 35 (2015), 4639–4663. https://doi.org/10.3934/dcds.2015.35.4639 doi: 10.3934/dcds.2015.35.4639
|
| [4] |
H. F. Huo, R. Chen, X. Y. Chen, Modelling and stability of HIV/AIDS epidemic model with treatment, Appl. Math. Model., 40 (2016), 6550–6559. https://doi.org/10.1016/j.apm.2016.01.054 doi: 10.1016/j.apm.2016.01.054
|
| [5] |
C. J. Silva, D. F. M. Torres, A SICA compartmental model in epidemiology with application to HIV/AIDS in Cape Verde, Ecol. Complex., 30 (2017), 70–75. https://doi.org/10.1016/j.ecocom.2016.12.001 doi: 10.1016/j.ecocom.2016.12.001
|
| [6] |
P. A. Naik, M. Yavuz, J. Zu, The role of prostitution on HIV transmission with memory: a modeling approach, Alex. Eng. J., 59 (2020), 2513–2531. https://doi.org/10.1016/j.aej.2020.04.016 doi: 10.1016/j.aej.2020.04.016
|
| [7] |
Y. N. Zhao, D. Jiang, The threshold of a stochastic SIRS epidemic model with saturated incidence, Appl. Math. Lett., 34 (2014), 90–93. https://doi.org/10.1016/j.aml.2013.11.002 doi: 10.1016/j.aml.2013.11.002
|
| [8] |
G. Zhang, Z. Li, A. Din, T Chen, Dynamic analysis and optimal control of a stochastic COVID-19 model, Math. Computers Simul., 215 (2024), 498–517. https://doi.org/10.1016/j.matcom.2023.08.005 doi: 10.1016/j.matcom.2023.08.005
|
| [9] |
X. Mao, G. Marion, E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Proc. Appl., 97 (2002), 95–110. https://doi.org/10.1016/S0304-4149(01)00126-0 doi: 10.1016/S0304-4149(01)00126-0
|
| [10] |
J. Ðorđević, B. Jovanović, Dynamical analysis of a stochastic delayed epidemic model with Lévy jumps and regime switching, J. Franklin Inst., 360 (2023), 1252–1283. https://doi.org/10.1016/j.jfranklin.2022.12.009 doi: 10.1016/j.jfranklin.2022.12.009
|
| [11] |
C. Wang, R. P. Agarwal, Almost periodic solution for a new type of neutral impulsive stochastic Lasota–Wazewska timescale model, Appl. Math. Lett., 70 (2017), 58–65. https://doi.org/10.1016/j.aml.2017.03.009 doi: 10.1016/j.aml.2017.03.009
|
| [12] |
R. Sakthivel, R. Sakthivel, B. Kaviarasan, C. Wang, Y. K. Ma, Finite-time nonfragile synchronization of stochastic complex dynamical networks with semi-Markov switching outer coupling, Complexity, 2018 (2018), 8546304. https://doi.org/10.1155/2018/8546304 doi: 10.1155/2018/8546304
|
| [13] |
K. Fan, Y. Zhang, S. Gao, S. Chen, A delayed vaccinated epidemic model with nonlinear incidence rate and Lévy jumps, Phys. A, 544 (2020), 123379. https://doi.org/10.1016/j.physa.2019.123379 doi: 10.1016/j.physa.2019.123379
|
| [14] |
Q. Liu, Dynamics of a stochastic SICA epidemic model for HIV transmission with higher-order perturbation, Stoch. Anal. Appl., 40 (2022), 209–235. https://doi.org/10.1080/07362994.2021.1898979 doi: 10.1080/07362994.2021.1898979
|
| [15] |
F. Rao, J. Luo, Stochastic effects on an HIV/AIDS infection model with incomplete diagnosis, Chaos Soliton. Fract., 152 (2021), 111344. https://doi.org/10.1016/j.chaos.2021.111344 doi: 10.1016/j.chaos.2021.111344
|
| [16] |
X. Wang, C. Wang, K. Wang, Extinction and persistence of a stochastic SICA epidemic model with standard incidence rate for HIV transmission, Adv. Differ. Equ., 2021 (2021), 260. https://doi.org/10.1186/s13662-021-03392-y doi: 10.1186/s13662-021-03392-y
|
| [17] |
X. Zhai, W. Li, F. Wei, X. Mao, Dynamics of an HIV/AIDS transmission model with protection awareness and fluctuations, Chaos Soliton. Fract., 169 (2023), 113224. https://doi.org/10.1016/j.chaos.2023.113224 doi: 10.1016/j.chaos.2023.113224
|
| [18] |
X. Jiao, X. Zhang, D. Jiang, A stochastic model for transmission dynamics of AIDS with protection consciousness and log-normal Ornstein–Uhlenbeck process, Qual. Theory Dyn. Syst., 23 (2024), 293. https://doi.org/10.1007/s12346-024-01156-z doi: 10.1007/s12346-024-01156-z
|
| [19] |
K. D. Deane, J. O. Parkhurst, D. Johnston, Linking migration, mobility and HIV, Trop. Med. Int. Health, 15 (2010), 1458–1463. https://doi.org/10.1111/j.1365-3156.2010.02647.x doi: 10.1111/j.1365-3156.2010.02647.x
|
| [20] |
M. C. Gonzalez, C. A. Hidalgo, A. L. Barabasi, Understanding individual human mobility patterns, Nature, 453 (2008), 779–782. https://doi.org/10.1038/nature06958 doi: 10.1038/nature06958
|
| [21] |
Fatmawati, M. A. Khan, H. P. Odinsyah, Fractional model of HIV transmission with awareness effect, Chaos Soliton. Fract., 138 (2020), 109967. https://doi.org/10.1016/j.chaos.2020.109967 doi: 10.1016/j.chaos.2020.109967
|
| [22] |
O. Diekmann, J. A. P. Heesterbeek, M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7 (2010), 873–885. https://doi.org/10.1098/rsif.2009.0386 doi: 10.1098/rsif.2009.0386
|
| [23] |
J. Djordjevic, C. J. Silva, D. F. M. Torres, A stochastic SICA epidemic model for HIV transmission, Appl. Math. Lett., 84 (2018), 168–175. https://doi.org/10.1016/j.aml.2018.05.005 doi: 10.1016/j.aml.2018.05.005
|
| [24] | A. Friedman, Stochastic differential equations and applications, In: J. Cecconi, Stochastic differential equations, C.I.M.E. Summer Schools, Springer, 77 (1975), 75–148. https://doi.org/10.1007/978-3-642-11079-5_2 |
| [25] | R. Khasminskii, Stochastic stability of differential equations, Vol. 66, Springer, 2012. https://doi.org/10.1007/978-3-642-23280-0 |
| [26] |
S. P. Meyn, R. L. Tweedie, Stability of Markovian processes Ⅲ: Foster–Lyapunov criteria for continuous-time processes, Adv. Appl. Probab., 25 (1993), 518–548. https://doi.org/10.2307/1427522 doi: 10.2307/1427522
|
| [27] |
J. C. Mattingly, A. M. Stuart, D. J. Higham, Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise, Stoch. Proc. Appl., 101 (2002), 185–232. https://doi.org/10.1016/S0304-4149(02)00150-3 doi: 10.1016/S0304-4149(02)00150-3
|
| [28] | X. R. Mao, Stochastic differential equations and applications, Springer, 2007. |
| [29] |
A. Athreya, T. Kolba, J. Mattingly, Propagating Lyapunov functions to prove noise-induced stabilization, Electron. J. Probab., 17 (2012), 1–38. https://doi.org/10.1214/EJP.v17-2410 doi: 10.1214/EJP.v17-2410
|
| [30] |
D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302
|
| [31] |
Y. Tan, Y. Cai, X. Sun, K. Wang, R. Yao, W. Wang, et al., A stochastic SICA model for HIV/AIDS transmission, Chaos Soliton. Fract., 165 (2022), 112768. https://doi.org/10.1016/j.chaos.2022.112768 doi: 10.1016/j.chaos.2022.112768
|
| [32] |
D. V. Alexandrov, I. A. Bashkirtseva, L. B. Ryashko, The wonders of colored noise in a climate model, Chaos, 35 (2025), 063111. https://doi.org/10.1063/5.0275848 doi: 10.1063/5.0275848
|
| [33] |
A. Bertoune, M. El Fatini, M. El Khalifi, A. Laaribi, A stochastic Hepatitis B model with infinite Lévy jumps, Phys. A, 624 (2023), 128830. https://doi.org/10.1016/j.physa.2023.128830 doi: 10.1016/j.physa.2023.128830
|
| [34] |
Z. Moniri, A. Babaei, B. Parsa Moghaddami, Robust numerical framework for simulating 2D fractional time-space stochastic diffusion equation driven by spatio-temporal noise: L1-FFT hybrid approach, Commun. Nonlinear Sci. Numer. Simul., 146 (2025), 108791. https://doi.org/10.1016/j.cnsns.2025.108791 doi: 10.1016/j.cnsns.2025.108791
|
| [35] |
B. P. Moghaddam, M. A. Zaky, A. Sedaghat, A. Galhano, A stochastic framework for Saint-Venant torsion in spherical shells: Monte Carlo implementation of the Feynman–Kac approach, Symmetry, 17 (2025), 878. https://doi.org/10.3390/sym17060878 doi: 10.3390/sym17060878
|
| [36] |
B. P. Moghaddam, M. A. Zaky, A. M. Lopes, A. Galhano, A fractional time-space stochastic advection-diffusion equation for modeling atmospheric moisture transport at ocean-atmosphere interfaces, Fractal Fract., 9 (2025), 211. https://doi.org/10.3390/fractalfract9040211 doi: 10.3390/fractalfract9040211
|