This paper aims to design Observer-Based (OB) controllers that ensure the exponential stability of a class of nonlinear time-delay systems. The nonlinear part of the system satisfies a weak Quasi-One-Sided Lipschitz (QOSL) condition characterized by the matrices $ (\mathcal{L}_1, \mathcal{M}_1, \mathcal{N}_1) $, as well as a QOSL condition characterized by the matrices $ (\mathcal{L}_2, \mathcal{M}_2, \mathcal{N}_2) $. First, we derive a sufficient condition formulated as a Linear Matrix Inequality (LMI) via a Lyapunov–Krasovskii (LK) functional. The main advantage of this design is that the controller and observer gains are computed in a single step. However, its main drawback is that the matrices $ \mathcal{L}_1 $, $ \mathcal{M}_1 $, and $ \mathcal{N}_1 $ are fixed rather than treated as decision variables. To overcome this limitation, we propose an improved design in which the matrices $ \mathcal{L}_1, \; \mathcal{M}_1 $, and $ \mathcal{N}_1 $ are treated as decision-variable matrices with a fixed structure. By using an appropriate decoupling technique, this approach provides greater flexibility in the selection of matrices and reduces conservatism. The efficacy of the developed OB controllers is demonstrated via a suitable numerical example.
Citation: Omar Kahouli, Lilia El Amraoui, Mohamed Ayari, Hamdi Gassara, Ahmed El Hajjaji. Exponential stabilization of quasi-one-sided Lipschitz systems with time delay[J]. AIMS Mathematics, 2025, 10(11): 26680-26696. doi: 10.3934/math.20251173
This paper aims to design Observer-Based (OB) controllers that ensure the exponential stability of a class of nonlinear time-delay systems. The nonlinear part of the system satisfies a weak Quasi-One-Sided Lipschitz (QOSL) condition characterized by the matrices $ (\mathcal{L}_1, \mathcal{M}_1, \mathcal{N}_1) $, as well as a QOSL condition characterized by the matrices $ (\mathcal{L}_2, \mathcal{M}_2, \mathcal{N}_2) $. First, we derive a sufficient condition formulated as a Linear Matrix Inequality (LMI) via a Lyapunov–Krasovskii (LK) functional. The main advantage of this design is that the controller and observer gains are computed in a single step. However, its main drawback is that the matrices $ \mathcal{L}_1 $, $ \mathcal{M}_1 $, and $ \mathcal{N}_1 $ are fixed rather than treated as decision variables. To overcome this limitation, we propose an improved design in which the matrices $ \mathcal{L}_1, \; \mathcal{M}_1 $, and $ \mathcal{N}_1 $ are treated as decision-variable matrices with a fixed structure. By using an appropriate decoupling technique, this approach provides greater flexibility in the selection of matrices and reduces conservatism. The efficacy of the developed OB controllers is demonstrated via a suitable numerical example.
| [1] | N. N. Krasovskii, On the application of the second method of Lyapunov for equations with time delays (in Russian), Prikl. Mat. Mech., 20 (1956), 315–327. |
| [2] | B. S. Razumikhin, Application of Liapunov's method to problems in the stability of systems with a delay, Avtomat. Telemekh., 21 (1960), 3–27. |
| [3] |
A. Thowsen, Uniform ultimate boundedness of the solutions of uncertain dynamic delay systems with state-dependent and memoryless feedback control, Int. J. Control, 37 (1983), 1135–1143. http://dx.doi.org/10.1080/00207178308933035 doi: 10.1080/00207178308933035
|
| [4] | S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and control theory, SIAM Studies in Applied Mathematics, Vol. 15, Philadelphia: SIAM, 1994. http://dx.doi.org/10.1137/1.9781611970777 |
| [5] |
X. Li, C. E. de Souza, Criteria for robust stability and stabilization of uncertain linear systems with state delay, Automatica, 33 (1997), 1657–1662. http://dx.doi.org/10.1016/S0005-1098(97)00082-4 doi: 10.1016/S0005-1098(97)00082-4
|
| [6] |
B. Zhou, K. Zhang, Stabilization of linear systems with multiple unknown time-varying input delays by linear time-varying feedback, Automatica, 174 (2025), 112175. http://dx.doi.org/10.1016/j.automatica.2025.112175 doi: 10.1016/j.automatica.2025.112175
|
| [7] |
P. L. Liu, Exponential stability for linear time-delay systems with delay dependence, J. Franklin Inst., 340 (2003), 481–488. http://dx.doi.org/10.1016/j.jfranklin.2003.10.003 doi: 10.1016/j.jfranklin.2003.10.003
|
| [8] |
V. N. Phat, Y. Khongtham, K. Ratchagit, LMI approach to exponential stability of linear systems with interval time-varying delays, Linear Algebra Appl., 436 (2012), 243–251. http://dx.doi.org/10.1016/j.laa.2011.07.016 doi: 10.1016/j.laa.2011.07.016
|
| [9] |
L. H. Vu, Exponential stability and controller design for linear systems with mixed interval time-varying delays, Int. J. Dynam. Control, 13 (2025), 17. http://dx.doi.org/10.1007/s40435-024-01520-6 doi: 10.1007/s40435-024-01520-6
|
| [10] |
J. Tan, S. Dian, T. Zhao, L. Chen, Stability and stabilization of T–S fuzzy systems with time delay via Wirtinger-based double integral inequality, Neurocomputing, 275 (2018), 1063–1071. http://dx.doi.org/10.1016/j.neucom.2017.09.051 doi: 10.1016/j.neucom.2017.09.051
|
| [11] |
R. Datta, R. Saravanakumar, R. Dey, B. Bhattacharya, C. K. Ahn, Improved stabilization criteria for Takagi–Sugeno fuzzy systems with variable delays, Inf. Sci., 579 (2021), 591–606. http://dx.doi.org/10.1016/j.ins.2021.07.089 doi: 10.1016/j.ins.2021.07.089
|
| [12] |
F. P. Dan, S. T. He, Exponential stability analysis and controller design of fuzzy systems with time-delay, J. Franklin Inst., 348 (2011), 865–883. http://dx.doi.org/10.1016/j.jfranklin.2011.02.012 doi: 10.1016/j.jfranklin.2011.02.012
|
| [13] |
P. Tang, Y. Ma, Exponential stabilization and sampled-date $H_\infty$ control for uncertain T-S fuzzy systems with time-varying delay, J. Franklin Inst., 356 (2019), 4859–4887. http://dx.doi.org/10.1016/j.jfranklin.2019.04.025 doi: 10.1016/j.jfranklin.2019.04.025
|
| [14] | A. Zemouche, M. Boutayeb, Observer design for Lipschitz nonlinear systems: the discrete-time case, IEEE Trans. Circuits Syst. II: Express Briefs, 53 (2006), 777–781. |
| [15] |
K. C. Veluvolu, Y. C. Soh, Multiple sliding mode observers and unknown input estimations for Lipschitz nonlinear systems, Int. J. Robust Nonlinear Control, 21 (2011), 1322–1340. http://dx.doi.org/10.1002/rnc.1691 doi: 10.1002/rnc.1691
|
| [16] |
A. Zemouche, M. Boutayeb, On LMI conditions to design observers for Lipschitz nonlinear systems, Automatica, 49 (2013), 585–591. http://dx.doi.org/10.1016/j.automatica.2012.11.029 doi: 10.1016/j.automatica.2012.11.029
|
| [17] |
G. D. Hu, Observers for one-sided Lipschitz nonlinear systems, IMA J. Math. Control Inf., 23 (2006), 395–401. http://dx.doi.org/10.1093/imamci/dni068 doi: 10.1093/imamci/dni068
|
| [18] |
W. Zhang, H. S. Su, Y. Liang, Z. Z. Han, Nonlinear observer design for one-sided Lipschitz systems: a linear matrix inequality approach, IET Control Theory Appl., 6 (2012), 1297–1303. http://dx.doi.org/10.1049/iet-cta.2011.038 doi: 10.1049/iet-cta.2011.038
|
| [19] |
M. C. Nguyen, H. Trinh, Reduced-order observer design for one-sided Lipschitz time-delay systems subject to unknown inputs, IET Control Theory Appl., 10 (2016), 1097–1105. http://dx.doi.org/10.1049/iet-cta.2015.1173 doi: 10.1049/iet-cta.2015.1173
|
| [20] |
E. H. Badreddine, E. A. Hicham, H. Abdelaziz, E. H. Ahmed, E. H. Tissir, New approach to robust observer-based control of one-sided Lipschitz non-linear systems, IET Control Theory Appl., 13 (2019), 333–342. http://dx.doi.org/10.1049/iet-cta.2018.5389 doi: 10.1049/iet-cta.2018.5389
|
| [21] |
G. D. Hu, A note on observer for one-sided Lipschitz non-linear systems, IMA J. Math. Control Inf., 25 (2008), 297–303. http://dx.doi.org/10.1093/imamci/dnm024 doi: 10.1093/imamci/dnm024
|
| [22] |
F. Fu, M. Hou, G. Duan, Stabilization of quasi-one-sided Lipschitz nonlinear system, IMA J. Math. Control Inf., 30 (2013), 169–183. http://dx.doi.org/10.1093/imamci/dns023 doi: 10.1093/imamci/dns023
|
| [23] |
G. D. Hu, W. Dong, Y. Cong, Separation principle for quasi-one-sided Lipschitz nonlinear systems with time delay, Int. J. Robust Nonlinear Control, 30 (2020), 2430–2442. http://dx.doi.org/10.1002/rnc.4881 doi: 10.1002/rnc.4881
|
| [24] |
W. Dong, Y. Zhao, Y. Cong, Reduced-order observer-based controller design for quasi-one-sided Lipschitz nonlinear systems with time delay, Int. J. Robust Nonlinear Control, 31 (2021), 817–831. http://dx.doi.org/10.1002/rnc.5312 doi: 10.1002/rnc.5312
|
| [25] |
A. H. Esmail, I. Ghous, Z. Duan, M. H. Jaffery, S. Li, Observer-based control for time-delayed quasi-one-sided Lipschitz nonlinear systems under input saturation, J. Franklin Inst., 361 (2024), 107326. http://dx.doi.org/10.1016/j.jfranklin.2024.107326 doi: 10.1016/j.jfranklin.2024.107326
|
| [26] |
X. H. Chang, L. Zhang, J. H. Park, Robust static output feedback $H_\infty$ control for uncertain fuzzy systems, Fuzzy Sets Syst., 273 (2015), 87–104. http://dx.doi.org/10.1016/j.fss.2014.10.023 doi: 10.1016/j.fss.2014.10.023
|
| [27] | A. Alessandri, A. Cioncolini, D. Padovani, Design of observer-based controllers for Lipschitz nonlinear systems by using LMIs, 2024 IEEE 63rd Conference on Decision and Control (CDC), 2024. http://dx.doi.org/10.1109/CDC56724.2024.10886406 |
| [28] |
O. Texis-Loaiza, J. A. Moreno, M. A. Estrada, L. Fridman, A. Levant, Output feedback control of nonlinear systems via Lipschitz continuous sliding modes, IEEE Control Syst. Lett., 9 (2025), 378–383. http://dx.doi.org/10.1109/LCSYS.2025.3570982 doi: 10.1109/LCSYS.2025.3570982
|
| [29] |
X. Yu, Y. Hua, Y. Lu, Observer-based robust preview tracking control for a class of continuous-time Lipschitz nonlinear systems, AIMS Math., 9 (2024), 26741–26764. http://dx.doi.org/10.3934/math.20241301 doi: 10.3934/math.20241301
|
| [30] |
X. Cai, K. Shi, Y. Sun, J. Cao, S. Wen, Z. Tian, Intelligent event-triggered control supervised by mini-batch machine learning and data compression mechanism for T-S fuzzy NCSs under DoS attacks, IEEE Trans. Fuzzy Syst., 32 (2024), 804–815. http://dx.doi.org/10.1109/TFUZZ.2023.3308933 doi: 10.1109/TFUZZ.2023.3308933
|
| [31] |
X. Cai, K. Shi, Y. Sun, J. Cao, S. Wen, C. Qiao, et al., Stability analysis of networked control systems under DoS attacks and security controller design with mini-batch machine learning supervision, IEEE Trans. Inf. Forensics Secur., 19 (2024), 3857–3865. http://dx.doi.org/10.1109/TIFS.2023.3347889 doi: 10.1109/TIFS.2023.3347889
|