In this paper we explored the algebraic and topological underpinnings of non-Newtonian analysis through the framework of a generator function $ \alpha $. We introduced the $ \alpha $-number systems and the associated arithmetic operations, and we established the corresponding algebraic structures, including groups, fields, and vector spaces defined over $ \alpha $-real numbers. On the topological side, we developed the notions of $ \alpha $-metric spaces and $ \alpha $-sequences, thereby extending core concepts of analysis to the non-Newtonian setting. The study culminates with the formulation of star ($ \star $) analysis, which provides a systematic mechanism for transitioning between distinct arithmetic systems, together with a rigorous treatment of $ \star $-vector spaces and linear operators.
Citation: Emre Civgin, Numan Yalcin. Algebraic and topological foundations of non-Newtonian analysis via generator functions[J]. AIMS Mathematics, 2025, 10(11): 26633-26661. doi: 10.3934/math.20251171
In this paper we explored the algebraic and topological underpinnings of non-Newtonian analysis through the framework of a generator function $ \alpha $. We introduced the $ \alpha $-number systems and the associated arithmetic operations, and we established the corresponding algebraic structures, including groups, fields, and vector spaces defined over $ \alpha $-real numbers. On the topological side, we developed the notions of $ \alpha $-metric spaces and $ \alpha $-sequences, thereby extending core concepts of analysis to the non-Newtonian setting. The study culminates with the formulation of star ($ \star $) analysis, which provides a systematic mechanism for transitioning between distinct arithmetic systems, together with a rigorous treatment of $ \star $-vector spaces and linear operators.
| [1] | M. Grossman, R. Katz, Non-newtonian calculus, Pigeon Cove: Lee Press, 1972. |
| [2] |
M. Grossman, An introduction to non-Newtonian calculus, Int. J. Math. Educ. Sci. Technol., 10 (1979), 525–528. https://doi.org/10.1080/0020739790100406 doi: 10.1080/0020739790100406
|
| [3] |
A. F. Çakmak, F. Başar, Some new results on sequence spaces with respect to non-Newtonian calculus, J. Inequal. Appl., 2012 (2012), 228. https://doi.org/10.1186/1029-242X-2012-228 doi: 10.1186/1029-242X-2012-228
|
| [4] |
C. Duyar, B. Sağır, O. Oğur, Some basic topological properties on non-Newtonian real line, J. Adv. Math. Comput. Sci., 9 (2015), 300–307. https://doi.org/10.9734/BJMCS/2015/17941 doi: 10.9734/BJMCS/2015/17941
|
| [5] |
C. Duyar, O. Oğur, A note on topology of non-Newtonian real numbers, IOSR J. Math., 13 (2017), 11–14. https://doi.org/10.9790/5728-1306041114 doi: 10.9790/5728-1306041114
|
| [6] |
C. Duyar, B. Sağır, Non-Newtonian comment of Lebesgue measure in real numbers, J. Math., 2017 (2017), 6507013. https://doi.org/10.1155/2017/6507013 doi: 10.1155/2017/6507013
|
| [7] |
M. Kirisci, Topological structures of non-Newtonian metric spaces, Electron. J. Math. Anal. Appl., 5 (2017), 156–169. https://doi.org/10.21608/ejmaa.2017.310982 doi: 10.21608/ejmaa.2017.310982
|
| [8] |
A. E. Bashirov, E. M. Kurpınar, A. Özyapıcı, Multiplicative calculus and its applications, J. Math. Anal. Appl., 337 (2008), 36–48. https://doi.org/10.1016/j.jmaa.2007.03.081 doi: 10.1016/j.jmaa.2007.03.081
|
| [9] |
A. E. Bashirov, E. Mısırlı, Y. Tandoğdu, A. Özyapıcı, On modeling with multiplicative differential equations, Appl. Math. J. Chinese Univ., 26 (2011), 425–438. https://doi.org/10.1007/s11766-011-2767-6 doi: 10.1007/s11766-011-2767-6
|
| [10] | K. Boruah, B. Hazarika, Bigeometric integral calculus, TWMS J. Appl. Eng. Math., 8 (2018), 374–385. |
| [11] |
K. Boruah, B. Hazarika, A. E. Bashirov, Solvability of bigeometric differential equations by numerical methods, Bol. Soc. Paran. Mat., 39 (2021), 203–222. https://doi.org/10.5269/bspm.39444 doi: 10.5269/bspm.39444
|
| [12] |
N. Yalçın, M. Dedeturk, Solutions of multiplicative ordinary differential equations via the multiplicative differential transform method, AIMS Mathematics, 6 (2021), 3393–3409. https://doi.org/10.3934/math.2021203 doi: 10.3934/math.2021203
|
| [13] |
D. Binbaşıoğlu, S. Demiriz, D. Türkoğlu, Fixed points of non-Newtonian contraction mappings on non-Newtonian metric spaces, J. Fixed Point Theory Appl., 18 (2016), 213–224. https://doi.org/10.1007/s11784-015-0271-y doi: 10.1007/s11784-015-0271-y
|
| [14] | K. Boruah, B. Hazarika, G-calculus, TWMS J. Appl. Eng. Math., 8 (2018), 94–105. |
| [15] |
U. Kadak, H. Efe, The construction of Hilbert spaces over the non-Newtonian field, Int. J. Anal., 2014 (2014), 746059. https://doi.org/10.1155/2014/746059 doi: 10.1155/2014/746059
|
| [16] |
M. Özavşar, Fixed points of multiplicative contraction mappings on multiplicative metric spaces, J. Eng. Technol. Appl. Sci., 2 (2017), 65–79. https://doi.org/10.30931/jetas.338608 doi: 10.30931/jetas.338608
|
| [17] |
S. Tekin, F. Başar, Certain sequence spaces over the non-Newtonian complex field, Abstr. Appl. Anal., 2013 (2013), 739319. https://doi.org/10.1155/2013/739319 doi: 10.1155/2013/739319
|
| [18] |
C. Türkmen, F. Başar, Some basic results on the sets of sequences with geometric calculus, AIP Conf. Proc., 1470 (2012), 95–98. https://doi.org/10.1063/1.4747648 doi: 10.1063/1.4747648
|
| [19] | B. Turan, C. Çevik, A note on the equivalence of some metric and non-Newtonian metric results, Turk. J. Math. Comput. Sci., 7 (2017), 56–58. |
| [20] | E. Çıvgın, The algebraic and topological foundations of non-Newtonian analysis, Master's thesis, Gümüşhane University, 2025. |
| [21] | C. Çevik, C. Özeken, Completion of multiplicative metric spaces, Gazi Univ. J. Sci., 29 (2016), 663–666. |