Research article

Stochastic soliton dynamics in the perturbed Gerdjikov-Ivanov equation with multiplicative noise via the new Jacobi elliptic function expansion method

  • Published: 20 November 2025
  • MSC : 35C07, 35Q40, 35Q55, 60H15, 81Q15

  • This study investigated the perturbed Gerdjikov-Ivanov equation (PGIE) affected by multiplicative noise in the Itô sense. The equation examined the influence of stochastic perturbations on its solitonic structures through an analytical and computational method. We found precise soliton solutions and examined their stability through the new Jacobi elliptic function expansion method. Subsequent to the mathematical study, graphical representations were executed. The results enhance the comprehensive understanding of nonlinear stochastic wave equations and their applications in optical fiber communications and many physical systems. Subsequently, the three-dimensional and two-dimensional model demonstrate the presence of bright and dark solitons, Jacobi-elliptic solutions, and periodic solutions for various values of $ \sigma $.

    Citation: Nafissa T. Trouba, Huiying Xu, Reham M. A. Shohib, Mohamed E. M. Alngar, Mohammed El-Meligy, Xinzhong Zhu, Adham E. Ragab. Stochastic soliton dynamics in the perturbed Gerdjikov-Ivanov equation with multiplicative noise via the new Jacobi elliptic function expansion method[J]. AIMS Mathematics, 2025, 10(11): 26884-26904. doi: 10.3934/math.20251182

    Related Papers:

  • This study investigated the perturbed Gerdjikov-Ivanov equation (PGIE) affected by multiplicative noise in the Itô sense. The equation examined the influence of stochastic perturbations on its solitonic structures through an analytical and computational method. We found precise soliton solutions and examined their stability through the new Jacobi elliptic function expansion method. Subsequent to the mathematical study, graphical representations were executed. The results enhance the comprehensive understanding of nonlinear stochastic wave equations and their applications in optical fiber communications and many physical systems. Subsequently, the three-dimensional and two-dimensional model demonstrate the presence of bright and dark solitons, Jacobi-elliptic solutions, and periodic solutions for various values of $ \sigma $.



    加载中


    [1] M. A. E. Abdelrahman, W. W. Mohammed, M. Alesemi, S. Albosaily, The effect of multiplicative noise on the exact solutions of nonlinear Schrödinger equation, AIMS Math., 6 (2021), 2970–2980. https://doi.org/10.3934/math.2021180 doi: 10.3934/math.2021180
    [2] S. Albosaily, W. W. Mohammed, M. A. Aiyashi, M. A. E. Abdelrahman, Exact solutions of the (2+1)-dimensional stochastic chiral nonlinear Schrödinger equation, Symmetry, 12 (2020), 1–12. https://doi.org/10.3390/sym12111874 doi: 10.3390/sym12111874
    [3] S. Khan, Stochastic perturbation of sub-pico second envelope solitons for Triki-Biswas equation with multi-photon absorption and bandpass filters, Optik, 183 (2019), 174–178. https://doi.org/10.1016/j.ijleo.2019.02.065 doi: 10.1016/j.ijleo.2019.02.065
    [4] S. Khan, Stochastic perturbation of optical solitons having generalized anti-cubic nonlinearity with bandpass filters and multi-photon absorption, Optik, 200 (2020), 163405. https://doi.org/10.1016/j.ijleo.2019.163405 doi: 10.1016/j.ijleo.2019.163405
    [5] S. Khan, Stochastic perturbation of optical solitons with quadratic-cubic nonlinear refractive index, Optik, 212 (2020), 164706. https://doi.org/10.1016/j.ijleo.2020.164706 doi: 10.1016/j.ijleo.2020.164706
    [6] W. W. Mohammed, H. Ahmad, A. E. Hamza, E. S. Aly, M. El-Morshedy, E. M. Elabbasy, The exact solutions of the stochastic Ginzburg-Landau equation, Results Phys., 23 (2021), 103988. https://doi.org/10.1016/j.rinp.2021.103988 doi: 10.1016/j.rinp.2021.103988
    [7] W. W. Mohammed, H. Ahmad, H. Boulares, F. Kheli, M. El-Morshedy, Exact solutions of Hirota-Maccari system forced by multiplicative noise in the Itô sense, J. Low Freq. Noise Vibration Active Control, 41 (2022), 74–84. https://doi.org/10.1177/14613484211028100 doi: 10.1177/14613484211028100
    [8] N. T. Trouba, M. E. M. Alngar, H. A. Mahmoud, R. M. A. Shohib, Optical soliton solutions of the stochastic resonant nonlinear Schrödinger equation with spatio temporal and inter-modal dispersion under generalized Kudryashov's law non-linearity, Ain Shams Eng. J., 15 (2024), 103117. https://doi.org/10.1016/j.asej.2024.103117 doi: 10.1016/j.asej.2024.103117
    [9] W. W. Mohammed, N. Iqbal, A. Ali, M. El-Morshedy, Exact solutions of the stochastic new coupled Konno-Oono equation, Results Phys., 21 (2021), 103830. https://doi.org/10.1016/j.rinp.2021.103830 doi: 10.1016/j.rinp.2021.103830
    [10] W. W. Mohammed, M. El-Morshedy, The influence of multiplicative noise on the stochastic exact solutions of the Nizhnik-Novikov-Veselov system, Math. Comput. Simul., 190 (2021), 192–202. https://doi.org/10.1016/j.matcom.2021.05.022 doi: 10.1016/j.matcom.2021.05.022
    [11] N. A. Kudryashov, Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrödinger equation, Optik, 206 (2020), 164335. https://doi.org/10.1016/j.ijleo.2020.164335 doi: 10.1016/j.ijleo.2020.164335
    [12] N. A. Kudryashov, Solitary wave solutions of hierarchy with non-local nonlinearity, Appl. Math. Lett., 103 (2020), 106155. https://doi.org/10.1016/j.aml.2019.106155 doi: 10.1016/j.aml.2019.106155
    [13] N. A. Kudryashov, Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations, Appl. Math. Comput., 371 (2020), 124972. https://doi.org/10.1016/j.amc.2019.124972 doi: 10.1016/j.amc.2019.124972
    [14] N. A. Kudryashov, S. F. Lavrova, D. R. Nifontov, Bifurcations of phase portraits, exact solutions and conservation laws of the generalized Gerdjikov-Ivanov model, Mathematics, 11 (2023), 1–20. https://doi.org/10.3390/math11234760 doi: 10.3390/math11234760
    [15] N. A. Kudryashov, D. R. Nifontov, Conservation laws and Hamiltonians of the mathematical model with unrestricted dispersion and polynomial nonlinearity, Chaos Solitons Fract., 175 (2023), 114076. https://doi.org/10.1016/j.chaos.2023.114076 doi: 10.1016/j.chaos.2023.114076
    [16] Z. Abbas, Coupled Gerdjikov-Ivanov system and its exact solutions through Darboux transformation, Punjab Univ. J. Math., 54 (2025), 163–180.
    [17] M. S. Ahmed, A. H. Arnous, Y. Yildirim, Optical solitons of the generalized stochastic Gerdjikov-Ivanov equation in the presence of multiplicative white noise, Ukr. J. Phys. Opt., 25 (2024), S1111–S1130.
    [18] S. Arshed, Two reliable techniques for the soliton solutions of perturbed Gerdjikov-Ivanov equation, Optik, 164 (2018), 93–99. https://doi.org/10.1016/j.ijleo.2018.02.119 doi: 10.1016/j.ijleo.2018.02.119
    [19] J. B. Chen, Y. P. Zhen, The complex Hamiltonian system in the Gerdjikov-Ivanov equation and its applications, Anal. Math. Phys., 12 (2022), 100. https://doi.org/10.1007/s13324-022-00704-7 doi: 10.1007/s13324-022-00704-7
    [20] K. Hosseini, M. Mirzazadeh, M. Ilie, S. Radmehr, Dynamics of optical solitons in the perturbed Gerdjikov-Ivanov equation, Optik, 206 (2020), 164350. https://doi.org/10.1016/j.ijleo.2020.164350 doi: 10.1016/j.ijleo.2020.164350
    [21] Y. R. Hu, F. Zhang, X. P. Xin, H. Z. Liu, Darboux transformation and exact solutions of the variable-coefficient nonlocal Gerdjikov-Ivanov equation, Theoret. Math. Phys., 211 (2022), 460–472. https://doi.org/10.1134/S004057792204002X doi: 10.1134/S004057792204002X
    [22] L. Kaur, A. M. Wazwaz, Optical solitons for perturbed Gerdjikov-Ivanov equation, Optik, 174 (2018), 447–451. https://doi.org/10.1016/j.ijleo.2018.08.072 doi: 10.1016/j.ijleo.2018.08.072
    [23] S. A. Khuri, New optical solitons and traveling wave solutions for the Gerdjikov-Ivanov equation, Optik, 268 (2022), 169784. https://doi.org/10.1016/j.ijleo.2022.169784 doi: 10.1016/j.ijleo.2022.169784
    [24] C. Y. Liu, Z. Li, The dynamical behavior analysis of the fractional perturbed Gerdjikov-Ivanov equation, Results Phys., 59 (2024), 107537. https://doi.org/10.1016/j.rinp.2024.107537 doi: 10.1016/j.rinp.2024.107537
    [25] M. Ozisik, Optical soliton perturbation of the quintic Gerdjikov-Ivanov model, New Trends Math. Sci., 11 (2023), 7–22. https://doi.org/10.20852/ntmsci.2023.505 doi: 10.20852/ntmsci.2023.505
    [26] A. Biswas, D. Milovic, Bright and dark solitons of the generalized nonlinear Schrödinger's equation, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 1473–1484. https://doi.org/10.1016/j.cnsns.2009.06.017 doi: 10.1016/j.cnsns.2009.06.017
    [27] E. M. E. Zayed, R. M. A. Shohib, A. Biswas, Y. Yildirim, F. Mallawi, M. R. Belic, Chirped and chirp-free solitons in optical fiber Bragg gratings with dispersive reflectivity having parabolic law nonlinearity by Jacobi's elliptic function, Results Phys., 15 (2019), 102784. https://doi.org/10.1016/j.rinp.2019.102784 doi: 10.1016/j.rinp.2019.102784
    [28] M. Alosaimi, M. A. S. Al-Malki, K. A. Gepreel, Optical soliton solutions in optical metamaterials with full nonlinearity, J. Nonlinear Opt. Phys. Mater., 34 (2025), 2450021. https://doi.org/10.1142/S0218863524500218 doi: 10.1142/S0218863524500218
    [29] N. T. Trouba, H. Y. Xu, M. E. M. Alngar, R. M. A. Shohib, H. A. Mahmoud, X. Z. Zhu, Soliton solutions and stability analysis of the stochastic nonlinear reaction-diffusion equation with multiplicative white noise in soliton dynamics and optical physics, AIMS Math., 10 (2025), 1859–1881. https://doi.org/10.3934/math.2025086 doi: 10.3934/math.2025086
    [30] Z. T. Ju, Z. Z. Si, L. F. Ren, H. Y. Feng, X. Yan, J. H. Zhang, et al., Energy disturbance-induced collision between soliton molecules and switch dynamics in fiber lasers: periodic collision, oscillation, and annihilation, Opt. Lett., 50 (2025), 1321–1324. https://doi.org/10.1364/OL.549637 doi: 10.1364/OL.549637
    [31] Y. H. Jia, Z. Z. Si, Z. T. Ju, H. Y. Feng, J. H. Zhang, X. Yan, et al., Convolutional-recurrent neural network for the prediction of formation and switching dynamics for multicolor solitons, Sci. China Phys. Mech. Astron., 68 (2025), 284211. https://doi.org/10.1007/s11433-025-2679-8 doi: 10.1007/s11433-025-2679-8
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(199) PDF downloads(11) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog