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1. Introduction

Immersions of finite type have been developed by B. Y. Chen in the 1970s. Fortunately, the
geometry of spaces equipped with a degraded metric has attracted increasing attention from pure and
applied mathematical perspectives. Many results in this area have been collected in [1].

Let S be a connected r-dimensional submanifold in the n-dimensional Euclidean space Em. Denote
by 4J the Laplace operator with respect to the fundamental form J = I, II, III [2]. An isometric
immersion X : S → Em is said to be of k-type if the position vector X of S can be written as a finite
sum of nonconstant eigenvectors of the Laplacian 4J, that is

X = X0 +

k∑
j=1

X j, 4J X j = ζi X j, j = 1, . . . , k, (1.1)

where X0 is a fixed vector and X j, ( j = 1, 2, ..., k) are non-constant Em-valued functions on Mr [3].
When S is of finite type k, then from (1.1), there exists a polynomial, h(x) , 0, such that h(∆J)(x) =

0. If h(x) = xk+1 + µ1xk + ... + µk−1x2 + µkx, then coefficients µi are given by
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µ1 = −(ζ1 + ζ2 + ... + ζk),
µ2 = (ζ1ζ2 + ζ1ζ3 + ... + ζ1ζk + ζ2ζ3 + ... + ζ2ζk + ... + ζk−1ζk),
µ3 = −(ζ1ζ2ζ3 + ζ1ζ2ζ4 + ... + ζ1ζ2ζk + ... + ζk−2ζk−1ζk),
...

µk = (−1)kζ1ζ2...ζk.

Thus, position vector X satisfies the following relation (see [4])

(4J)k+1X + µ1(4J)kX + ... + µk4
J X = 0, J = I, II, III. (1.2)

2. Preliminaries

To commence, we would like to give a concise overview encompassing fundamental definitions,
essential facts, and relations in the theory of surfaces in I3 (see [5]).

Space I3 corresponds to the classic real vector space R3 with coordinates (X1, X2, X3) equipped with
the degenerate metric

< n,m >= n1m1 + n2m2,

where n = (n1, n2, n3) and m = (m1,m2,m3). Let n , 0. Then n is called isotropic if < n, n >= 0. In
addition, if n ∈ I3 : n = (0, 0, n3), we use the calculation

< n,m >= n3m3.

K. Strubecker [6], D. Palman [7], and H. Sachs [8–10] were the first to establish the concept of
differential geometry of isotropic spaces. A thorough bibliography of isotropic planes and isotropic
3-spaces is available to the reader in [9,10]. An isotropic space, as defined by K. Strubecker, is a three-
dimensional Cartesian space (X1, X2, X3), whose square of the line element (arc element) is defined by
the quadratic differential form of rank two:

ds2 = dX2
1 + dX2

2 (2.1)

where, as it is known, the arc element ds measures how much the length of the curve changes when
the independent parameter changes.

In this space, the lengths and angles on curves and surfaces can be directly derived from the normal
projection of these figures onto the X1X2-plane, known as the ground plan.

The affine transformations that leave the arc element square (2.1) invariant form a seven-parameter
group G7. Now, two points (X1, X2, X3) and (X1, X2, X′3) whose ground plans coincide, have, according
to (2.1), a vanishing distance. Likewise, two lines X3 = aX2, X1 = 0 and X3 = bX2, X1 = 0, whose
ground plans coincide, have, according to (2.1), a vanishing inclination angle. We call s = X′3 − X3 the
span between the points, and σ = b − a the deviation (or separation) of the lines. Those affinities that
leave invariant not only the arc element square but also the span between two points (or the deviation
between two lines) form a six-parameter subgroup of G7, namely:
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X′1 = a + X1cosφ − X2sinφ,

X′2 = b + X1sinφ + X2cosφ,

X′3 = c + dX1 + eX2 + X3,

where φ, a, b, c, d, e ∈ R.
Given two vectors u = (u1, u2, u3) and v = (v1, v2, v3), the isotropic inner product is given by

< u, v >I3= u1v1 + u2v2.

The isotropic distance between two points Q1 = (X1,Y1,Z1) and Q2 = (X2,Y2,Z2) is defined by

d(Q1,Q2) =
√

(X1 − X2)2 + (Y1 − Y2)2.

If two points have the same top views, then they are said to be parallel. Therefore, the position
vectors of these points are said to be isotropic vectors (i.e., parallel to the z-axis). The isotropic inner
product between two isotropic vectors vanishes identically. In this case, we introduce the isotropic
co-distance co − d((a, b, X3), (a, b,Y3)) = |X3 − Y3|.

Two situations need to be distinguished when working with surfaces S in isotropic geometry. When
the metric in S induced by the isotropic scalar product has rank 2, we say that S is an admissible
surface. If S is parameterized by a C2 map X(u1, u2) = (X1(u1, u2), X2(u1, u2), X3(u1, u2)), then it is
admissible if and only if rank(C) , 0, where

C =

[
X1

1 X2
1 X3

1
X1

2 X2
2 X3

2

]
,

and Xk
i = ∂Xi

∂uk .
Consequently, every admissible C2 surface S can be locally parameterized as X(u1, u2) =

(u1, u2, g(u1, u2)), and we say that S is in its regular form.

3. Quadric surfaces in I3

Let S be a non-degenerate quadric surface in the isotropic 3-space I3. Then S is either a ruled
surface or one of the types listed below [11]:

Z2 − A X2 − B Y2 = C, (3.1)

where A, B,C ∈ R, A B , 0, C > 0, or

Z =
A
2

X2 +
B
2

Y2, (3.2)

where A, B ∈ R, A, B > 0.
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Let v1, v2 be a local coordinate system of S . Let ekm be the matrix of the components of the non-
degenerate third fundamental form III of S . We denote by ekm the inverse matrix of ekm. The second
differential parameter of Beltrami corresponding to the fundamental form III of S is defined by [12,13]

4III p := −
1
√

e
(
√

eekm p/m)/k, (3.3)

where p/m := ∂p
∂vm ,and e = det(ekm). For simplicity, we use the symbol 4 instead of 4III .

3.1. Ruled surfaces in I3

Let S be ruled surface in I3 given by the parametrization [14]

X(s, t) = α(s) + tβ(s), (s, t)εI × R −→ I3.

We refer to the base curve α and the director curve β. The former is a differentiable curve
parametrized by its arc length, meaning that < α′,α′ >I3= 1 and < β,β >I3= 1. The director curve β is
orthogonal to the tangent vector field Tα of the base curve α, i.e., < β′,Tα >I3= 0. First, we consider
non isotropic plane curves α and β parametrized by α(s) = (s, 0, f (s)) and β(s) = (0, 1, g(s)). Then the
surface S is parametrized by

X(s, t) = (s, t, f (s) + tg(s)). (3.4)

The matrices of the coefficients of the first and second fundamental forms are, respectively [15]

(gi j) =

[
1 0
0 1

]
,

and

(bi j) =

[
0 g′

g′ f ′′ + tg′′

]
.

We have G = Det
(
gi j

)
= 1, and B = Det

(
bi j

)
= −g′2. The Gaussian and the mean curvature are

respectively

KI3 = −g′2, 2HI3 = f ′′ + tg′′. (3.5)

From (3.5), it can be verified that

Proposition 1. [15] In the simply isotropic 3-space I3, the ruled surfaces given by (3.4) are isotropic
flat or developable (KI3 = 0), iff g(s) = c for constant c.

From (3.5), HI3 = 0 if f ′′ + tg′′ = 0, which is a linear equation regarding parameter t. Since it valids
for all t, we must have f ′′ = 0, and g′′ = 0. By integrating these two equations, we have f = as + b
and g = cs + d. Thus, we have the following:

Proposition 2. The ruled surfaces given by (3.4) in the simply isotropic 3-space I3 are isotropic
minimals (HI3 = 0), iff g(s) and f (s) are polynomials in s of degree at most 1.
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Let α = (0, 0, f (s)) be an isotropic curve, and β parametrized by β = (cos s, sin s, g(s)) be a non
isotropic space curve, where < β,β >I3= 1. Then a parametrization of S is given by

X(s, t) = (t cos s, t sin s, f (s) + tg(s)). (3.6)

The coefficients of the first and second fundamental forms are

(gi j) =

[
t2 0
0 1

]
,

and

(bi j) =

[
− f ′′ − tg′′ − tg g′

g′ 0

]
.

The Gaussian and the mean curvature are respectively.

KI3 = −
g′2

t2 , 2HI3 = −
f ′′ + tg′′ + tg

t2 . (3.7)

From (3.7) we have

Proposition 3. [15] The ruled surfaces defined by (3.6) in the simply isotropic 3-space I3 are isotropic
flat or developable (KI3 = 0), iff g(s) = c for constant c.

Let the ruled surface given by (3.6) be isotropic minimal. Then from (3.7), we must have

f ′′ + t(g′′ + g) = 0.

Since the above equation holds for all values of t, we must have f ′′ = 0, and g′′ + g = 0. Solving
these two differential equations, we finally have

Proposition 4. The Ruled surfaces defined by (3.6) in the three dimensional simply isotropic space I3

are isotropic minimals (HI3 = 0), iff g(s) = c1coss + c2sins and f (s) is a polynomial in s of degree at
most 1.

Let f and g be smooth functions of a single variable. We refer to the surfaces given by (3.4) and (3.6)
as ruled surfaces of Type 3 and Type 4 in the simply isotropic 3-space I3, respectively.

3.2. Ruled surfaces in I3 of Type 3

Recalling the parametrization (3.4) of ruled surfaces, then on account of (3.5), the matrix of the
coefficients of the third fundamental form is

(ei j) =

[
g′2 g′( f ′′ + tg′′)

g′( f ′′ + tg′′) g′2 + ( f ′′ + tg′′)2

]
. (3.8)

Therefore, from (3.3) and (3.8), we get [12]

4 =
1

g′2

[
−

(
1 +

( f ′′ + tg′′

g′
)2
)
∂2

∂s2 +
( f ′′ + tg′′

g′
) ∂2

∂s∂t
−
∂2

∂t2
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−

(
1 +

( f ′′ + tg′′

g′
)2
)

s

∂

∂s
+

g′′

g′
∂

∂s
+

( f ′′ + tg′′

g′
)

s
∂

∂t

]
. (3.9)

We classify the non-developable ruled surfaces of Type 3, that is, g′(s) , 0. Applying (3.9) for the
components of (3.4), we obtain

4s =
1

g′2

[
−

(
1 +

( f ′′ + tg′′

g′
)2
)

s
+

g′′

g′

]
,

4t =
1

g′2

[( f ′′ + tg′′

g′
)

s

]
,

4( f (s) + tg(s)) =
1

g′2

[
−

( f ′′ + tg′′)3

g′2
− 2( f ′ + tg′)

( f ′′ + tg′′

g′
)( f ′′ + tg′′

g′
)

s

+g
( f ′′ + tg′′

g′
)

s +
f ′g′′

g′
+ tg′′ + f ′ + tg′

]
.

We write the last three equations as polynomials of t with coefficients, functions of s, as follows

4s = A01(s) + A11(s)t + A21(s)t2,

4t = B01(s) + B11(s)t,

4( f (s) + tg(s)) = C01(s) + C11(s)t + C21(s)t2 + C31(s)t3.

Lemma 1. Let Q be a polynomial in t with functions in s as coefficients and deg(Q) = n. Then 4Q = Q̂,
where Q̂ is a polynomial in t with functions in s as coefficients and deg(Q̂) ≤ n + 2.

Remark 1. The proof of Lemma 1 can be obtained from the coefficient function of the first term and
the fourth term of the relation (3.9), which includes the variable t to the power 2.

From the above lemma, one can obtain that

42s = A02(s) + A12(s)t + A22(s)t2 + A32(s)t3 + A42(s)t4,

42t = B02(s) + B12(s)t + B22(s)t2 + B32(s)t3,

42( f (s) + tg(s)) = C02(s) + C12(s)t + C22(s)t2 + C32(s)t3 + C42(s)t4 + C52(s)t5.

In general, we have
4ks = A0k(s) + A1k(s)t + . . . + Ak+2,k(s)tk+2,

4kt = B0k(s) + B1k(s)t + . . . + Bk+1,k(s)tk+1,
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4k( f (s) + tg(s)) = C0k(s) + C1k(s)t + . . . + Ck+3,k(s)tk+3.

We suppose that S is of finite III-type k. Then from (2.1), there exist real numbers µ1, . . . , µk, such
that

4k+1X + µ14
kX + . . . + µk4X = 0. (3.10)

Applying the above equation to each component of X, we get

4k+1s + µ14
ks + . . . + µk∆s = 0, (3.11)

4k+1t + µ14
kt + . . . + µk4t = 0. (3.12)

4k+1( f + tg) + µ14
k( f + tg) + . . . + µk4( f + tg) = 0. (3.13)

By applying Lemma 1, we conclude that there is a polynomial P1k in the variable t with some
functions in s as coefficients, such that

4ks = P1k, deg(P1k) ≤ 2k.

Similarly, for the second and third components of x, there are polynomials P2k, P3k in the variable t
with some functions in s as coefficients, such that

4kt = P2k, deg(P2k) ≤ 2k − 1.

4k( f + tg) = P3k, deg(P3k) ≤ 2k + 1.

Now, if k goes up by one, the degree of the components P1k, P2k, and P3k goes up at most by 2.
Hence, the sums (3.11)–(3.13) can never be zeros, unless, of course, we have [16]

4s =
1

g′2

[
−

(
1 +

( f ′′ + tg′′

g′
)2
)

s
+

g′′

g′

]
= 0, (3.14)

4t =
1

g′2

[( f ′′ + tg′′

g′
)

s

]
= 0, (3.15)

4( f (s) + tg(s)) =
1

g′2

[
−

( f ′′ + tg′′)3

g′2
− 2( f ′ + tg′)

( f ′′ + tg′′

g′
)( f ′′ + tg′′

g′
)

s

+g
( f ′′ + tg′′

g′
)

s +
f ′g′′

g′
+ tg′′ + f ′ + tg′

]
= 0. (3.16)

From (3.15), we find that
( f ′′+tg′′

g′
)

s = 0, so relation (3.14) becomes g′′

g′3 = 0, from which we obtain
that g′′ = 0. Hence, Eq (3.16) reduces to
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−
( f ′′)3

g′4
+

f ′ + tg′

g′2
= 0,

or
f ′g′2 − f ′′3 + tg′3 = 0.

This equation holds true for all values of t when g′ = 0, a case which is excluded. Thus, we have
the following theorem:

Theorem 1. Non-developable ruled surfaces of type 3 in the simply isotropic space I3 are of infinite
III-type.

3.3. Ruled surfaces in I3 of Type 4

In this section, we classify the non-developable ruled surface of Type 4 in I3 given by (3.6). The
Laplacian is

4 = −
1

g′2

[
∂2

∂s2 +
2( f ′′ + tg′′ + tg)

g′
∂2

∂s∂t
−

f ′′

g′t
∂

∂s

+
(( f ′′ + tg′′ + tg

g′
)

s + t −
f ′′2

g′2t
+

g′′2 + g2

g′2
t
) ∂
∂t

+
(
t2 +

( f ′′ + g′′t + gt)2

g′2
∂2

∂t2

]
. (3.17)

Applying (3.17) for the components of (3.6), we obtain

4t cos s =
1

g′3

((
f ′′ + 2(g′′ + g)t

))
sin s

−
1

g′3

(
( f ′′ + g′′t + gt)s −

f ′′2

g′t
−

f ′′g′′

g′
−

g′′g
g′

t +
g2

g′
t
)

cos s,

4t sin s = −
1

g′3

((
f ′′ + 2(g′′ + g)t

))
cos s

−
1

g′3

(
( f ′′ + g′′t + gt)s −

f ′′2

g′t
−

f ′′g′′

g′
−

g′′g
g′

t +
g2

g′
t
)

sin s,

4( f (s) + tg(s)) = −
1

g′2

(
3 f ′′ + 3tg′′ + 3tg −

f ′ f ′′

g′t
− 2 f ′′ −

f ′′

t

+g
( f ′′ + g′′t + gt

g′
)

s + g
(g′′2

g′2
t +

g2

g′2
t −

f ′′2

g′2t
))
.

We rewrite the above three equations as follows

4(t cos s) = A11(s) + A12(s)t + A13(s)
1
t
, (3.18)
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4(t sin s) = B11(s) + B12(s)t + B13(s)
1
t
,

4( f (s) + tg(s)) = C11(s) + C12(s)t + C13(s)
1
t
.

From relation (3.17), it can be obtained the following:

Lemma 2. For any non-negative integer number n, and some functions D11(s),D12(s), and E11(s) of
the variable s, we have

4(D11(s) + D12(s)t) = D21(s) + D22(s)t + D23(s)
1
t
, (3.19)

and
4(E11(s)

1
tn ) = E21(s)

1
tn + E22(s)

1
tn+1 + E23(s)

1
tn+2 , (3.20)

where Di j, Ei j are functions of the variable s.

Applying (3.17) for the components of (3.18), and on account of Lemma 2, we obtain

42(t cos s) = A21(s) + A22(s)t + A23(s)
1
t

+ A24(s)
1
t2 + A25(s)

1
t3 .

Similarly, we get

42(t sin s) = B21(s) + B22(s)t + B23(s)
1
t

+ B24(s)
1
t2 + B25(s)

1
t3 ,

and

42( f (s) + tg(s)) = C21(s) + C22(s)t + C23(s)
1
t

+ C24(s)
1
t2 + C25(s)

1
t3 .

Applying the mathematical induction (see [11]), one can prove the following:

Lemma 3. For any natural number k, the following relations hold true

4k(t cos s) = Ak1(s) + Ak2(s)t + Ak3(s)
1
t

+ Ak4(s)
1
t2

+ . . . + Ak,2k−1(s)
1

t2k−1 (3.21)

4k(t sin s) = Bk1(s) + Bk2(s)t + Bk3(s)
1
t

+ Bk4(s)
1
t2

+ . . . + Bk,2k−1(s)
1

t2k−1 (3.22)

4k( f (s) + tg(s)) = Ck1(s) + Ck2(s)t + Ck3(s)
1
t

+ Ck4(s)
1
t2 + . . . + Ck,2k−1(s)

1
t2k−1 . (3.23)
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Assume that S is of finite III-type k. Applying (3.10) to the coordinate functions X1, X2, and X3 of
the position vector (3.6) of the quadric S , we obtain

4k+1t cos s + µ14
kt cos s + . . . + µk∆t cos s = 0,

4k+1t sin s + µ14
kt sin s + . . . + µk4t sin s = 0.

4k+1( f + tg) + µ14
k( f + tg) + . . . + µk4( f + tg) = 0.

Taking into account Lemmas 2 and 3, we conclude

Ak+1,1(s) + Ak+1,2(s)t +

2k+1∑
k=1

Ak+1,k+2(s)
1
tk + µ1

(
Ak1(s) + Ak2(s)t

+

2k−1∑
k=1

Ak+1,k+2(s)
1
tk

)
+ . . . + µk−1

(
A21(s) + A22(s)t + A23(s)

1
t

+ A24(s)
1
t2 + A25(s)

1
t3

)
+ µk(A11(s) + A12(s)t + A13(s)

1
t
) = 0. (3.24)

Bk+1,1(s) + Bk+1,2(s)t +

2k+1∑
k=1

Bk+1,k+2(s)
1
tk + µ1

(
Bk1(s) + Bk2(s)t

+

2k−1∑
k=1

Bk+1,k+2(s)
1
tk

)
+ . . . + µk−1

(
B21(s) + B22(s)t + B23(s)

1
t

+ B24(s)
1
t2 + B25(s)

1
t3

)
+ µk(B11(s) + B12(s)t + B13(s)

1
t
) = 0. (3.25)

Ck+1,1(s) + Ck+1,2(s)t +

2k+1∑
k=1

Ck+1,k+2(s)
1
tk + µ1

(
Ck1(s) + Ck2(s)t

+

2k−1∑
k=1

Ck+1,k+2(s)
1
tk

)
+ . . . + µk−1

(
C21(s) + C22(s)t + C23(s)

1
t

+ C24(s)
1
t2 + C25(s)

1
t3

)
+ µk(C11(s) + C12(s)t + C13(s)

1
t
) = 0. (3.26)

Now, if k goes up by one, the degree of the variable t in the denominator of Eqs (3.21)–(3.23) goes
up at most by 2. Hence, the sums (3.24)–(3.26) can never be zeros, unless, we have

4t cos s =
1

g′3

((
f ′′ + 2(g′′ + g)t

))
sin s

−
1

g′3

(
( f ′′ + g′′t + gt)s −

f ′′2

g′t
−

f ′′g′′

g′
−

g′′g
g′

t +
g2

g′
t
)

cos s = 0, (3.27)
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4t sin s = −
1

g′3

((
f ′′ + 2(g′′ + g)t

))
cos s

−
1

g′3

(
( f ′′ + g′′t + gt)s −

f ′′2

g′t
−

f ′′g′′

g′
−

g′′g
g′

t +
g2

g′
t
)

sin s = 0, (3.28)

4( f (s) + tg(s)) = −
1

g′2

(
3 f ′′ + 3tg′′ + 3tg −

f ′ f ′′

g′t
− 2 f ′′ −

f ′′

t

+g
( f ′′ + g′′t + gt

g′
)

s + g
(g′′2

g′2
t +

g2

g′2
t −

f ′′2

g′2t
))

= 0. (3.29)

From (3.27) and (3.28), cos s and sin s are linearly independent functions. Therefore, we have

f ′′ + 2(g′′ + g)t = 0, (3.30)

and

( f ′′ + g′′t + gt)s −
f ′′2

g′t
−

f ′′g′′

g′
−

g′′g
g′

t +
g2

g′
t = 0. (3.31)

From (3.30), we must have f ′′ = 0 and g′′ + g = 0. Thus, relations (3.29) and (3.31) on account of
the above two equations reduce to 2g2

g′ t = 0, from which we must have g(s) ≡ 0, a case that has been
excluded since III is non-degenerate.

3.4. Quadrics of type (3.1)

A parametrization of this kind is given by [17]

X(s, t) =
(
s, t,
√

A s2 + B t2 + C
)
. (3.32)

For simplicity, we put
A s2 + B t2 + C : = $.

Denote by (gi j) and (bi j) the components of the first and second fundamental forms. Then we find

(gi j) =

[
1 0
0 1

]
,

and for components (bi j), we have

(bi j) =


A(Bt2+C)

$
3
2

−ABst

$
3
2

−ABst

$
3
2

B(As2+C)

$
3
2

 .
The relative curvature KI3 and isotropic mean curvature HI3 are defined by

KI3 =
Det(bi j)
Det(gi j)

=
ABC
$2 ,
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HI3 =
g11b22 − 2g12b12 + g22b11

2det(gi j)
=

B(As2 + C) + A(Bt2 + C)

$
3
2

.

The third fundamental form III is given by

III =
A2

$3 F3(s, t)ds2 − 2
A B
$3 F2(s, t)dsdt +

B2

$3 F1(s, t)dt2,

where

F1(s, t) = A2 s2 t2 + (A s2 + C)2,

F2(s, t) = s t
[
C(A + B) + A B(s2 + t2 +$)

]
,

F3(s, t) = B2 s2 t2 + (B t2 + C)2.

Then the Laplacian 4 of S is given by

4 = −
$

A2 B2 C2

[
B2F1

∂2

∂s2 + 2A B F2
∂2

∂s∂t
+ A2F3

∂2

∂t2

]
−

$

A2 B2 C2

[
B

(
B
∂F1

∂s
+ A

∂F2

∂t

)
∂

∂s
+ A

(
A
∂F3

∂t
+ B

∂F2

∂s

)
∂

∂t

]
+

1
A2 B2 C2

[
A B2 (s F1 + t F2)

∂

∂s
+ A2 B (s F2 + t F3)

∂

∂t

]
. (3.33)

We write (3.33) as follows:

4III = −
As5

C2

[
s
∂2

∂s2 + 4
∂

∂s

]
+ f1(s, t)

∂2

∂s2

−
Bt5

C2

[
t
∂2

∂t2 + 4
∂

∂t

]
+ f2(s, t)

∂2

∂t2

+ f3(s, t)
∂2

∂s∂t
+ f4(s, t)

∂

∂s
+ f5(s, t)

∂

∂t
, (3.34)

where

f1(s, t) = −
A + B

C2 s4t2 −
B

C2 s2t4 −
3
C

s4 −
3
A

s2 (3.35)

−
2B + A

AC
s2t2 −

B
A2 t2 −

C
A2 , (3.36)

(3.37)

f2(s, t) = −
A + B

C2 s2t4 −
A

C2 s4t2 −
3
C

t4 −
3
B

t2

−
2A + B

bC
s2t2 −

A
B2 s2 −

C
B2 ,
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f3(s, t) = −2st
[ A
C2 s4 +

(A + 2B)
BC

s2 +
B

C2 t4 +
(B + 2A)

AC
t2

+
(A + B)

C2 s2t2 +
A + B

AB

]
,

f4(s, t) = −
(A + 8B)

BC
s3 −

(A + 4B)
AB

s −
4(A + B)

C2 s3t2 −
4B
C2 st4 −

(5A + 4B)
AC

st2,

f5(s, t) = −
(8A + B)

AC
s3 −

(4A + B)
AB

t −
4A
C2 s4t −

4(A + B)
C2 s2t3 −

(4A + 5B)
BC

s2t.

Here, the functions fi, i = 1, . . . , 5, are polynomials in s and t with deg( fi) ≤ 6. We consider a
function g(s) ∈ C∞(U). By means of (3.34), we find

4g = −
As5

C2

(
s
∂2g
∂s2 + 4

∂g
∂s

)
+ f1(s, t)

∂2g
∂s2 + f4(s, t)

∂g
∂s
. (3.38)

Substituting t = 0, then the functions f1 and f4 are polynomials of the single parameter s of degree
≤ 4. Now we need the following:

Lemma 4. The relation

(4)k s = (−1)k (4k)

 k∏
i=1

(4i − 3) i

 (Aks4k+1

C2k

)
+ P4k(s, t),

is valid, where deg(P4k(s, 0)) ≤ 4k.

Proof. Use the induction method on k. From (3.38), and putting g = s, then the formula follows
immediately for k = 1 since the component function f1(s, 0) in relation (3.35) with respect to the
variable s is of degree 4. Suppose the Lemma is true for k − 1. Then

(4)k−1 s = (−1)k−1 (4k−1)

 k−1∏
i=1

(4i − 3) i

 (Ak−1s4k−3

c2k−2

)
+ P4k−4(s, t).

On account of (3.38), we obtain

(4)k s = 4
(

(4)k−1 s
)

= −
As5

C2
(−4)k−1

 k−1∏
i=1

(4i − 3) i

(
Ak−1

C2k−2

) (
s
∂2

∂s2

(
s4k−3

)
+ 4

∂

∂s

(
s4k−3

))
+ (−4)k

 k−1∏
i=1

(4i − 3) i

 ( Ak−1

C2k−2

)
f1(s, t)

∂2

∂s2

(
s4k−3

)
+ (−4)k

 k−1∏
i=1

(4i − 3) i

 ( Ak−1

C2k−2

)
f4(s, t)

∂

∂s

(
s4k−3

)
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−
As5

C2

(
s
∂2

∂s2
(P4k−4) + 4

∂

∂s
(P4k−4)

)
+ f1(s, t)

∂2

∂s2
(P4k−4) + f4(s, t)

∂

∂s
(P4k−4)

= (−4)k

 k∏
i=1

(4i − 3) i

 (Aks4k+1

C2k

)
+ P4k(s, t),

where

P4k(s, t) = −
As5

C2

(
s
∂2

∂s2
(P4k−4) + 4

∂

∂s
(P4k−4)

)
+ (−4)k

 k−1∏
i=1

(4i − 3) i

 ( Ak−1

C2k−2

)
f1(s, t)

∂2

∂s2

(
s4k−3

)
+ (−4)k

 k−1∏
i=1

(4i − 3) i

 ( Ak−1

C2k−2

)
f4(s, t)

∂

∂s

(
s4k−3

)
+ f1(s, t)

∂2

∂s2
(P4k−4) + f4(s, t)

∂

∂s
(P4k−4) . (3.39)

For t = 0, the degree of P4k−4(s, 0) is less than or equal 4k − 4 and the functions f2(s, 0) and f4(s, 0)
are of degree less than or equal 4. Therefore, from (3.39), we find that P4k(s, 0) is of degree less than
or equal 4k. �

Applying (3.34) for a function h(t) ∈ C∞, we obtain

4IIIh = −
Bt5

C2

(
t
∂2h
∂t2 + 4

∂h
∂t

)
+ f2(s, t)

∂2h
∂t2 + f5(s, t)

∂h
∂t
.

Taking s = 0, then the polynomials f3(0, t) and f5(0, t) are of degree ≤ 4. Following the same
procedure as in Lemma 4, we demonstrate the following:

Lemma 5. The equation

(4)k t = (−4)k

 k∏
i=1

(4i − 3) i

 (Bkt4k+1

C2k

)
+ Q4k(s, t)

holds true, where deg(Q4k(0, t)) ≤ 4k.

Assume that S is of finite III-type k. Then, for a constant numbers c1, . . . , ck, we must have

4k+1 X + c1 4
k X + . . . + ck4 X = 0. (3.40)

Applying (3.40) to the coordinate functions X1 = s and X2 = t of the position vector (3.32) of S , we
get

4k+1 s + c14
k s + · · · + ck4s = 0, (3.41)

4k+1t + c14
kt + · · · + ck4t = 0. (3.42)
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On account of relation (3.41) and Lemma 4, it follows that there exists a polynomial P4k+4(s, t) of
degree at most 4k + 4, satisfying

(−4)k+1

 k+1∏
i=1

(4i − 3) i

 (Ak+1s4k+5

C2k+2

)
+ P4k+4(s, t) = 0. (3.43)

Similarly, from relation (3.42) and Lemma 5, we obtain a polynomial Q4k+4(s, t) of degree at most
4k + 4, satisfying

(−4)k+1

 k+1∏
i=1

(4i − 3) i

 (Bk+1v4k+5

C2k+2

)
+ Q4k+4(s, t) = 0. (3.44)

Putting t = 0 in (3.43), and s = 0 in (3.44), then relations (3.43) and (3.44) are nontrivial
polynomials in s and t, respectively, with constant coefficients. Since these two equations must hold
true for all values of s and t, then we must have A = B = 0, which is a contradiction. Thus, we have
the following;

Theorem 2. Quadric surfaces of the first kind (3.1) in the simply isotropic space I3 are of infinite
III-type.

3.5. Quadrics of type (3.2)

A parametrization of this type is given by

X(s, t) =

(
s, t,

A
2

s2 +
B
2

t2
)
. (3.45)

The matrix of the metric I of S is

(gi j) =

[
1 0
0 1

]
,

and of the second fundamental form II of S is given as follows:

(bi j) =

[
A 0
0 B

]
.

The relative curvature KI3 and isotropic mean curvature HI3 are defined by

KI3 = AB, HI3 = A + B.

One can prove the following:

Corollary 1. The surface S is isotropic minimal if and only if A = -B.

The metric III of S is

III = A2ds2 + B2dt2.
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Hence, the Laplacian 4 of S becomes

4 = −
1
A2

∂2

∂s2 −
1
B2

∂2

∂t2 . (3.46)

For the position vector X(s, t), it is well known that

4X(s, t) = (4X1,4X2,4X3).

Applying the operator 4 to the component functions of X(s, t), we find

4X1 = 4s = 0,
4X2 = 4t = 0,

4X3 = −
1
A
−

1
B
.

We distinguish the following two cases:
CaseI. A = −B. From the last equation, we get 4X3 = 0. Thus, we find that 4X(s, t) = 0, that is, S

is of 0-type 1.
CaseII. A , B. Then, (4III)2X3 = 0, so the position vector X(s, t) can be written as a sum of two

nonconstant vectors as follows:

X(s, t) = X1(s, t) + X2(s, t)

where

X1(s, t) = (s, t, 0), X2(s, t) = (0, 0,
A
2

s2 +
B
2

t2),

and

4X1(s, t) = ζ1X1,

4X2(s, t) = ζ2X2,

where ζ1 = 0, and ζ2 , 0. When ζ2 = 0, case II reduces to case I. Thus, we provide this case.

Theorem 3. All quadric surfaces of the second kind (3.2) in the simply isotropic space I3 are of finite
0-type 2.

In the special case where S is isotropic minimal, we have the following:

Corollary 2. Hyperbolic paraboloid of the form z = A(X2 − Y2) is of 0-type 1, with corresponding
eigenvalue ζ = 0.

4. Conclusions

The classification of ruled surfaces of the 3rd, 4th type and quadric surfaces of first kind and second
kind in the simply isotropic 3-space I3 within the limitations of finite Chen type concerning the third
fundamental form was investigated. It was proved that among these classes, only quadric surfaces
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of the second kind in the simply isotropic space I3 are of finite 0-type 2. In a special case, when
the surface is isotropically minimal, then it is a hyperbolic paraboloid of 0-type 1. Thus, the finite
type classification concerning the third fundamental form not only provides a meaningful extension of
Chen’s theory into the realm of isotropic geometry but also serves as an effective tool for identifying
and characterizing geometrically distinguished surfaces in I3 [18, 19].

In the future, researchers may extend these results to higher-dimensional isotropic spaces or explore
analogous classifications regarding the first and second fundamental forms. Additionally, one can use
the definition of the fractional vector operators so that new forms of first and second Beltrami operators
can be found and applied to any class of surfaces [20, 21].
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