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1. Introduction

Immersions of finite type have been developed by B. Y. Chen in the 1970s. Fortunately, the
geometry of spaces equipped with a degraded metric has attracted increasing attention from pure and
applied mathematical perspectives. Many results in this area have been collected in [1].

Let S be a connected r-dimensional submanifold in the n-dimensional Euclidean space E™. Denote
by A’ the Laplace operator with respect to the fundamental form J = I,11,11I [2]. An isometric
immersion X : § — E™ is said to be of k-type if the position vector X of S can be written as a finite
sum of nonconstant eigenvectors of the Laplacian A”, that is

k
X=Xo+ Y X;, aX;=0X5j=1,...k (1.1)
=1
where X is a fixed vector and X, (j = 1,2, ..., k) are non-constant £™-valued functions on M" [3].
When S is of finite type k, then from (1.1), there exists a polynomial, 4(x) # 0, such that A(A”)(x) =
0. If h(x) = XM + XX + ...+ o1 X + ex, then coefficients y; are given by


https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20251172

26663

i = =G +oH+ o+ 4,
M2 = GO+ 4G+ .+ LG+ LG+ o+ OO+ o+ G180y
3 = —(GoG+ 000+ .+ GO0+ .+ G2 li-180)s

W = (Do e

Thus, position vector X satisfies the following relation (see [4])
AHX + (A X + o+ s’ X =0, J=1LI11LI111 (1.2)
2. Preliminaries

To commence, we would like to give a concise overview encompassing fundamental definitions,
essential facts, and relations in the theory of surfaces in I* (see [5]).
Space I’ corresponds to the classic real vector space R? with coordinates (X;, X,, X3) equipped with
the degenerate metric
< n,m>=nny + nymp,

where n = (n;,n,,n3) and m = (my,my, m3). Let n # 0. Then n is called isotropic if < n,n >= 0. In
addition, if n € I : n = (0, 0, n3), we use the calculation

< n,m>= nzms.

K. Strubecker [6], D. Palman [7], and H. Sachs [8—10] were the first to establish the concept of
differential geometry of isotropic spaces. A thorough bibliography of isotropic planes and isotropic
3-spaces is available to the reader in [9, 10]. An isotropic space, as defined by K. Strubecker, is a three-
dimensional Cartesian space (X, X, X3), whose square of the line element (arc element) is defined by
the quadratic differential form of rank two:

ds* = dX: +dX; 2.1)

where, as it is known, the arc element ds measures how much the length of the curve changes when
the independent parameter changes.

In this space, the lengths and angles on curves and surfaces can be directly derived from the normal
projection of these figures onto the X; X,-plane, known as the ground plan.

The affine transformations that leave the arc element square (2.1) invariant form a seven-parameter
group G7. Now, two points (X;, X5, X3) and (X, X;, X}) whose ground plans coincide, have, according
to (2.1), a vanishing distance. Likewise, two lines X3 = aX,,X; = 0 and X5 = bX;,X; = 0, whose
ground plans coincide, have, according to (2.1), a vanishing inclination angle. We call s = X} — X3 the
span between the points, and o = b — a the deviation (or separation) of the lines. Those affinities that
leave invariant not only the arc element square but also the span between two points (or the deviation
between two lines) form a six-parameter subgroup of G;, namely:
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X| = a+ X cos¢p — X,sing,
X, = b+ X;sing + X,cos¢,
Xé = C+dX1 +eX, + X3,

where ¢,a,b,c,d,e € R.
Given two vectors u = (uy, Uy, uz) and v = (vy, v, v3), the isotropic inner product is given by

< U,y >p=uivy + uvs.

The isotropic distance between two points QO = (X1, Y1,Z;) and Q, = (X3, Y», Z,) is defined by

d(Q1, @) = VX = X2)2 + (Y, = Y2)2.

If two points have the same top views, then they are said to be parallel. Therefore, the position
vectors of these points are said to be isotropic vectors (i.e., parallel to the z-axis). The isotropic inner
product between two isotropic vectors vanishes identically. In this case, we introduce the isotropic
co-distance co — d((a, b, X3), (a, b, Y3)) = | X3 — Y3|.

Two situations need to be distinguished when working with surfaces S in isotropic geometry. When
the metric in § induced by the isotropic scalar product has rank 2, we say that S is an admissible
surface. If S is parameterized by a C> map X(u',u?) = (X,(u', u?), Xo(u', u?), X3(u', u?)), then it is
admissible if and only if rank(C) # 0, where

o [x % x
X x|

Consequently, every admissible C? surface S can be locally parameterized as X(u',u?) =
(u', u?, g(u', u?)), and we say that S is in its regular form.
3. Quadric surfaces in I*

Let S be a non-degenerate quadric surface in the isotropic 3-space I’. Then § is either a ruled
surface or one of the types listed below [11]:

7} -AX*-BY*=C, (3.1)
where A,B,Ce€R, AB+#0, C>0,or
A
Z==X"+=Y% 32
5 > (3.2)
where A,BeR, A,B>0.
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Let v!',? be a local coordinate system of S. Let ey, be the matrix of the components of the non-
degenerate third fundamental form /1 of S. We denote by e the inverse matrix of ey,,. The second
differential parameter of Beltrami corresponding to the fundamental form 711 of S is defined by [12,13]

1
A p = ——(Nee™ p )i (3.3)

e

where p),, := %,and e = det(ey,,). For simplicity, we use the symbol A instead of A,

3.1. Ruled surfaces in I

Let S be ruled surface in I* given by the parametrization [14]
X(s,0) = a(s) + tB(s), (s,0)el xR — .

We refer to the base curve @ and the director curve 8. The former is a differentiable curve
parametrized by its arc length, meaning that < @', @’ >p= 1 and < 8, 8 >p= 1. The director curve  is
orthogonal to the tangent vector field 7, of the base curve @, i.e., < ', T, >p= 0. First, we consider
non isotropic plane curves @ and B parametrized by a(s) = (s, 0, f(s)) and B(s) = (0, 1, g(s)). Then the
surface S is parametrized by

X(s, 1) = (s,t, f(s5) + 1g(5)). (3.4)

The matrices of the coefficients of the first and second fundamental forms are, respectively [15]
1 0

0 g
(bi ) = [ ’ 17 ’” ] .
Tl g
We have G = Det (g,-‘,) = 1, and B = Det (b,-‘,) = —g’%. The Gaussian and the mean curvature are
respectively

and

Ks =—-g?, 2Hp=f"+tg". (3.5)
From (3.5), it can be verified that

Proposition 1. [15] In the simply isotropic 3-space I°, the ruled surfaces given by (3.4) are isotropic
flat or developable (K = 0), iff g(s) = c for constant c.

From (3.5), Hp = 0if f” +tg” = 0, which is a linear equation regarding parameter ¢. Since it valids
for all 7z, we must have f” = 0, and g = 0. By integrating these two equations, we have f = as + b
and g = ¢s + d. Thus, we have the following:

Proposition 2. The ruled surfaces given by (3.4) in the simply isotropic 3-space I? are isotropic
minimals (Hp = 0), iff g(s) and f(s) are polynomials in s of degree at most 1.
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Let @ = (0,0, f(s)) be an isotropic curve, and B parametrized by B = (cos s, sin s, g(s)) be a non
isotropic space curve, where < 8, 8 >p= 1. Then a parametrization of S is given by

X(s,t) = (tcos s, tsin s, f(s) + 1g(s)). (3.6)

The coefficients of the first and second fundamental forms are

20
(gij):[to 1],

B _f,,_tg’/_tg gl
(blj) - [ g/ O .

and

The Gaussian and the mean curvature are respectively.

2

8

[ 41" +ig
2 o2

KI[3 = — tz

2Hy = — (3.7)

From (3.7) we have

Proposition 3. [15] The ruled surfaces defined by (3.6) in the simply isotropic 3-space I* are isotropic
flat or developable (K;: = 0), iff g(s) = c for constant c.

Let the ruled surface given by (3.6) be isotropic minimal. Then from (3.7), we must have

f"+ug" +g) =0.

Since the above equation holds for all values of #, we must have f”” = 0, and g” + g = 0. Solving
these two differential equations, we finally have

Proposition 4. The Ruled surfaces defined by (3.6) in the three dimensional simply isotropic space I
are isotropic minimals (Hp = 0), iff g(s) = cicoss + casins and f(s) is a polynomial in s of degree at
most 1.

Let f and g be smooth functions of a single variable. We refer to the surfaces given by (3.4) and (3.6)
as ruled surfaces of Type 3 and Type 4 in the simply isotropic 3-space I°, respectively.

3.2. Ruled surfaces in I° of Type 3

Recalling the parametrization (3.4) of ruled surfaces, then on account of (3.5), the matrix of the
coeflicients of the third fundamental form is

72

_ g g(f" +1g"”)
(ei)) = [ g +1g") g+ (f"+1g") ] (3-8)

Therefore, from (3.3) and (3.8), we get [12]

as? g dsot  or?

’

17 ’” 2 11 ’” 2 2
. i[—(1+(f +1g )2)8 +(f +1g” 0 0
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’

f// + tg/l 2) a g f/l + l.gl/
—(1+(——)") = — 39
( + ) 30s+g 0s+( g )Sﬁt (39)

We classify the non-developable ruled surfaces of Type 3, that is, g’(s) # 0. Applying (3.9) for the
components of (3.4), we obtain

1 144 t” 1
s = [ (H(u))ﬁ_
g” g

s g’
"4 to”
INE= — (f—/g)é],
8 8
1 //+l. //)3 // 7/ +t ’”
A(F(s) +18(5) = —,2[ UZH IS opr 4 gy 80y L 087
8 g 8
" 4 to” y 1
+g(f ,g )S+f‘€ +tg" + f+1tg|.
8 8

We write the last three equations as polynomials of 7 with coefficients, functions of s, as follows

As = Agi(s) + Ay ()t + Ay (s)F,
At = Byi(s) + Byi(s)t,

A(f(s) + tg(s5)) = Coi(s) + Cri(8)t + Co ()2 + C31(s)F.

Lemma 1. Let Q be a polynomial in t with functions in s as coefficients and deg(Q) = n. Then AQ = O,
where Q is a polynomial in t with functions in s as coefficients and deg(Q) < n + 2.

Remark 1. The proof of Lemma 1 can be obtained from the coefficient function of the first term and
the fourth term of the relation (3.9), which includes the variable t to the power 2.

From the above lemma, one can obtain that

A5 = Aga(s) + Ap(s)t + An()E + Ap(s)f + Ap(s)t',

A%t = Boy(s) + Bia(s)t + Byy(s)t* + B(s)F,

A(f(s) +tg(s)) = Coa(s) + Cra(5)t + Con(s)t* + Cap($)E) + Caa(8)t* + Csp(5)P.

In general, we have
A's = Age(8) + At + ...+ Apar()IF,

N Bo(s) + Bi(s)t +... + BkH,k(S)l'kH,
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A(f(5) +18(5)) = Coul(s) + Cra(9)t + ... + Craas()/.

We suppose that S is of finite ///-type k. Then from (2.1), there exist real numbers yy, . . ., t, such
that

AYX + i A X + L+ n X = 0. (3.10)

Applying the above equation to each component of X, we get

A s At s + L+ As = 0, (3.11)
A AR+ 4 eat = 0. (3.12)
AN 1) + i a (F + 1) + ... + wA(f +tg) = 0. (3.13)

By applying Lemma 1, we conclude that there is a polynomial P;; in the variable ¢ with some
functions in s as coefficients, such that

ARs = Py, deg(Py) < 2k.

Similarly, for the second and third components of x, there are polynomials Py, Ps; in the variable ¢
with some functions in s as coefficients, such that

At = Py, deg(Py) <2k — 1.

AN(f +1g) = Py, deg(Py) < 2k + 1.

Now, if k goes up by one, the degree of the components Py, Py, and P3; goes up at most by 2.
Hence, the sums (3.11)—(3.13) can never be zeros, unless, of course, we have [16]

l 144 ’” ’”
Ao _/2[_(1+(f +/tg )2) +g_/] =0, (3.14)
g s 8
1 144 t 74
at=— (f#)s] -0, (3.15)
g g
1 ( ”+t N)3 , , Il+l, r” N+t 74
A(f(s) +1g(s)) = —,2[—f—,2g—2(f +1g )(f - )(f =),
g g g g
+g(f +’tg ).+ f% r1g’+ f +1g| =0. (3.16)
g

From (3.15), we find that (f%)s = 0, so relation (3.14) becomes g—,l; = 0, from which we obtain
that g”” = 0. Hence, Eq (3.16) reduces to
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U S

=0,
g/4 g/2

or
f/ 7”2 f//3 + tg/3 — 0
This equation holds true for all values of # when g’ = 0, a case which is excluded. Thus, we have
the following theorem:

Theorem 1. Non-developable ruled surfaces of type 3 in the simply isotropic space I’ are of infinite
I11-type.
3.3. Ruled surfaces inT* of Type 4

In this section, we classify the non-developable ruled surface of Type 4 in I? given by (3.6). The
Laplacian is

[ ® et B0
T g?|os? g 0sot  g'tds

17 +t 77 +¢ 712 72 + 2 a
+((M)‘ +t— f_ + g g l)—
v S g/2t g12 ot

s gt g P
+(t + g’2 @ . (317)
Applying (3.17) for the components of (3.6), we obtain
1 4 " :
Atcoss = —,3((f +2(g" + g)t)) sin s
112 1 1 ” 2
((f +g"t+ gt — f—, - f—, - ¥t+ g—,t)coss,
8't 8 8 8
. 1 4 7
Atsins = —7((f +2(g" + g)t)) coS §
g
112 10 11 ” 2
((f + 8"t + gt) — f—, - f— - ¥t+ g—,t)sins,
g 8't 8 8 8
1 ! L1 144
A(f(s) +1g(s) = (3f” +3tg” + 3tg - I -2f" - r”
g g't t
f// + g//t +gt "2 g2 f//2
re( ), st G- ).
g 8t
We rewrite the above three equations as follows
1
A(tcos s) = Aq1(s) +A12(S)f+A13(S);, (3.18)
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1
A(tsin s) = Byi(s) + Bpa(s)t + B13(S);,

1
A(f(s) + 18(s)) = Cri(s) + Cra(s)t + C13(S);-
From relation (3.17), it can be obtained the following:

Lemma 2. For any non-negative integer number n, and some functions Dy(s), D12(s), and E,(s) of
the variable s, we have

1
AD1 () + Dia(s)t) = Dai () + Do(8)t + Dos(s) (3.19)
and 1 1 1 1
A(Ell(S)t—n) = Ezl(S)tq + Ezz(S)th + Eza(S)tnj, (3.20)

where D;j, E;; are functions of the variable s.

Applying (3.17) for the components of (3.18), and on account of Lemma 2, we obtain

1 1 1
AXtcoss) = A(s)+ Axn(s)t + A23(S); + A24(S)t—2 + AQS(S)I_3-
Similarly, we get
9, . 1 1 1
A*(tsins) = By(s) + Bxn(s)t + 323(S); + Bz4(S)t—2 + st(S)t—3,
and
1
A (f(s) +1g(s)) = Ca(s)+ Co(s)t + C23(S);
1 1
+ C24(S)t_2 + Czs(S)t—3-

Applying the mathematical induction (see [11]), one can prove the following:

Lemma 3. For any natural number k, the following relations hold true

1 1
AMtcoss) = Au(s) + Ap(s)t + Ak3(s)? + Ak4(s)t—2

1
+ ...+ A;(,Zk_l(s)ﬂk—_1 (3.21)

1 1
Af@sins) = Biu(s) + Bu(s)t + Bk3(s); + 19,(4(s)t—2

1
+ ...+ Bk’Zk_l(s)tZk_—l (3.22)

1
A(f(s) +18(5)) = Cla(s) + Cuals)t + Cis(5)~

1 1
+ Ck4(S)t_2 + ...+ Ck’Zk_l(s)tZk_—l' (3.23)
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Assume that S is of finite ///-type k. Applying (3.10) to the coordinate functions X;, X,, and X3 of
the position vector (3.6) of the quadric S, we obtain

A" tcos s + piaktcos s + ...+ pAtcos s = 0,

A sins + uAfesins + ...+ weatsins = 0.

AN+t + s (f+ 1)+ wa(f +1g) =

Taking into account Lemmas 2 and 3, we conclude

2k+1

A9+ A9+ ) Apsrianls) + (A + Ao
k=1

1 1 1
+ Z Apr1k+2(8)— ) .+ ,Uk—l(Azl(S) + Ay ()t + A23(S); + 1424(S)t—2 + Azs(S)tg)

1
+ (A (s) + Ap(s)r + A13(S);) =0. (3.24)
2k+1
Bii1,1(8) + By 2(8)f + Z By k+2(S) + ,Ul(Bkl(S) + B (s)t
Py

1 1 1
+ Z Bussag )+ oo+ i Ba(5) + Boa(s) + Ba(s) + Bas(s) 5 + Bas() )

1
+ a(Bi(s) + B + Bia(9)) = 0. (3.25)
2k+1
Coor (9 + Conal) + Y. Crarsaas) + () + ol
k=1
2k—1

1 1 1
+ Z Crs1js2(8) = ) .+ #k—l(czl(s) + Cy(s)t + Czs(S); + C24(S)t_2 + Czs(S)tg)

1
+ (Cru(s) + Cra(8) + Ci3(9)7) = 0. (3.26)

Now, if k£ goes up by one, the degree of the variable ¢ in the denominator of Eqs (3.21)—(3.23) goes
up at most by 2. Hence, the sums (3.24)—(3.26) can never be zeros, unless, we have

1
AFCOS § = —,3((f” +2(g" + g)t)) sin s
112 1 11 ” 2
((f vy t+gt)v—f—,—f—,—¥t+g—,t)coss:0, (3.27)
gt 8 8 8
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1
Atsins = ——,3((f” +2(g" + g)t)) cos s

) 101 7 2
(f +g f+gl)c—f—,—f—,—g—fgt+g—,t)sins:(), (3.28)
a g't g g g
1 r L1 ’,
ACF(s) + tg(s)) = (3f" +3tg” + 3tg — fft —2f" - fT
g
"4 ot + of 72 2 12
(f SIHS o8 ol g_"f,zt)):()' (3.29)
g 8

From (3.27) and (3.28), cos s and sin s are linearly independent functions. Therefore, we have
f"+2(g" + 9t =0, (3.30)

and ) )
(gt L L8 88,8 (3.31)
g't 8 8 8
From (3.30), we must have f”” = 0 and g” + g = 0. Thus, relations (3.29) and (3.31) on account of
2
the above two equations reduce to zgi,t = 0, from which we must have g(s) = 0, a case that has been

excluded since /71 is non-degenerate.

3.4. Quadrics of type (3.1)
A parametrization of this kind is given by [17]

X(s,1) = (s, t, VAs?+ B+ C). (3.32)

For simplicity, we put
As+Br+C: = .

Denote by (g;;) and (b;;) the components of the first and second fundamental forms. Then we find

1 O
(gij):[o 1],

and for components (b;;), we have

ABC+O)  _ABs
3 3
L) = w?2 2
(blj) - __ABst B(A?+C)
- -

The relative curvature K3 and isotropic mean curvature Hys are defined by

Del(b[j) _ ABC
Det(g;;) @

B =

2
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guibyn —2812biy + gnbyy  B(As* + C) + A(Br® + C)

Hys = -
. 2det(g;)) -

[SI[3%)

The third fundamental form /11 is given by
A? , .AB B? 5
111 = —3F3(s, Hds® — 2—3F2(s, Hdsdt + —3F1(s, Hdt”,
(o} @ (o}

where

Fi(s,f) = A’ s> + (A s* + C),
Fa(s, 1) = st[C(A +B)+AB(s* + £ + w)] ,
Fi(s,t) = B> s> + (B> + C)%.

Then the Laplacian A of S is given by

L a [, & # P
b= ‘m”m”“ﬂﬁ*“aﬂ
w 8F] an 0 6F3 (9F2 0
- B\B A +AlA—+B
AR ( ds 8t)8s ( ot as)(')t]
| _
+m>ABz(SF1+lF2)%+A2B(SF2+tF3)E].

We write (3.33) as follows:

p &
Al = ——[s—s+4 ]+f1(s,z)@
2

2 +4a]+f2(s,t)a—

+ f3(s, t) +f4(s t) +f5(s t)

where

A+B 4, B ,, 34 3,
f](S,l‘) = —TSI —Est —ES —ZS
_2B+A 22 B, C

Ac P T a2t Tar

A+B ,, A ,, 3, 3,
fls, ) = _TSI—ESI—EZ‘—B
2A+B22 A 2 C

t )
bC B? B?

(3.33)

(3.34)

(3.35)

(3.36)
(3.37)
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A+2B B +2A
(A+2B), B, (B+24),

) = —2st| —s*+

f3(s,1) s c2 BC T AC
A+ B A+ B
C? AB

(A+8B) , (A+4B) 4(A+B) ., 4B , (5A+4B)

) = - - -~ - —stt - st
Ji(,0 BC '~ A ¢ T ac "’
(8A+B) ;, (4A+B) 4A, 4A+B) ,; (@AA+5B),
) = - —~ t— —s't— ——5 — ————5"t.
f5(s,1) AC AB c2® cz BC
Here, the functions f;,i = 1,...,5, are polynomials in s and ¢ with deg(f;) < 6. We consider a

function g(s) € C*(U). By means of (3.34), we find
As® [ O’g (9
Ag = _F(Sa > )+f1(s H—= +f4(s t) (3.38)

Substituting ¢ = 0, then the functions f; and f; are polynomials of the single parameter s of degree
< 4. Now we need the following:
Lemma 4. The relation

ks4k+1
(A) s= (- 1) (4k (1_[ 4i-13) l)( o )+ Py (s, 1),

is valid, where deg(P(s,0)) < 4k.

Proof. Use the induction method on k. From (3.38), and putting g = s, then the formula follows
immediately for k = 1 since the component function f;(s,0) in relation (3.35) with respect to the
variable s is of degree 4. Suppose the Lemma is true for k — 1. Then

k=1 g k=1, gk— 1 ARlgth3
(A s= (=) 4 ﬂ(4z 3)i (—)+P4k_4(s, f).

On account of (3.38), we obtain

ASS k—1
afs = a(@)! s):—ﬁ(—4)k‘l[l_l(4i—3)i]

i=1
Ak 0? 0 [ u
(Czk—z)(sasz( - 3) + _( " 3))
Ak 1
+ (- 4)k(]_[ (4i - 3)’)(C2k 2) (s, t) s43)
1

k-1 k-1
+(—4)k( (4i—3)i)(A )f4(s t)— #3)

C2k 2
i=1

4;
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A 0?
__s( 5 (Pag- 4)+4— (Pak- 4))

Py
+/1(s, f)— (Pag—s) + fa(s, l‘)— (Psp-s)

k Ak+1

A
= (-4) (1_[(41 3)1)( CSQk )+P4k(s,t)’

where

As’

0? 0
Py(s,n) = - 7 ( 75 (Pa-a) + 4— (P 4))

k-1

+ (-4 ﬂ(4i—3)i (A—) fis. 0 (54)
] Cc2n=2 [/ 50
1 ) A 9/

+ (_4)k (1;[ (4l - 3) l) (m)ﬁ;(é‘, l‘)a (S4k 3)

0? 0
+fi(s, f)@ (Pak-4) + fa(s, I)a (Paj-s) - (3.39)

For t = 0, the degree of Py._4(s,0) is less than or equal 4k — 4 and the functions f,(s,0) and f4(s, 0)
are of degree less than or equal 4. Therefore, from (3.39), we find that Py (s, 0) is of degree less than
or equal 4k. O

Applying (3.34) for a function A(t) € C*, we obtain

Al — B ( 62h

ah h
Cc? 81‘2 ) + fa(s, t) + f5(s, )

Taking s = 0, then the polynomials f3(0,7) and f5(0,7) are of degree < 4. Following the same
procedure as in Lemma 4, we demonstrate the following:

Lemma 5. The equation

k B t4k+l
(a)t= (—4)k(ﬂ (4i-3) z]( oo )+ Qui(s, 1)
i=1

holds true, where deg(Qu(0, 1)) < 4k.
Assume that S is of finite ///-type k. Then, for a constant numbers cy, ..., ¢x, we must have
A X+ a" X+ X =0. (3.40)

Applying (3.40) to the coordinate functions X; = s and X, = ¢ of the position vector (3.32) of S, we
get

A sreinfs+ -+ s =0, (3.41)
A e nft+ o+ et =0. (3.42)
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On account of relation (3.41) and Lemma 4, it follows that there exists a polynomial Py.4(s,t) of
degree at most 4k + 4, satisfying

k+1

' ) Ak+ls4k+5

(_4)k+1 (1—[ (41 - 3) ZJ (W) + P4k+4(S, l) =0. (343)
i=1

Similarly, from relation (3.42) and Lemma 5, we obtain a polynomial Q4.4(s, f) of degree at most
4k + 4, satisfying

k+1 Brt14k+5
(_4)k+1 [n 4i-3) l] (W) + Qurals, l) =0. (344)
i=1

Putting + = 0 in (3.43), and s = 0 in (3.44), then relations (3.43) and (3.44) are nontrivial
polynomials in s and #, respectively, with constant coefficients. Since these two equations must hold
true for all values of s and ¢, then we must have A = B = 0, which is a contradiction. Thus, we have
the following;

Theorem 2. Quadric surfaces of the first kind (3.1) in the simply isotropic space I* are of infinite
I11-type.

3.5. Quadrics of type (3.2)

A parametrization of this type is given by

A. B
X(s.1) = (s, L5+ Etz)' (3.45)

The matrix of the metric I of S is

1 0
(gij):[o 1],

and of the second fundamental form /7 of S is given as follows:

A O
The relative curvature Kp and isotropic mean curvature Hyp are defined by
Kp = AB, H]IS = A + B

One can prove the following:
Corollary 1. The surface S is isotropic minimal if and only if A = -B.
The metric 111 of S is

111 = A%ds*> + B*dr*.
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Hence, the Laplacian A of S becomes

1 & 1 o2
A= ae T Bk (340

For the position vector X(s, ), it is well known that

AX(s, 1) = (X, AXy, AX3).

Applying the operator A to the component functions of X(s, #), we find

AX) = As =0,
AX, = At=0,
1 1
AXy=——— —.
A B

We distinguish the following two cases:

Casel. A = —B. From the last equation, we get AX3 = 0. Thus, we find that AX(s, ¢) = 0, that is, S
is of O-type 1.

Casell. A # B. Then, (A’")>X3 = 0, so the position vector X(s,?) can be written as a sum of two
nonconstant vectors as follows:

X(Sa t) = XI(S, t) + XZ(S’ t)
where

A B
Xi(s,0) = (5,1,0),  Xs(s,1) = (0,0, Esz + Etz),

and

AXq(s,1) = {14,
AXo(s,0) = $H X,
where {; = 0, and {; # 0. When ¢, = 0, case 1l reduces to case 1. Thus, we provide this case.

Theorem 3. All quadric surfaces of the second kind (3.2) in the simply isotropic space I° are of finite
0-type 2.

In the special case where S is isotropic minimal, we have the following:

Corollary 2. Hyperbolic paraboloid of the form z = A(X?* — Y?) is of O-type 1, with corresponding
eigenvalue { = 0.

4. Conclusions
The classification of ruled surfaces of the 3"¢, 4" type and quadric surfaces of first kind and second
kind in the simply isotropic 3-space I° within the limitations of finite Chen type concerning the third

fundamental form was investigated. It was proved that among these classes, only quadric surfaces

AIMS Mathematics Volume 10, Issue 11, 26662-26679.



26678

of the second kind in the simply isotropic space I° are of finite O-type 2. In a special case, when
the surface is isotropically minimal, then it is a hyperbolic paraboloid of O-type 1. Thus, the finite
type classification concerning the third fundamental form not only provides a meaningful extension of
Chen’s theory into the realm of isotropic geometry but also serves as an effective tool for identifying
and characterizing geometrically distinguished surfaces in I° [18, 19].

In the future, researchers may extend these results to higher-dimensional isotropic spaces or explore
analogous classifications regarding the first and second fundamental forms. Additionally, one can use
the definition of the fractional vector operators so that new forms of first and second Beltrami operators
can be found and applied to any class of surfaces [20,21].
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