Research article

Certain classifications on quadrics in simply isotropic space $ \mathbb{I}^{3} $

  • Published: 18 November 2025
  • MSC : 53A40, 53A35, 53B25

  • In this paper, we deal with the natural geometry of quadric surfaces in the isotropic space $ \mathbb{I}^{3} $. We provided defining equations for the $ 3^{rd}, 4^{th} $ type ruled surfaces and $ 1^{st}, 2^{nd} $ type of quadric surfaces. In this paper, we investigated the finite Chen-type of ruled and quadric surfaces in the 3-dimensional simply isotropic space $ \mathbb{I}^{3} $, corresponding to the third fundamental form of the surface.

    Citation: Hamza Alzaareer, Hassan Al-Zoubi, Farhan Abdel-Fattah. Certain classifications on quadrics in simply isotropic space $ \mathbb{I}^{3} $[J]. AIMS Mathematics, 2025, 10(11): 26662-26679. doi: 10.3934/math.20251172

    Related Papers:

  • In this paper, we deal with the natural geometry of quadric surfaces in the isotropic space $ \mathbb{I}^{3} $. We provided defining equations for the $ 3^{rd}, 4^{th} $ type ruled surfaces and $ 1^{st}, 2^{nd} $ type of quadric surfaces. In this paper, we investigated the finite Chen-type of ruled and quadric surfaces in the 3-dimensional simply isotropic space $ \mathbb{I}^{3} $, corresponding to the third fundamental form of the surface.



    加载中


    [1] B. Y. Chen, Total mean curvature and submanifolds of finite type, 2Eds., World Scientific Publisher, 2015.
    [2] H. Al-Zoubi, W. Al-Mashaleh, H. Qawaqneh, M. Al-kafaween, Helicoidal surfaces satisfying $\triangle^III \boldsymbol{r} = A\boldsymbol{r}$, International Conference on Information Technology (ICIT 2023), Amman.
    [3] B. Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17 (1991), 169–188.
    [4] B. Y. Chen, A report on submanifolds of finite type, Soochow J. Math., 22 (1996), 117–337.
    [5] A. Kelleci, Parabolic revolution surfaces of finite type in simply isotropic 3-spaces, Int. J. Geom. Methods M., 18 (2021), 2150034. https://doi.org/10.1142/S0219887821500341 doi: 10.1142/S0219887821500341
    [6] K. Strubecker, Differential geometrie des isotropen Raumes $III$, Flachentheorie, Math. Z., 48 (1942), 369–427. https://doi.org/10.1007/BF01180022 doi: 10.1007/BF01180022
    [7] D. Palman, Spharische Quartiken auf dem Torus im einfach isotropen Raum, Glas. Mat., 14 (1979), 345–357.
    [8] H. Sachs, Zur geometrie der hypersphären in n-dimensionalen einfach isotropen Raum, J. Reine Angew. Math., 298 (1978), 199–217. https://doi.org/10.1515/crll.1978.298.199 doi: 10.1515/crll.1978.298.199
    [9] H. Sachs, Ebene isotrope geometrie, Vieweg-Verlag, Braunschweig, Wiesbaden, 1990.
    [10] H. Sachs, Isotrope geometrie des Raumes, Vieweg, Braunschweig/Wiesbaden, 1990.
    [11] H. Al-Zoubi, M. Al-Sabbagh, S. Stamatakis, On surfaces of finite Chen $III$-type, Bull. Belgian Math. Soc., 26 (2019), 177–187. https://doi.org/10.36045/bbms/1561687560 doi: 10.36045/bbms/1561687560
    [12] H. Al-Zoubi, A. K. Akbay, T. Hamadneh, M. Al-Sabbagh, Classification of surfaces of coordinate finite type in the Lorentz–Minkowski 3-space, Axioms, 11 (2022), 1–17. https://doi.org/10.3390/axioms11070326 doi: 10.3390/axioms11070326
    [13] H. Al-Zoubi, F. Abdel-Fattah, M. Al-Sabbagh, Surfaces of finite $III$-type in the Euclidean 3-space, WSEAS Trans. Math., 20 (2021), 729–735. https://doi.org/10.37394/23206.2021.20.77 doi: 10.37394/23206.2021.20.77
    [14] A. O. Ogrenmis, Certain classes of ruled surfaces in 3-dimensional isotropic space, Palestine J. Math., 7 (2018), 87–91.
    [15] M. K. Karacan, D. W. Yoon, N. Yuksel, Classification of some special types ruled surfaces in simply isotropic 3-space, Anal. Univ. Vest Timisoara, Ser. Mat. Inform., LV (2017), 87–98.
    [16] B. Y. Chen, F. Dillen, L. Verstraelen, L. Vrancken, Ruled surfaces of finite type, Bull. Austral. Math. Soc., 42 (1990), 447–553. https://doi.org/10.1017/S0004972700028616 doi: 10.1017/S0004972700028616
    [17] B. Y. Chen, F. Dillen, Quadrics of finite type, J. Geom., 38 (1990), 16–22. https://doi.org/10.1007/BF01222891 doi: 10.1007/BF01222891
    [18] S. AlZu'bi, M. Elbes, A. Mughaid, Emotion unveiled: A deep learning odyssey in facial expression analysis for intelligent HCI, J. Int. Adv. Soft Comp. App., 16 (2024), 315–333. https://doi.org/10.15849/IJASCA.240730.19 doi: 10.15849/IJASCA.240730.19
    [19] H. Al-Mimi, N. A. Hamad, M. M. Abualhaj, M. S. Daoud, A. Al-dahoud, M. Rasmi, An enhanced intrusion detection system for protecting HTTP services from attacks, J. Int. Adv. Soft Comp. App., 15 (2023), 67–84. https://doi.org/10.15849/IJASCA.230720.05 doi: 10.15849/IJASCA.230720.05
    [20] M. Mhailan, M. Abu-Hammad, M. Al-Horani, R. Khalil, On fractional vector analysis, J. Math. Comput. Sci., 10 (2020), 2320–2326.
    [21] D. Abu-Jude, M. Abu-Hammad, Applications of conformable fractional Pareto probability distribution, J. Int. Adv. Soft Comp. App., 14 (2022), 115–124. https://doi.org/10.15849/IJASCA.220720.08 doi: 10.15849/IJASCA.220720.08
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(349) PDF downloads(24) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog