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1. Introduction 

Classical Newtonian analysis is built upon well established algebraic and topological structures 

that provide the foundation for concepts such as limits, continuity, differentiation, and integration. 

Although this framework has proven highly effective in many areas of mathematics and applied 

sciences, recent theoretical developments have explored alternative systems of arithmetic and analysis, 

known collectively as non-Newtonian analysis, which generalize or deviate from the standard real 
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number system [1,2]. 

Our primary aim of this study is to construct the algebraic and topological foundations of non-

Newtonian analysis in a systematic and unified manner by extending the essential structures of 

Newtonian analysis through the use of generator functions, specifically the bijective and continuous 

function (𝛼: ℝ → ℝ𝛼 ⊂ ℝ) . These generator functions enable the definition of new number sets, 

referred to as 𝛼 -real numbers, over which novel arithmetic operations such as 𝛼 -addition and 𝛼 -

multiplication are defined [3‒7]. 

We begin by defining the 𝛼-number systems and corresponding operations. We then investigate 

the algebraic properties of these structures, including group and field structures on ℝ𝛼, and vector 

spaces constructed over these sets. In parallel, the topological framework is developed, introducing 

concepts such as 𝛼 -intervals, 𝛼 -neighborhoods, and 𝛼 -metric spaces, which serve as the non-

Newtonian analogs of standard topological notions [4‒7]. 

A central contribution of this work is the introduction of star (⋆) operators, which facilitate the 

transition different non-Newtonian star vector spaces. Through these operators, we define star limits, 

derivatives, and integrals, providing generalized tools for analysis that extend beyond the Newtonian 

paradigm [8‒12]. 

We develop an 𝛼 -generator based approach in which a bijective, continuous generator 𝛼 

induces arithmetic, order, and topological structures on ℝ𝛼 and ⋆-operators mediate between 𝛼 and 

𝛽 systems. In this perspective, multiplicative calculus [8,9] and bigeometric calculus [10,11] arise as 

special cases obtained by particular choices of the generator(s) (e.g., 𝛼(𝑥) = 𝑒𝑥 and when applicable, 

𝛽(𝑥) = 𝑒𝑥. Thus, the 𝛼-generator based formulation subsumes these earlier models within a single 

algebraic-topological framework: group, field, vector-space, order, metric, and limit notions on ℝ𝛼 

transfer from the classical setting via 𝛼, while ⋆-limits/derivatives provide a rigorous bridge between 

distinct generator systems. This positions the paper’s contribution as a unifying 𝛼 -generator 

mechanism rather than a separate calculus, clarifying how prior non-Newtonian calculi fit into the 

same structural pipeline [13‒18]. 

Ultimately, our aim is to demonstrate how the core concepts of classical analysis, both algebraic 

and topological concepts, can be consistently extended and embedded into a non-Newtonian analytical 

framework, thus contributing to the growing body of research in generalized mathematical 

structures [19‒21]. 

2. Materials and methods 

In this section, we introduce the foundational concepts and notations used throughout the paper. 

We begin by defining generator functions, which constitute the basis for the construction of non-

Newtonian number systems and operations. 

2.1. Generator functions and alpha real numbers 

Let 𝛼: ℝ → ℝα ⊂ ℝ be a bijective and continuous function. Such a function is called a generator 

function, and it enables the construction of a non-Newtonian arithmetic structure. The set ℝα  is 

defined as the image of ℝ under function α: 

ℝ𝛼 ≔ 𝛼(ℝ) = { 𝛼(𝑥) ∣ 𝑥 ∈ ℝ }. 
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The inverse function 𝛼−1: ℝ𝛼 → ℝ  is also assumed to be continuous, which ensures that the 

arithmetic operations induced by 𝛼 are well-defined and structurally consistent. 

Definition 2.1.1. Let 𝛼 be a generator function. Then, the sets of non-Newtonian (or 𝛼) real numbers, 

integers, and natural numbers are respectively defined as follows [1‒3]: 

ℝ𝛼 = {𝛼(𝑥)|𝑥 ∈ ℝ},

ℤ𝛼 = {𝛼(𝑥)|𝑥 ∈ ℤ} = {⋯ , 𝛼(−2), 𝛼(−1), 𝛼(0), 𝛼(1), 𝛼(2), ⋯ },

ℕ𝛼 = {𝛼(𝑥)│𝑥 ∈ ℕ} = {𝛼(0), 𝛼(1), 𝛼(2), ⋯ }.

 

The sets of positive and negative 𝛼-numbers are defined as follows [4]: 

ℝ𝛼
+ = {𝛼(𝑥)│𝑥 ∈ ℝ+ } = {𝛼(𝑥)│𝑥 > 0}, ℤ𝛼

+ = {𝛼(𝑥)|𝑥 ∈ ℤ+ } = {𝛼(𝑥)|𝑥 ∈ ℤ, 𝑥 > 0},

ℝ𝛼
− = {𝛼(𝑥)│𝑥 ∈ ℝ− } = {𝛼(𝑥)│𝑥 < 0}, ℤ𝛼

− = {𝛼(𝑥)|𝑥 ∈ ℤ− } = {𝛼(𝑥)|𝑥 ∈ ℤ, 𝑥 < 0}.
 

For non-negative and non-positive 𝛼-numbers, we adopt the following notations: 

ℝ𝛼
+,0 = {𝛼(𝑥)|𝑥 ≥ 0}, ℤ𝛼

+,0 = {𝛼(𝑥)|𝑥 ∈ ℤ, 𝑥 ≥ 0},

ℝ𝛼
−,0 = {𝛼(𝑥)|𝑥 ≤ 0}, ℤ𝛼

−,0 = {𝛼(𝑥)|𝑥 ∈ ℤ, 𝑥 ≤ 0}.
 

2.2. 𝛼-Arithmetic operations 

Definition 2.2.1. The arithmetic operations of 𝛼-addition (+̇), 𝛼-subtraction (−̇), 𝛼-multiplication 

(×̇), and 𝛼-division (/̇) on the set ℝ𝛼 are defined for all 𝑥, 𝑦 ∈ ℝ𝛼 as follows: 

• 𝑥+̇𝑦 = 𝛼[𝛼−1(𝑥) + 𝛼−1(𝑦)], 

• 𝑥−̇𝑦 = 𝛼[𝛼−1(𝑥) − 𝛼−1(𝑦)], 

• 𝑥 ×̇ 𝑦 = 𝛼[𝛼−1(𝑥) × 𝛼−1(𝑦)], 

• 𝑥/̇𝑦 = 𝛼[𝛼−1(𝑥) 𝛼−1(𝑦)⁄ ], if 𝛼−1(𝑦) ≠ 0. 

Definition 2.2.2. Let 𝛼: ℝ → ℝ𝛼 ⊂ ℝ be a bijective generator function. Define the 𝛼-order relation 

(<̇), along with the related relations (>̇, ≤̇, ≥̇ ) on ℝ𝛼 by ∀𝑥, 𝑦 ∈ ℝ𝛼 [1]. 

• 𝑥<̇𝑦 ⇔ 𝛼−1(𝑥) < 𝛼−1(𝑦), 

• 𝑥 >̇𝑦 ⇔ 𝛼−1(𝑥) > 𝛼−1(𝑦), 

• 𝑥 ≤̇ 𝑦 ⇔ 𝛼−1(𝑥) ≤ 𝛼−1(𝑦), 

• 𝑥 ≥̇ 𝑦 ⇔ 𝛼−1(𝑥) ≥ 𝛼−1(𝑦). 

Lemma 2.2.1. Let 𝛼 be a generator and  <̇  be the the corresponding 𝛼-order relation. Then 𝛼 is 

strictly increasing in the sense: ∀𝑎, 𝑏 ∈ ℝ, 

𝑎 < 𝑏 ⇒ 𝛼(𝑎) <̇ 𝛼(𝑏). 

Definition 2.2.3. The 6-tuple consisting of 𝛼 -operations with 𝛼 -order relation <̇ , namely 
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(ℝ𝛼, +̇ , −̇  ,×̇ ,/̇ , <̇ ) is called the 𝛼-arithmetic. 

𝛼-operations inherit many structural properties (such as associativity and commutativity) from 

their classical counterparts. 

2.3. The Algebraic and Topological foundations of non-Newtonian analysis 

In this section, we present some fundamental definitions and theorems concerning the algebraic 

and topological foundations of non-Newtonian analysis, as discussed in [1‒7,10,14,17,18,20]. 

Proposition 2.3.1. (ℝ𝛼 , +̇) is an abelian group [20]. 

Notation 2.3.1. The inverse of an element 𝑥 ∈ ℝα with respect to 𝛼-addition is denoted by −̇𝑥. 

Notation 2.3.2. The inverse of an element 𝑥 ∈ ℝα ∖ {𝛼(0)}  under 𝛼 -multiplication is denoted by 

𝑥−1𝛼. 

Theorem 2.3.1. (ℝα ∖ {α(0)}, ×̇) is an abelian (commutative) group [20]. 

Proposition 2.3.2. Let 𝛼: ℝ → ℝ𝛼 ⊂ ℝ  be a generator function. Then the 𝛼 -addition (+̇)  and 𝛼 -

multiplication(×̇) satisfy the following identities for ∀𝑥, 𝑦 ∈ ℝ𝛼 and ∀𝑎, 𝑏 ∈ ℝ [1]: 

• 𝛼−1(𝑥+̇𝑦) = 𝛼−1(𝑥) + 𝛼−1(𝑦), 

• 𝛼(𝑎)+̇𝛼(𝑏) = 𝛼(𝑎 + 𝑏), 

• 𝛼−1(𝑥 ×̇ 𝑦) = 𝛼−1(𝑥) × 𝛼−1(𝑦), 

• 𝛼(𝑎) ×̇ 𝛼(𝑏) = 𝛼(𝑎 × 𝑏). 

These identities emphasize that 𝛼-operations on ℝ𝛼 correspond directly to classical addition and 

multiplication through the generator function 𝛼, thus providing a consistent algebraic framework for 

non-Newtonian analysis. 

Proposition 2.3.3. Let 𝛼: ℝ → ℝ𝛼 ⊂ ℝ be a generator function. Then, the inverse of 𝑥 ∈ ℝ𝛼 with 

respect to 𝛼-addition is given by [20]: 

−̇𝑥 = 𝛼[−𝛼−1(𝑥)]. 

Proposition 2.3.4. Let 𝛼: ℝ → ℝ𝛼 ⊂ ℝ be a generator function. The 𝛼-subtraction operation on ℝ𝛼 

satisfies the following equality: ∀𝑥, 𝑦 ∈ ℝα 

𝑥−̇𝑦 = 𝑥+̇(−̇𝑦). 

Proposition 2.3.5. For all 𝑥, 𝑦 ∈ ℝα and 𝑎, 𝑏 ∈ ℝ, the following equalities hold [20]: 

• 𝑥−̇𝑦 = 𝛼[𝛼−1(𝑥) − 𝛼−1(𝑦)], 

• 𝛼−1(𝑥−̇𝑦) = 𝛼−1(𝑥) − 𝛼−1(𝑦), 

• 𝛼(𝑎)−̇𝛼(𝑏) = 𝛼(𝑎 − 𝑏). 

Proposition 2.3.6. Let 𝛼 be a generator function. For every 𝑥 ∈ ℝ𝛼, the following identity holds: 

−̇𝑥 = 𝛼(0)−̇𝑥. 

Proof. 

𝛼(0)−̇𝑥 = 𝛼(0)−̇𝛼[𝛼−1(𝑥)] = 𝛼[0 − 𝛼−1(𝑥)] = 𝛼[−𝛼−1(𝑥)] = −̇𝑥. 



26637 
 

AIMS Mathematics  Volume 10, Issue 11, 26633–26661. 

Proposition 2.3.7. Let 𝛼  be a generator function. Then the 𝛼 -multiplicative inverse of 𝑥 ∈ ℝα ∖

{α(0)} is given by [20]: 

𝑥−1𝛼 = 𝛼[1 𝛼−1(𝑥)⁄ ]. 

Proposition 2.3.8. Let 𝛼  be a generator function. The 𝛼 -division operation on ℝ𝛼  satisfies the 

following equality: ∀𝑥, 𝑦 ∈ ℝ𝛼, with 𝑦 ≠ 𝛼(0), 

𝑥/̇𝑦 = 𝑥 ×̇ 𝑦−1𝛼 . 

Proposition 2.3.9. For ∀𝑥, 𝑦 ∈ ℝ𝛼   and ∀𝑎, 𝑏 ∈ ℝ , with 𝛼−1(𝑦) ≠ 0  and 𝑏 ≠ 0 , the following 

equalities hold [20]: 

• 𝑥/̇𝑦 = 𝛼[𝛼−1(𝑥) 𝛼−1(𝑦)⁄ ], 

• 𝛼−1(𝑥/̇𝑦) = 𝛼−1(𝑥) 𝛼−1(𝑦)⁄ , 

• 𝛼(𝑎 𝑏⁄ ) = 𝛼(𝑎)/̇𝛼(𝑏). 

Proposition 2.3.10. Let 𝛼: ℝ → ℝ𝛼 ⊂ ℝ be a generator function. Then, for all 𝑥 ∈ ℝ𝛼\{𝛼(0)}, the 

𝛼-multiplicative inverse satisfies: 

𝑥−1𝛼 = 𝛼(1)/̇𝑥. 

Proof. 

𝛼(1)/̇𝑥 = 𝛼(1)/̇𝛼[𝛼−1(𝑥)] = 𝛼[1/𝛼−1(𝑥)] = 𝑥−1𝛼 . 

Proposition 2.3.11. Let 𝛼: ℝ → ℝ𝛼 ⊂ ℝ be a generator function. The groups (ℝ, +) and (ℝ𝛼, +̇) 

are isomorphic via the mapping 𝑓(𝑥) = 𝛼(𝑥); that is, (ℝ, +) ≅ (ℝ𝛼, +̇). 

Proof. We show that 𝑓(𝑥) = 𝛼(𝑥) is a homomorphism and it is surjective and injective: 

• Homomorphism: For all 𝑎, 𝑏 ∈ ℝ, 

𝛼(𝑎 + 𝑏) = 𝛼(𝑎)+̇𝛼(𝑏). 

• Surjectivity: For every 𝑥 ∈ ℝ𝛼, since a generator 𝛼 is bijective, there exists 𝑦 = 𝛼−1(𝑥) ∈

ℝ such that 

𝛼(𝑦) = 𝑥. 

• Injectivity: Since 𝛼 is bijective it is also injective, 𝛼(𝑎) = 𝛼(𝑏) implies 𝑎 = 𝑏. 

Therefore, 𝛼 establishes an isomorphism. 

Proposition 2.3.12. The groups (ℝ ∖ {0}, ×)  and (ℝα ∖ {α(0)}, ×̇)  are isomorphic via 𝑓(𝑥) =

α(𝑥); that is, 

(ℝ ∖ {0},×) ≅ (ℝα ∖ {α(0)},×̇). 

Proof. For ∀𝑎, 𝑏 ∈ ℝ, 

𝑓(𝑎 × 𝑏) = 𝑓(𝑎) ×̇ 𝑓(𝑏). 

Injectivity and surjectivity were established in Proposition 2.3.11, so 𝑓 is an isomorphism 

Theorem 2.3.2. (ℝα, +̇,×̇) is a field [3]. 
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Proof. Considering the field axioms: 

i) The group (ℝ𝛼, +̇) is an abelian group with the neutral element 𝛼(0). 

ii) The group (ℝ𝛼\{𝛼(0)},×̇) is an abelian group with the multiplicative identity 𝛼(1). 

iii) The operation ×̇ is distributive over +̇: For all 𝛼(𝑎), 𝛼(𝑏), 𝛼(𝑐) ∈ ℝ𝛼 , the following holds: 

𝛼(𝑎) ×̇ [𝛼(𝑏)+̇𝛼(𝑐)] = [𝛼(𝑎) ×̇ 𝛼(𝑏)]+̇[𝛼(𝑎) ×̇ 𝛼(𝑐)]. 

This holds because: 

𝛼(𝑎) ×̇ [𝛼(𝑏)+̇𝛼(𝑐)] = 𝛼(𝑎) ×̇ 𝛼(𝑏 + 𝑐) 

= 𝛼[𝑎 × (𝑏 + 𝑐)] 

= 𝛼[(𝑎 × 𝑏) + (𝑎 × 𝑐)] 

= 𝛼(𝑎 × 𝑏)+̇𝛼(𝑎 × 𝑐). 

𝛼(𝑎) ×̇ [𝛼(𝑏)+̇𝛼(𝑐)] = [𝛼(𝑎) ×̇ 𝛼(𝑏)]+̇ [𝛼(𝑎) ×̇ 𝛼(𝑐)]. 

Thus, these three properties, i, ii, and iii, prove that (ℝ𝛼, +̇,×̇) is a field. 

Theorem 2.3.3. ℝα is a vector space over the field ℝ under the following operations [20]: 

1) Vector addition: The 𝛼-addition, 

2) Scalar multiplication: For 𝑟 ∈ ℝ and 𝑣 ∈ ℝ𝛼, 

𝑟 ⋅ 𝑣 = 𝛼[𝑟 × 𝛼−1(𝑣)]. 

Definition 2.3.1. (Natural Powers) For 𝑥 ∈ ℝ𝛼, 𝑛 ∈ ℕ: 

• 𝑥0𝛼 = 𝛼(1), 𝑥1𝛼 = 𝑥, 

• 𝑥(𝑛+1)𝛼 = 𝑥𝑛𝛼 ×̇ 𝑥. 

Proposition 2.3.13. 

𝑥𝑛𝛼 = 𝛼{[𝛼−1(𝑥)]𝑛}. 

Definition 2.3.2. (Real Powers) For 𝑥 ∈ ℝ𝛼, 𝑟 ∈ ℝ: 

𝑥𝑟𝛼 = 𝛼{[𝛼−1(𝑥)]𝑟}. 

Definition 2.3.3. (𝛼-Polynomial) Given 𝑛 ∈ ℕ, constants 𝑐0, 𝑐1, ⋯ , 𝑐𝑛 ∈ ℝ𝛼, the function 

𝑃(𝑥) = 𝑐0+̇(𝑐1 ×̇ 𝑥)+̇(𝑐2 ×̇ 𝑥2𝛼)+̇ ⋯ +̇(𝑐𝑛 ×̇ 𝑥𝑛𝛼) 

is called an 𝛼-polynomial of degree 𝑛 on ℝ𝛼. 

Definition 2.3.4. (𝛼-Square Root) For 𝑥 ∈ ℝ𝛼
+,0

, the 𝛼-square root is defined by 

√𝑥
𝛼

= 𝛼 ([𝛼−1(𝑥)]
1
2). 

Definition 2.3.5. (n-th Degree 𝛼-root) Let 𝑛 ∈ ℕ\{0} and 

𝐷𝑛 = {
ℝ𝛼 , if 𝑛 is odd,

ℝ𝛼
+,0,  if 𝑛 is even.

 

The function √⋅
𝑛 𝛼

: 𝐷𝑛 → ℝ𝛼, 
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√𝑥
𝑛 𝛼

= 𝛼 ([𝛼−1(𝑥)]
1
𝑛) 

is called the 𝑛-the degree 𝛼 root function [1,10,11]. 

Theorem 2.3.4. The pair (ℝα , ≤̇) forms a partially ordered set. That is, the relation ≤̇ satisfies the 

following axioms for all 𝑥, 𝑦, 𝑧 ∈ ℝα: 

• Reflexivity: 𝑥 ≤̇ 𝑥, 

• Antisymmetry: If 𝑥 ≤̇ 𝑦 and 𝑦 ≤̇ 𝑥, then 𝑥 = 𝑦, 

• Transitivity: If 𝑥 ≤̇ 𝑦 and 𝑦 ≤̇ 𝑧, then 𝑥 ≤̇ 𝑧. 

Proof. 

• Reflexivity: 

𝛼−1(𝑥) ≤ 𝛼−1(𝑥) ⇒ 𝑥 ≤̇ 𝑥. 

• Antisymmetry: 

If 𝑥 ≤̇ 𝑦 and 𝑦 ≤̇ 𝑥, then 

𝛼−1(𝑥) ≤ 𝛼−1(𝑦), 𝛼−1(𝑦) ≤ 𝛼−1(𝑥) ⇒ 𝛼−1(𝑥) = 𝛼−1(𝑦) ⇒ 𝑥 = 𝑦. 

• Transitivity: 

If 𝑥 ≤̇ 𝑦 and 𝑦 ≤̇ 𝑧, then 

𝛼−1(𝑥) ≤ 𝛼−1(𝑦),  𝛼−1(𝑦) ≤ 𝛼−1(𝑧) ⇒ 𝛼−1(𝑥) ≤ 𝛼−1(𝑧) ⇒ 𝑥 ≤̇ 𝑧. 

Proposition 2.3.14. Any two elements in ℝ𝛼 are comparable under the 𝛼-order: For all 𝑥, 𝑦 ∈ ℝ𝛼, 

either 𝑥 ≤̇ 𝑦 or 𝑦 ≤̇ 𝑥. 

Proof. Assume 𝑥, 𝑦 ∈ ℝ𝛼 and suppose by contradiction that neither 𝑥 ≤̇ 𝑦 nor 𝑦 ≤̇ 𝑥 holds. Then, 

𝛼−1(𝑥) ≰ 𝛼−1(𝑦) , 𝛼−1(𝑦) ≰ 𝛼−1(𝑥) ⇒ 𝛼−1(𝑥) > 𝛼−1(𝑦) , 𝛼−1(𝑦) > 𝛼−1(𝑥), 

which is a contradiction. Therefore, one of 𝑥 ≤̇ 𝑦 or 𝑦 ≤̇ 𝑥 must hold. 

Theorem 2.3.5. The 𝛼-order ≤̇ defines a total order on ℝ𝛼. 

Proof. The 𝛼 -order ≤̇  satisfies the axioms of a partial order (Theorem 2.3.4), and every pair of 

elements in ℝ𝛼 is comparable (Proposition 2.3.14).  

Hence, (ℝ𝛼 , ≤̇) is a totally ordered set. 

Proposition 2.3.15. The total 𝛼-order ≤̇ is compatible with the vector space structure of ℝ𝛼. That 

is, for all 𝑥, 𝑦, 𝑧 ∈ ℝ𝛼 and all 𝑟 ∈ ℝ, 𝑟 ≥ 0: 

• If 𝑥 ≤̇ 𝑦, then 𝑥+̇𝑧 ≤̇ 𝑦+̇𝑧, 

• If 𝑥 ≤̇ 𝑦, then 𝑟 ⋅ 𝑥 ≤̇ 𝑟 ⋅ 𝑦. 

Proof. Let 𝑥, 𝑦, 𝑧 ∈ ℝ𝛼 such that 𝑥 ≤̇ 𝑦 ⇒ 𝛼−1(𝑥) ≤ 𝛼−1(𝑦). 

• For any 𝑧 ∈ ℝ𝛼, 

𝛼−1(𝑥) + 𝛼−1(𝑧) ≤ 𝛼−1(𝑦) + 𝛼−1(𝑧) ⇒ 𝛼−1(𝑥+̇𝑧) ≤ 𝛼−1(𝑦+̇𝑧) ⇒ 𝑥+̇𝑧 ≤ 𝑦+̇𝑧. 

• For any 𝑟 ∈ ℝ, 𝑟 ≥ 0, 

𝑟 × 𝛼−1(𝑥) ≤ 𝑟 × 𝛼−1(𝑦) ⇒ 𝛼−1(𝑟 ⋅ 𝑥) ≤ 𝛼−1(𝑟 ⋅ 𝑦) ⇒ 𝑟 ⋅ 𝑥 ≤̇ 𝑟 ⋅ 𝑦. 

Theorem 2.3.6. (ℝ𝛼 , ≤̇) is a totally ordered vector space. 

Proof. Since ≤̇ is a total order on ℝ𝛼 (Theorem 2.3.5) and the order is compatible with the vector 

space operations (Proposition 2.3.15), it follows that (ℝ𝛼, ≤̇) is a totally ordered vector space. 
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Definition 2.3.6. Let 𝑢, 𝑣 ∈ ℝ𝛼. The set 

• [𝑢, 𝑣]𝛼 = {𝑥 ∈  ℝ𝛼|𝑢 ≤̇ 𝑥 ≤̇ 𝑣} is called an 𝛼-closed interval, 

• (𝑢, 𝑣)𝛼 = {𝑥 ∈  ℝ𝛼|𝑢 <̇ 𝑥 <̇ 𝑣} is called an 𝛼-open interval, 

• [𝑢, 𝑣)𝛼 = {𝑥 ∈ ℝ𝛼|𝑢 ≤̇ 𝑥 <̇ 𝑣} is called an 𝛼-half-open interval [1]. 

Notation 2.3.3. Let 𝛼 be a generator function and 𝑟 ∈ ℝ a real number. Then the 𝛼-real number 

corresponding to 𝑟 is denoted by 

𝑟̇ = 𝛼(𝑟). 

Definition 2.3.7. The 𝛼-absolute value function is defined as 

|⋅|𝛼: ℝ𝛼 → ℝ𝛼
+,0, |𝑥|𝛼 = {

𝑥, 𝑥 ≥̇ 0̇,

−̇𝑥, 𝑥 <̇ 0̇,
 

where −̇𝑥 denotes the additive inverse of 𝑥 with respect to the 𝛼-addition. [1]. 

Proposition 2.3.16. For the 𝛼-absolute value function, the following equality holds: 

|𝑥|𝛼 = 𝛼(|𝛼−1(𝑥)|). 

Proposition 2.3.17. For 𝑥, 𝑦 ∈ ℝ𝛼 , the 𝛼 -absolute value function satisfies the following 

properties [3]: 

i) Non-negativity: |𝑥|𝛼 ≥̇ 0̇. 

ii) Separation of points: |𝑥|𝛼 = 0̇ ⇔ 𝑥 = 0̇. 

iii) Multiplicativity: |𝑥 ×̇ 𝑦|𝛼 = |𝑥|𝛼 ×̇ |𝑦|𝛼. 

iv) Triangle inequality: |𝑥+̇𝑦|𝛼 ≤ |𝑥|𝛼+̇|𝑦|𝛼. 

Definition 2.3.8. (𝛼-Metric Space) Let 𝑋 be a nonempty set and 

𝑑𝛼: 𝑋 × 𝑋 → ℝ𝛼
+,0

 

be a function defined on 𝑋 . If for every 𝑥, 𝑦, 𝑧 ∈ 𝑋 , the function 𝑑𝛼  satisfies the following 

axioms [9], then 𝑑𝛼 is called an 𝛼-metric: 

• Identity of indiscernibles: 

𝑑𝛼(𝑥, 𝑦) = 0̇ ⇔ 𝑥 = 𝑦. 

• Symmetry: 

𝑑𝛼(𝑥, 𝑦) = 𝑑𝛼(𝑦, 𝑥). 

• Triangle inequality: 

𝑑𝛼(𝑥, 𝑦) ≤̇ 𝑑𝛼(𝑥, 𝑧)+̇𝑑𝛼(𝑧, 𝑦). 

Definition 2.3.9. If 𝑋 is a nonempty set and 𝑑𝛼 is an 𝛼-metric on 𝑋, then the pair (𝑋, 𝑑𝛼) is called 

an 𝛼-metric space [3]. 

Proposition 2.3.18. Define 

𝑑𝛼: ℝ𝛼 × ℝ𝛼 → ℝ𝛼
+,0, 𝑑𝛼(𝑥, 𝑦) = {

0̇, 𝑥 = 𝑦,

1̇, 𝑥 ≠ 𝑦.
 

Then 𝑑𝛼 is an 𝛼-metric on ℝ𝛼 and it is called the 𝛼-discrete metric. 
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Proof. 

• Identity of indiscernibles: 

𝑑𝛼(𝑥, 𝑦) = 0̇ ⇔ 𝑦 = 𝑥. 

• Symmetry: 

𝑑𝛼(𝑥, 𝑦) = {
0̇, 𝑥 = 𝑦

1̇, 𝑥 ≠ 𝑦
= {

0̇, 𝑦 = 𝑥

1̇, 𝑦 ≠ 𝑥
= 𝑑𝛼(𝑦, 𝑥). 

• Triangle inequality: There are two cases: 

1) If 𝑦 = 𝑥, then 

𝑑𝛼(𝑥, 𝑦) = 𝑑𝛼(𝑥, 𝑥) = 0̇ ≤̇ 𝑑𝛼(𝑥, 𝑧)+̇𝑑𝛼(𝑧, 𝑦), 

which holds trivially. 

2) If 𝑦 ≠ 𝑥, then either 𝑦 ≠ 𝑧 or 𝑥 ≠ 𝑧, so 

𝑑𝛼(𝑥, 𝑦) = 1̇ ≤̇ 𝑑𝛼(𝑥, 𝑧)+̇𝑑𝛼(𝑧, 𝑦), 

which also holds. 

Proposition 2.3.19. Define 

𝑑𝛼: ℝ𝛼 × ℝ𝛼 → ℝ𝛼
+,0

,   𝑑𝛼(𝑥, 𝑦) = {
𝛼(0),   𝑥 = 𝑦,

|𝑥|𝛼+̇|𝑦|𝛼,   𝑥 ≠ 𝑦.
 

Then 𝑑𝛼 is an 𝛼-metric on ℝ𝛼 and it is called the 𝛼-post office metric. 

Proof. For every 𝑥, 𝑦, 𝑧 ∈ ℝ𝛼: 

• Identity of indiscernibles: 

𝑑𝛼(𝑥, 𝑦) = 𝛼(0) ⇔ 𝑥 = 𝑦. 

• Symmetry: 

𝑑𝛼(𝑥, 𝑦) = {
𝛼(0),   𝑥 = 𝑦

|𝑥|𝛼+̇|𝑦|𝛼,   𝑥 ≠ 𝑦
= {

𝛼(0), 𝑦 = 𝑥

|𝑦|𝛼+̇|𝑥|𝛼, 𝑦 ≠ 𝑥
= 𝑑𝛼(𝑦, 𝑥). 

• Triangle inequality: 

𝑑𝛼(𝑥, 𝑦) ≤̇ 𝑑𝛼(𝑥, 𝑧)+̇𝑑𝛼(𝑧, 𝑦) 

holds in the following cases: 

a) If 𝑥 = 𝑦  

𝛼(0) = 𝑑𝛼(𝑥, 𝑦) ≤̇ 𝑑𝛼(𝑥, 𝑧)+̇𝑑𝛼(𝑧, 𝑦). 

b) If 𝑥 ≠ 𝑦, 𝑥 ≠ 𝑧 ve 𝑦 ≠ 𝑧 

|𝑥|𝛼+̇|𝑦|𝛼 = 𝑑𝛼(𝑥, 𝑦) ≤̇ 𝑑𝛼(𝑥, 𝑧)+̇𝑑𝛼(𝑧, 𝑦) =  |𝑥|𝛼+̇|𝑦|𝛼+̇𝛼(2) ×̇ |𝑧|𝛼. 

c) If 𝑧 = 𝑥 ≠ 𝑦  

𝑑𝛼(𝑥, 𝑧) = 𝛼(0),   𝑑𝛼(𝑥, 𝑦) = 𝑑𝛼(𝑧, 𝑦), 
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thus the triangle inequality holds. 

d) The case 𝑥 = 𝑦 ≠ 𝑧 is similar to (c). 

Definition 2.3.10. Let 

𝑑: ℝ × ℝ → ℝ+ ∪ {0}, 𝑑(𝑎, 𝑏) = |𝑎 − 𝑏| 

be the classical distance function on the metric space (ℝ, 𝑑). Define 

𝑑𝛼: ℝ𝛼 × ℝ𝛼 → ℝ𝛼
+,0

 

by 

𝑑𝛼(𝑥, 𝑦) = 𝛼{𝑑[𝛼−1(𝑥), 𝛼−1(𝑦)]}. 

Then 𝑑𝛼 is called the 𝛼-distance function in the 𝛼-metric space (ℝ𝛼 , 𝑑𝛼). The value 𝑑𝛼(𝑥, 𝑦) is 

called the 𝛼-distance between 𝑥 and 𝑦 [3]. 

Proposition 2.3.20. In a one-dimensional space, the 𝛼-distance function satisfies [20]: 

• ∀𝑥, 𝑦 ∈ ℝ𝛼 , 𝑑𝛼(𝑥, 𝑦) = |𝑥−̇𝑦|𝛼, 

• ∀𝑎, 𝑏 ∈ ℝ,   𝑑𝛼(𝑎̇, 𝑏̇) = 𝛼(|𝑎 − 𝑏|). 

Proof. 

a) ∀𝑥, 𝑦 ∈ ℝ𝛼 

𝑑𝛼(𝑥, 𝑦) = 𝛼{𝑑[𝛼−1(𝑥), 𝛼−1(𝑦)]} 

= 𝛼(|𝛼−1(𝑥) − 𝛼−1(𝑦)|) 

= {
𝛼(𝛼−1(𝑥) − 𝛼−1(𝑦)), 𝛼−1(𝑥) ≥ 𝛼−1(𝑦)

𝛼(𝛼−1(𝑦) − 𝛼−1(𝑥)), 𝛼−1(𝑦) < 𝛼−1(𝑥)
 

= {
𝑥−̇𝑦, 𝑥 >̇ 𝑦 or 𝑥 = 𝑦 ,

𝑦−̇𝑥, 𝑦 <̇ 𝑥,
 

= {
𝑥−̇𝑦, 𝑥−̇𝑦 >̇ 0̇ or 𝑥−̇𝑦 = 0̇ ,

𝑦−̇𝑥, 𝑥−̇𝑦 <̇ 0̇,
 

𝑑𝛼(𝑥, 𝑦) = |𝑥−̇𝑦|𝛼. 

b) ∀𝑎, 𝑏 ∈ ℝ, 

𝑑𝛼(𝑎̇, 𝑏̇) = 𝛼{𝑑[𝛼−1(𝑎̇), 𝛼−1(𝑏̇)]} = 𝛼(|𝑎 − 𝑏|). 

Proposition 2.3.21. The 𝛼-distance function 

𝑑𝛼: ℝ𝛼 × ℝ𝛼 → ℝ𝛼
+,0

 

is an 𝛼-metric on ℝ𝛼 [20]. 

Definition 2.3.11. The closed 𝛼-ball 𝐵𝛼[𝑥0, 1̇] centered at 𝑥0 with radius 1̇ is called the unit 𝛼-

ball centered at 𝑥0. 

Definition 2.3.12. Let (𝑋, 𝑑𝛼) be an 𝛼-metric space 𝑥0 ∈ 𝑋, and 𝐴 ⊂ 𝑋. 

• If there exists 𝜀 >̇ 0̇, such that 
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𝐵𝛼(𝑥0, 𝜀) ⊂ 𝐴, 

then 𝑥0 is called an interior point of 𝐴. The set of all interior points of 𝐴 is called the interior of 𝐴 

and it is denoted by int(𝐴). 

• If there exists 𝜀 >̇ 0̇, such that 

𝐵𝛼(𝑥0, 𝜀) ∩ 𝐴 = ∅, 

then 𝑥0 is called an exterior point of 𝐴. The set of all exterior points of 𝐴 is called the exterior of 𝐴 

and it is denoted by ext(𝐴). 

• If for every 𝜀 >̇ 0̇   

𝐵𝛼(𝑥0, 𝜀) ∩ 𝐴 ≠ ∅  and  𝐵𝛼(𝑥0, 𝜀) ∩ (𝑋\𝐴) ≠ ∅, 

then 𝑥0 is called a boundary point of 𝐴 [3]. 

Definition 2.3.13. Let (𝑋, 𝑑𝛼) be an α-metric space, 𝑥0 ∈ 𝑋, and 𝐴 ⊂ 𝑋. 

• If every point of 𝐴 is an interior point, then 𝐴 is called an 𝛼-open set in 𝑋 

• If the complement 𝑋\𝐴 is 𝛼-open, then 𝐴 is called an 𝛼-closed set. 

• The set of all boundary points of 𝐴 is called the 𝛼-boundary of 𝐴, denoted by 𝜕𝛼𝐴 [4]. 

Definition 2.3.14. Let (𝑋, 𝑑𝛼)  be an 𝛼 -metric space and 𝐴 ⊂ 𝑋 . The union of 𝐴  with its 𝛼 -

boundary 𝜕𝛼𝐴 is called the 𝛼-closure of 𝐴, denoted by 𝐴̅𝛼 [4]. 

Definition 2.3.15. Let 𝐴 ⊂ 𝑋 be a subset of the 𝛼-space 𝑋. If the 𝛼-closure of 𝐴 equals 𝑋, i.e., 

𝐴̅𝛼 = 𝑋, then 𝐴 is called α-dense in 𝑋. 

If 𝐴 is α-dense in 𝑋, then for every 𝑥 ∈ 𝑋, every neighborhood of 𝑥 contains at least one point 

of 𝐴. 

Example 2.3.1. Let ℚ𝛼 = {𝛼(𝑟)|𝑟 ∈ ℚ} be the set of 𝛼-rational numbers. Then ℚ𝛼 is 𝛼-dense in 

the space ℝ𝛼. 

Solution. To show 𝛼-density of ℚ𝛼 in ℝ𝛼, we must prove that for every 𝑥, 𝑦 ∈ ℝ𝛼 with 𝑥 <̇ 𝑦, 

there exists 𝜌 ∈ ℚ𝛼, such that 

𝑥 <̇ 𝜌 <̇ 𝑦. 

From the definition of the α-order, 

𝑥 <̇  𝑦 ⇒ 𝛼−1(𝑥) < 𝛼−1(𝑦). 

Since 𝛼−1(𝑥), 𝛼−1(𝑦) ∈ ℝ, and the rationals are dense in the reals, there exists 𝑟 ∈ ℚ, such that 

𝛼−1(𝑥) < 𝑟 < 𝛼−1(𝑦). 

From the 𝛼-order, we have 

𝛼(𝛼−1(𝑥)) <̇ 𝛼(𝑟) <̇ 𝛼(𝛼−1(𝑦)), 

i.e., 

𝑥 <̇ 𝜌 <̇ 𝑦, 

where 𝜌 = 𝛼(𝑟) ∈ ℚ𝛼. Hence, ℚ𝛼 is 𝛼-dense in ℝ𝛼. Here, we want to show the existence of 𝜌 

and we find that there exist an 𝛼-rational number 𝜌, which is equal to 𝜌 = 𝛼(𝑟). 
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Definition 2.3.16. Let (𝑋, 𝑑𝛼)  be an 𝛼 -metric space. A function defined from the set of natural 

numbers ℕ into a subset 𝑋 ⊂ ℝ𝛼 is called an 𝛼-sequence, and it is denoted by (𝑥𝑛)𝑛∈ℕ, where each 

𝑥𝑛 ∈ 𝑋 [3]. 

Definition 2.3.17. Let (𝑋, 𝑑𝛼) be an 𝛼-metric space and (𝑥𝑛)𝑛∈ℕ an 𝛼-sequence in this space. 

• The sequence (𝑥𝑛) is said to 𝛼-converge to a point 𝑥𝑛 ∈ 𝑋 if for every 𝜀 >̇ 0̇, there exists 

a natural number 𝑁0 ∈ ℕ, such that for all 𝑛 ≥ 𝑁0, 

𝑑𝛼(𝑥𝑛, 𝑥) <̇ 𝜀. 

• The sequence (𝑥𝑛) is called an 𝛼-Cauchy sequence if for every 𝜀 >̇ 0̇, there exists 𝑁0 ∈ ℕ, 

such that for all 𝑛, 𝑚 ≥ 𝑁0, 

𝑑𝛼(𝑥𝑛, 𝑥𝑚) <̇ 𝜀. 

• The 𝛼 -metric space (𝑋, 𝑑𝛼)  is said to be complete if every 𝛼 -Cauchy sequence in 𝑋  𝛼 -

converges to a point 𝑥 ∈ 𝑋 [3]. 

Theorem 2.3.7. Let 𝑑𝛼  be an 𝛼 -metric defined on the totally ordered field ℝ𝛼 . Then, ℝ𝛼  is 

Dedekind complete with respect to the 𝛼-metric 𝑑𝛼. 

Proof. The set ℝ𝛼 is a totally ordered field. Let 𝑆 ⊂ ℝ𝛼 be a nonempty subset that is bounded above. 

Let 𝑥 ∈ ℝ𝛼 be an arbitrary upper bound of 𝑆, i.e., 

𝑠 ≤̇ 𝑥, ∀𝑠 ∈ 𝑆. 

Since 𝑆 ⊂ ℝ𝛼, the set 

𝛼−1(𝑆) = {𝛼−1(𝑠) | 𝑠 ∈ 𝑆} ⊂ ℝ 

is well-defined. By the definition of 𝛼-order, we have 

𝛼−1(𝑠) ≤ 𝛼−1(𝑥), ∀𝛼−1(𝑠) ∈ 𝛼−1(𝑆). 

Thus, 𝛼−1(𝑥)  is an upper bound of 𝛼−1(𝑆)  in ℝ . Since ℝ  is Dedekind complete, the set 

𝛼−1(𝑆) has a supremum, say 𝑟. Therefore, 

𝛼−1(𝑠) ≤ 𝑟, and 𝑟 ≤ 𝛼−1(𝑥). 

From the 𝛼-order, we have 

𝑠 ≤̇ 𝛼(𝑟), ∀𝑠 ∈ 𝑆  and  𝛼(𝑟) ≤̇  𝑥. 

Hence, 𝛼(𝑟) is an upper bound of 𝑆 in ℝ𝛼, and it is less than or equal to any other upper bound of 

𝑆 . Therefore, 𝛼(𝑟)  is the supremum of 𝑆 . Consequently, any nonempty subset 𝑆 ⊂ ℝ𝛼  that is 

bounded above has a supremum in ℝ𝛼. This proves that ℝ𝛼 is Dedekind complete. 

Definition 2.3.18. Let 𝑨̇ ⊂ ℝ𝜶 . If there exists 𝑚 ∈ 𝐴̇ , such that 𝑥 ≤̇ 𝑚  for all 𝑥 ∈ 𝐴̇ , then 𝑚  is 

called the 𝛼-maximum element of 𝐴̇ and is denoted by 𝑚 = max
𝛼

𝐴̇. 

Lemma 2.3.1. Let 𝐴̇ ⊂ ℝ𝛼. If the 𝛼-maximum element of 𝐴̇ exists, then 

max
𝛼

𝐴̇ = 𝛼(max[𝛼−1(𝐴̇)]). 

Proof. Suppose 𝑚 = max
𝛼

𝐴̇ exists. Since 𝛼−1(𝐴̇) = {𝛼−1(𝑥)|𝑥 ∈ 𝐴̇} and ∀𝑥 ∈ 𝐴̇ 
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𝑥 ≤̇ 𝑚 ⇒ 𝛼−1(𝑥) ≤ 𝛼−1(𝑚), 

we can say that 𝛼−1(𝑚) ∈ 𝐴̇ and it is the maximum element of 𝛼−1(𝐴̇). Hence, 

𝛼−1(𝑚) = max[𝛼−1(𝐴̇)]. 

Applying 𝛼 to both sides gives 

𝑚 = 𝛼(max[𝛼−1(𝐴̇)]), 

i.e., 

max
𝛼

𝐴̇ = 𝛼(max[𝛼−1(𝐴̇)]). 

2.4. Star analysis 

Definition 2.4.1. ( ⋆ -Analysis) Let us consider two arbitrary arithmetics: 𝛼 -arithmetic =

(ℝ𝛼 , +̇, −̇,  ×̇, /̇, <̇)  and 𝛽 -arithmetic = (ℝ𝛽 , +̈, −̈, ×̈, /̈ , <̈) , and denote the pair by ⋆=

(𝛼 arithmetic, 𝛽 arithmetic) . In ⋆-analysis, the domain of a function is a subset of ℝ𝛼 , and the 

codomain is a subset of ℝ𝛽 . We denote a general function in this context as: 

𝑓: ℝ𝛼 ⊃ 𝐴 → 𝐵 ⊂ ℝ𝛽 . 

Since both (ℝ𝛼 , +̇, −̇, ×̇, /̇ , <̇)  and (ℝ𝛽 , +̈, −̈, ×̈, /̈ , <̈)  are totally ordered fields, they are 

isomorphic. The operation symbols in ⋆-analysis are given in Table 1. 

Table 1. The operation symbols in ⋆-analysis. 

 𝛼-arithmetic 𝛽-arithmetic 

Universe / Realm ℝ𝛼 ℝ𝛽 

Addition operation +̇ +̈ 

Subtraction operation −̇ −̈ 

Multiplication operation ×̇ ×̈ 

Division operation /̇ /̈ 

Order relation <̇ <̈ 

Definition 2.4.2. Let 𝑓: ℝ𝛼 → ℝ𝛽. |𝑓|𝛽: ℝ𝛼 → ℝ𝛽, the absolute value function of 𝑓 is defined by 

|𝑓|𝛽(𝑥) = |𝑓(𝑥)|𝛽. 
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Lemma 2.4.1. Let 𝑓: ℝ𝛼 → ℝ𝛽. Then the absolute value function of 𝑓 satisfies  

|𝑓|𝛽 = 𝛽 ∘ |𝛽−1 ∘ 𝑓|. 

Proof. For all 𝑥 ∈ ℝ𝛼, we have 

|𝑓|𝛽(𝑥) = |𝑓(𝑥)|𝛽 

= 𝛽(|𝛽−1(𝑓(𝑥))|) 

= 𝛽(|(𝛽−1 ∘ 𝑓)(𝑥)|) 

= 𝛽(|(𝛽−1 ∘ 𝑓)|(𝑥)). 

|𝑓|𝛽(𝑥) = (𝛽 ∘ |𝛽−1 ∘ 𝑓|)(𝑥). 

Hence, the lemma is proved. 

Definition 2.4.3. (⋆-Limit) Let 𝑓: ℝ𝛼 ⊃ 𝐴 → 𝐵 ⊂ ℝ𝛽 be a function. If for every 𝜀𝛽 >̈ 0̈ (𝜀𝛽 ∈ ℝ𝛽) 

there exists 𝛿𝛼 >̇ 0̇ (𝛿𝛼 ∈ ℝ𝛼), such that whenever 0̇ <̇ |𝑥−̇𝑥0|𝛼 <̇ 𝛿𝛼, we have |𝑓(𝑥)−̈𝐿|𝛽 <̈ 𝜀𝛽, 

then the ⋆-limit of 𝑓 at 𝑥0 ∈ ℝ𝛼 exists and it is equal to 𝐿. This is denoted as [17] 

⋆ lim
𝑥→𝑥0

𝑓(𝑥) = 𝐿 . 

Proposition 2.4.1. Let there exist 𝛿𝛼 ∈ ℝ𝛼
+ and 𝜀𝛽 ∈ ℝ𝛽

+, such that 

0̇ <̇ |𝑥−̇𝑥0|𝛼 <̇ 𝛿𝛼  ⇒  |𝑓(𝑥)−̈𝐿|𝛽 <̈ 𝜀𝛽 . 

Then, for 𝛿: = 𝛼−1(𝛿𝛼) > 0 and 𝜀: = 𝛽−1(𝜀𝛽) > 0, we have 

0 < |𝛼−1(𝑥) − 𝛼−1(𝑥0)| < 𝛿 ⇒ |(𝛽−1 ∘ 𝑓)(𝑥) − 𝛽−1(𝐿)| < 𝜀. 

Proof. 

i. 0̇ <̇ |𝑥−̇𝑥0|𝛼 <̇ 𝛿𝛼 ⇔ 𝛼(0) <̇ |𝛼(𝛼−1(𝑥) − 𝛼−1(𝑥0))|
𝛼

<̇ 𝛼(𝛼−1(𝛿𝛼)) 

⇔ 𝛼(0) <̇ 𝛼{|𝛼−1[𝛼(𝛼−1(𝑥) − 𝛼−1(𝑥0))]|} <̇ 𝛼(𝛿) 

⇔ 0 < |𝛼−1(𝑥) − 𝛼−1(𝑥0)| < 𝛿. 

ii. |𝑓(𝑥)−𝐿̈|
𝛽

<̈ 𝜀𝛽 ⇔ |𝛽 (𝛽−1(𝑓(𝑥)) − 𝛽−1(𝐿))|
𝛽

<̈ 𝛽 (𝛽−1(𝜀𝛽)) 
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⇔ 𝛽 {|𝛽−1 [𝛽 (𝛽−1(𝑓(𝑥)) − 𝛽−1(𝐿))]|} <̈ 𝛽(𝜀)  

⇔ 𝛽(|𝛽−1(𝑓(𝑥)) − 𝛽−1(𝐿)|) <̈ 𝛽(𝜀) 

⇔ |𝛽−1(𝑓(𝑥)) − 𝛽−1(𝐿)| < 𝜀. 

iii. From i), ii) and 0̇ <̇ |𝑥−̇𝑥0|𝛼 <̇ 𝛿𝛼 ⇒ |𝑓(𝑥)−𝐿̈|
𝛽

<̈ 𝜀𝛽, we have 

0 < |𝛼−1(𝑥) − 𝛼−1(𝑥0)| < 𝛿 ⇒ |(𝛽−1 ∘ 𝑓)(𝑥) − 𝛽−1(𝐿)| < 𝜀. 

Proposition 2.4.2. Let 𝑓: ℝ𝛼 ⊃ 𝐴 → 𝐵 ⊂ ℝ𝛽 and suppose that for 𝑥 → 𝑥₀ ∈ A, the ⋆-limit 

⋆ lim
𝑥→𝑥0

𝑓(𝑥) = 𝐿 

exists. Also assume that the classical limit 

lim
𝑡→𝛼−1(𝑥0)

(𝛽−1 ∘ 𝑓 ∘ 𝛼) (𝑡) 

exists. Then the following equality holds: 

lim
𝑡→𝛼−1(𝑥0)

(𝛽−1 ∘ 𝑓 ∘ 𝛼) (𝑡) = 𝛽−1(𝐿). 

Proof. Let 𝜀 >  0 be arbitrary and define 𝜀𝛽 = 𝛽(𝜀) ∈ ℝ𝛽, so that 𝜀𝛽 >̈ 0. Since the ⋆-limit exists, 

there is 𝛿𝛼 = 𝛿𝛼(𝜀𝛽) >̇ 0 , such that if 0̇ <̇ |𝑥−̇𝑥0|𝛼 <̇ 𝛿𝛼 , then |𝑓(𝑥)−̈𝐿|𝛽 <̈ 𝜀𝛽 . From 

Proposition 2.4.1 for 𝛿 = 𝛼−1(𝛿𝛼) > 0, we have 

0 < |𝛼−1(𝑥) − 𝛼−1(𝑥0)| < 𝛿 ⇒ |(𝛽−1 ∘ 𝑓) (𝑥) − 𝛽−1(𝐿)| < 𝜀. 

Now we use change of variables, namely 𝑡 = 𝛼−1(𝑥) so that 

0 < |𝑡 − 𝛼−1(𝑥0)| < 𝛿 ⇒ |(𝛽−1 ∘ 𝑓) (𝛼(𝑡)) − 𝛽−1(𝐿)| < 𝜀, 

0 < |𝑡 − 𝛼−1(𝑥0)| < 𝛿 ⇒ |(𝛽−1 ∘ 𝑓 ∘ 𝛼) (𝑡) − 𝛽−1(𝐿)| < 𝜀. 

Thus, the proposition is proved. 

Theorem 2.4.1. Let 𝑓: ℝ𝛼 ⊃ 𝐴 → 𝐵 ⊂ ℝ𝛽 be a function. Suppose both the ⋆-limit 

⋆ lim
𝑥→𝑥0

𝑓(𝑥) 

and the classical limit 

lim
𝑡→𝛼−1(𝑥0)

(𝛽−1 ∘ 𝑓 ∘ 𝛼) (𝑡) 
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exist. Then the following equality holds: 

⋆ lim
𝑥→𝑥0

𝑓(𝑥) = 𝛽 [ lim
𝑡→𝛼−1(𝑥0)

(𝛽−1 ∘ 𝑓 ∘ 𝛼) (𝑡)] .  

Proof. From Proposition 2.4.2, we have 

lim
𝑡→𝛼−1(𝑥0)

(𝛽−1 ∘ 𝑓 ∘ 𝛼) (𝑡) = 𝛽−1(𝐿). 

Applying 𝛽 to both sides yields: 

⋆ lim
𝑥→𝑥0

𝑓(𝑥) = 𝛽 [ lim
𝑡→𝛼−1(𝑥0)

(𝛽−1 ∘ 𝑓 ∘ 𝛼) (𝑡)]. 

Proposition 2.4.3. Let 𝑓, 𝑔: ℝ𝛼 → ℝ𝛽 be given functions that have ⋆ limits at the point 𝑥0, and let 

𝑐 ∈ ℝ𝛽 be a constant. Then the following equalities hold: 

a) ⋆ lim
𝑥→𝑥0

[𝑓(𝑥)+̈𝑔(𝑥)] =⋆ lim
𝑥→𝑥0

𝑓(𝑥) +̈ ⋆ lim
𝑥→𝑥0

𝑔(𝑥). 

b) ⋆ lim
𝑥→𝑥0

[𝑓(𝑥)−̈𝑔(𝑥)] =⋆ lim
𝑥→𝑥0

𝑓(𝑥) −̈ ⋆ lim
𝑥→𝑥0

𝑔(𝑥). 

c) ⋆ lim
𝑥→𝑥0

[𝑓(𝑥) ×̈ 𝑔(𝑥)] =⋆ lim
𝑥→𝑥0

𝑓(𝑥) ×̈⋆ lim
𝑥→𝑥0

𝑔(𝑥). 

d) ⋆ lim
𝑥→𝑥0

[𝑓(𝑥)/̈𝑔(𝑥)] =⋆ lim
𝑥→𝑥0

𝑓(𝑥) /̈ ⋆ lim
𝑥→𝑥0

𝑔(𝑥), whenever ⋆ lim
𝑥→𝑥0

𝑔(𝑥) ≠ 0. 

e) ⋆ lim
𝑥→𝑥0

[𝑐 ×̈ 𝑓(𝑥)] = 𝑐 ×̈⋆ lim
𝑥→𝑥0

𝑓(𝑥). 

Proof. 

a)  

⋆ lim
𝑥→𝑥0

[𝑓(𝑥)+̈𝑔(𝑥)] = 

= 𝛽 { lim
𝑡→𝛼−1(𝑥0)

(𝛽−1 ∘ (𝑓+̈𝑔) ∘ 𝛼) (𝑡)} 

= 𝛽 { lim
𝑡→𝛼−1(𝑥0)

([𝛽−1 ∘ (𝑓+̈𝑔)] ∘ 𝛼) (𝑡)} 

= 𝛽 { lim
𝑡→𝛼−1(𝑥0)

([(𝛽−1 ∘ 𝑓) + (𝛽−1 ∘ 𝑔)] ∘ 𝛼) (𝑡)} 

= 𝛽 { lim
𝑡→𝛼−1(𝑥0)

([(𝛽−1 ∘ 𝑓) + (𝛽−1 ∘ 𝑔)] ∘ 𝛼) (𝑡)} 

= 𝛽 { lim
𝑡→𝛼−1(𝑥0)

([𝛽−1 ∘ 𝑓] ∘ 𝛼) (𝑡) + lim
𝑡→𝛼−1(𝑥0)

([𝛽−1 ∘ 𝑔] ∘ 𝛼) (𝑡)} 

= 𝛽 { lim
𝑡→𝛼−1(𝑥0)

(𝛽−1 ∘ 𝑓 ∘ 𝛼) (𝑡) + lim
𝑡→𝛼−1(𝑥0)

(𝛽−1 ∘ 𝑔 ∘ 𝛼) (𝑡)} 
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= 𝛽 { lim
𝑡→𝛼−1(𝑥0)

(𝛽−1 ∘ 𝑓 ∘ 𝛼) (𝑡)} +̈𝛽 { lim
𝑡→𝛼−1(𝑥0)

(𝛽−1 ∘ 𝑔 ∘ 𝛼) (𝑡)} . 

⋆ lim
𝑥→𝑥0

[𝑓(𝑥)+̈𝑔(𝑥)] =⋆ lim
𝑥→𝑥0

𝑓(𝑥) +̈ ⋆ lim
𝑥→𝑥0

𝑔(𝑥). 

b), c), d) Proofs are done similar to a) 

e)  

 ⋆ lim
𝑥→𝑥0

[𝑐 ×̈ 𝑓(𝑥)] = 𝛽 { lim
𝑡→𝛼−1(𝑥0)

(𝛽−1 ∘ (𝑐 ×̈ 𝑓) ∘ 𝛼) (𝑡)} 

= 𝛽 { lim
𝑡→𝛼−1(𝑥0)

([𝛽−1 ∘ (𝑐 ×̈ 𝑓)] ∘ 𝛼) (𝑡)} 

= 𝛽 { lim
𝑡→𝛼−1(𝑥0)

([𝛽−1(𝑐) × (𝛽−1 ∘ 𝑓)] ∘ 𝛼) (𝑡)}. 

Since 𝛽−1(𝑐) is a real constant, we have 

⋆ lim
𝑥→𝑥0

[𝑐 ×̈ 𝑓(𝑥)] = 𝛽 { lim
𝑡→𝛼−1(𝑥0)

(𝛽−1(𝑐) × [(𝛽−1 ∘ 𝑓) ∘ 𝛼]) (𝑡)} 

= 𝛽 {𝛽−1(𝑐) lim
𝑡→𝛼−1(𝑥0)

(𝛽−1 ∘ 𝑓 ∘ 𝛼)(𝑡)} 

= 𝑐 ×̈ 𝛽 { lim
𝑡→𝛼−1(𝑥0)

(𝛽−1 ∘ 𝑓 ∘ 𝛼)(𝑡)} . 

⋆ lim
𝑥→𝑥0

[𝑐 ×̈ 𝑓(𝑥)] = 𝑐 ×̈⋆ lim
𝑥→𝑥0

𝑓(𝑥). 

Definition 2.4.4. (⋆-Continuity) A function 𝑓: ℝ𝛼 ⊃ 𝐴 → 𝐵 ⊂ ℝ𝛽 is said to be ⋆-continuous at 

𝑥0 ∈ ℝ𝛼 if [1]: 

⋆ lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0). 

Proposition 2.4.4. Let 𝑓: ℝ𝛼 ⊃ 𝐴 → 𝐵 ⊂ ℝ𝛽 be a function. If 𝑓 is ⋆-continuous at point 𝑥0 ∈ 𝐴, 

then the function (𝛽−1 ∘ 𝑓 ∘ 𝛼): 𝛼−1(𝐴) → ℝ is continuous at point 𝛼−1(𝑥0) ∈ 𝛼−1(𝐴) in the 

classical sense. 

Proof. 𝑓 is ⋆-continuous at the point 𝑥0 ∈ 𝐴, so 

⋆ lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0) 

⇒ 𝛽 [ lim
𝑡→𝛼−1(𝑥0)

(𝛽−1 ∘ 𝑓 ∘ 𝛼) (𝑡)] = 𝑓(𝑥0) 

⇒ 𝛽 [ lim
𝑡→𝛼−1(𝑥0)

(𝛽−1 ∘ 𝑓 ∘ 𝛼) (𝑡)] = 𝛽[(𝛽−1 ∘ 𝑓 ∘ 𝛼)(𝛼−1(𝑥0))] 

⇒ lim
𝑡→𝛼−1(𝑥0)

(𝛽−1 ∘ 𝑓 ∘ 𝛼) (𝑡) = (𝛽−1 ∘ 𝑓 ∘ 𝛼)(𝛼−1(𝑥0)). 

Thus, (𝛽−1 ∘ 𝑓 ∘ 𝛼) is continuous at point 𝛼−1(𝑥0). 
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Proposition 2.4.5. Let 𝑔: ℝ ⊃ 𝐴 → 𝐵 ⊂ ℝ be a function and ⋆= (𝛼, 𝛽). If 𝑔 is continuous in the 

classical sense at the point 𝑥0 ∈ 𝐴, then the function (𝛽 ∘ 𝑔 ∘ 𝛼−1): ℝ𝛼 ⊃ 𝛼(𝐴) → 𝛽(𝐵) ⊂ ℝ𝛽 is ⋆-

continuous at point 𝛼(𝑥0) ∈ 𝛼(𝐴). 

Proof. The proof proceeds in the same way as the preceding proposition. 

Lemma 2.4.2. Let ⋆1= (𝛼, 𝛾), ⋆2= (𝛾, 𝛽), and ⋆3= (𝛼, 𝛽). Additionally, suppose 𝑓: ℝ𝛼 → ℝ𝛾  is 

⋆1-continuous and 𝑔: ℝ𝛾 → ℝ𝛽 is ⋆1-continuous, then 𝑔 ∘ 𝑓: ℝ𝛼 → ℝ𝛽 is ⋆3= (𝛼, 𝛽) continuous. 

Proof. 𝑓 is⋆1-continuous ⇒ 𝐹 = 𝛾−1 ∘ 𝑓 ∘ 𝛼 is continuous in the classical sense. 

𝑔 is⋆2-continuous ⇒ 𝐺 = 𝛽−1 ∘ 𝑔 ∘ 𝛾 is continuous in the classical sense. 

Thus 𝐺 ∘ 𝐹 = 𝛽−1 ∘ (𝑔 ∘ 𝑓) ∘ 𝛼 is continuous in the classical sense. Let us define this function 

as 

𝐻 = 𝛽−1 ∘ (𝑔 ∘ 𝑓) ∘ 𝛼. 

Since 𝐻 is is continuous in the classical sense, 𝑔 ∘ 𝑓 = 𝛽 ∘ 𝐻 ∘ 𝛼−1 is ⋆3-continuous.  

Theorem 2.4.2. The 𝛼-absolute value function is continuous. 

Proof. Let ⋆= (𝛼, 𝛼) and consider 𝑓 = 𝐼 (the identity function). Then for any 𝑐 ∈ ℝ𝛼 , we have 

⋆ lim
𝑥→𝑐

|𝑥|𝛼 =⋆ lim
𝑥→𝑐

(𝛼 ∘ |𝛼−1 ∘ 𝐼|)(𝑥) 

= 𝛼 [ lim
𝑡→𝛼−1(𝑐)

(𝛼−1 ∘ 𝛼 ∘ |𝛼−1| ∘ 𝛼)(𝑡)] 

= 𝛼 [ lim
𝑡→𝛼−1(𝑐)

(|𝛼−1| ∘ 𝛼)(𝑡)] 

= 𝛼 [(|𝛼−1|𝛼(𝛼−1(𝑐)))] 

= 𝛼[|𝛼−1|(𝑐)] = 𝛼(|𝛼−1(𝑐)|). 

⋆ lim
𝑥→𝑐

|𝑥|𝛼 = |𝑐|𝛼. 

Hence, the 𝛼-absolute value function is continuous. 

Definition 2.4.5. (⋆-Derivative) Let 𝛼, 𝛽 be two generators, and 𝜄: ℝ𝛼 → ℝ𝛽 , 𝜄 = 𝛽 ∘ 𝛼−1. 

Additionally, let 𝑓: ℝ𝛼 ⊃ 𝐴 → 𝐵 ⊂ ℝ𝛽 be a function. If the following ⋆-limit exists, then the ⋆-

derivative of 𝑓 at 𝑥0 ∈ 𝐴 is defined by [1]: 

𝑓⋆(𝑥0) =⋆ lim
𝑥→𝑥0

{[𝑓(𝑥)−̈𝑓(𝑥0)]/̈[𝜄(𝑥)−̈𝜄(𝑥0)]}. 

Theorem 2.4.3. Let 𝑓: ℝ𝛼 ⊃ 𝐴 → 𝐵 ⊂ ℝ𝛽 be a function. If 𝑓 is ⋆-differentiable at 𝑥0 ∈ 𝐴 and the 

composite function (𝛽−1 ∘ 𝑓 ∘ 𝛼) is classically differentiable at 𝛼−1(𝑥0), then: 

𝑓⋆(𝑥0) = [𝛽 ∘ (𝛽−1 ∘ 𝑓 ∘ 𝛼)′ ∘ 𝛼−1](𝑥0). 

Here, the classical derivative of 𝑓(𝑥) is represented by 𝑓′(𝑥). 
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Proof. Let us define 

 𝑔(𝑥) = [𝑓(𝑥)−̈𝑓(𝑥0)]/ ̈[𝜄(𝑥)−̈𝜄(𝑥0)]. 

Then 𝑓⋆(𝑥0) =⋆ lim
𝑥→𝑥0

𝑔(𝑥). First, note that  

𝑔(𝑥) = [𝑓(𝑥)−̈𝑓(𝑥0)]/̈[𝜄(𝑥)−̈𝜄(𝑥0)] 

= [𝑓(𝑥)−̈𝑓(𝑥0)]/̈[(𝛽 ∘ 𝛼−1)(𝑥)−̈(𝛽 ∘ 𝛼−1)(𝑥0)] 

= 𝛽 {
𝛽−1(𝑓(𝑥)) − 𝛽−1(𝑓(𝑥0))

𝛼−1(𝑥) − 𝛼−1(𝑥0)
} 

and 

𝑔(𝛼(𝑡)) = 𝛽 {
𝛽−1 (𝑓(𝛼(𝑡))) − 𝛽−1(𝑓(𝑥0))

𝛼−1(𝛼(𝑡)) − 𝛼−1(𝑥0)
} 

= 𝛽 {
(𝛽−1 ∘ 𝑓 ∘ 𝛼)(𝑡) − (𝛽−1 ∘ 𝑓 ∘ 𝛼)(𝛼−1(𝑥0))

𝑡 − 𝛼−1(𝑥0)
}. 

Therefore, 

𝑓⋆(𝑥0) =⋆ lim
𝑥→𝑥0

𝑔(𝑥) 

= 𝛽 [ lim
𝑡→𝛼−1(𝑥0)

(𝛽−1 ∘ 𝑔 ∘ 𝛼) (𝑡)] 

= 𝛽 { lim
𝑡→𝛼−1(𝑥0)

𝛽−1[𝑔(𝛼(𝑡)]} 

= 𝛽 { lim
𝑡→𝛼−1(𝑥0)

(𝛽−1 ∘ 𝑓 ∘ 𝛼)(𝑡) − (𝛽−1 ∘ 𝑓 ∘ 𝛼)(𝛼−1(𝑥0))

𝑡 − 𝛼−1(𝑥0)
} . 

𝑓⋆(𝑥0) = 𝛽{(𝛽−1 ∘ 𝑓 ∘ 𝛼)′(𝛼−1(𝑥0))}. 

Thus, the result follows: 

𝑓⋆(𝑥0) = [𝛽 ∘ (𝛽−1 ∘ 𝑓 ∘ 𝛼)′ ∘ 𝛼−1](𝑥0). 

2.4.1. Star (⋆) integral 

Definition 2.4.1.1. (⋆-Riemann Integral) Let 𝛼 and 𝛽 be given generator functions, ℝ𝛼 and ℝ𝛽 be 

the corresponding vector spaces, and [𝑎, 𝑏]𝛼  be an 𝛼 -interval. Additionally, let 𝑃 = {𝑥0 =

𝑎, 𝑥1, … , 𝑥𝑛 = 𝑏} be a partition of the interval [𝑎, 𝑏]𝛼, such that  

ℎ = 𝛼 (
𝛼−1(𝑏) − 𝛼−1(𝑎)

𝑛
)  and 𝑥𝑘 = 𝑥0+̇[𝛼(𝑘) ×̇ ℎ]. 
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Consider a function  𝑓: [𝑎, 𝑏]𝛼 ⊂ ℝ𝛼 → ℝ𝛽. 

If the limit 

lim
𝑛→∞

∑[(𝛽−1 ∘ 𝑓)(𝑥𝑘) × (𝛼−1(𝑥𝑘+1) − 𝛼−1(𝑥𝑘))]

𝑛−1

𝑘=0

 

exists, then the function 𝑓 is said to be ⋆-Riemann integrable on the interval [𝑎, 𝑏]𝛼. In this case, the 

corresponding ⋆-Riemann integral is given by 

𝛽 [ lim
𝑛→∞

∑[(𝛽−1 ∘ 𝑓)(𝑥𝑘) × (𝛼−1(𝑥𝑘+1) − 𝛼−1(𝑥𝑘))]

𝑛−1

𝑘=0

] 

and it is denoted by the symbolic expression 

∫ 𝑓(𝑥)𝑑𝑥

⋆

[𝑎,𝑏]𝛼

= 𝛽 [ lim
𝑛→∞

∑[(𝛽−1 ∘ 𝑓)(𝑥𝑘) × (𝛼−1(𝑥𝑘+1) − 𝛼−1(𝑥𝑘))]

𝑛−1

𝑘=0

]. 

This integral generalizes the classical Riemann integral within the ⋆-analysis framework, where 

the domain and codomain of the function are defined over distinct arithmetic structures governed by 

the 𝛼 and 𝛽 generator functions, respectively. 

2.4.2. Star vector spaces 

Theorem 2.4.2.1. Let 𝛽  be a generator, and let ℝ𝛽  be a corresponding set equipped with the 

operations defined below. Then ℝ𝛽 forms a vector space over the field (ℝ𝛼, +̇,×̇): 

• The vector addition is given by the operation +̈, referred to as 𝛽-addition. 

• The scalar multiplication is defined as follows: 

Let 𝑣 ∈ ℝ𝛽 and 𝑟 ∈ ℝ𝛼 , then the scalar multiple of 𝑣 by 𝑟 is defined by 

(𝑟, 𝑣) ↦ 𝑟 ⋅ 𝑣 = 𝛽[𝛼−1(𝑟) × 𝛽−1(𝑣)] = (𝛽 ∘ 𝛼−1)(𝑟) ×̈ 𝑣. 

Proof. The set (ℝ𝛽 , +̈) forms an abelian group. Hence, it suffices to verify the vector space axioms 

related to scalar multiplication. 

Let 𝑟, 𝑠 ∈ ℝ𝛼 and 𝑢, 𝑣 ∈ ℝ𝛽. Then, the following identities hold: 

• Associativity of scalar multiplication: 

𝑠 ⋅ (𝑟 ⋅ 𝑣) = (𝑠 ×̇ 𝑟) ⋅ 𝑣. 

To prove this identity, we use Proposition 2.3.5 

𝑠 ⋅ (𝑟 ⋅ 𝑣) = 𝑠 ⋅ 𝛽[𝛼−1(𝑟) × 𝛽−1(𝑣)] 
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= (𝛽 ∘ 𝛼−1)(𝑠) ×̈ {(𝛽 ∘ 𝛼−1)(𝑟) ×̈ 𝑣} 

= 𝛽{𝛼−1(𝑠) × 𝛼−1(𝑟) × 𝛽−1(𝑣)} 

= 𝛽{𝛼−1(𝑠 ×̇ 𝑟) × 𝛽−1(𝑣)}. 

𝑠 ⋅ (𝑟 ⋅ 𝑣) = (𝑠 ×̇ 𝑟) ⋅ 𝑣. 

• Existence of multiplicative identity: 

Let 1̇ ∈ ℝ𝛼  be the multiplicative identity with respect to 𝛼-multiplication. Then ∀𝑣 ∈ ℝ𝛽 

1̇ ⋅ 𝑣 = 𝑣 

is satisfied since for all 𝑣 ∈ ℝ𝛽 

1̇ ⋅ 𝑣 = 𝛽[𝛼−1(1̇) × 𝛽−1(𝑣)] = 𝛽[1 × 𝛽−1(𝑣)] = 𝛽[𝛽−1(𝑣)] = 𝑣. 

• Distributivity over vector addition: For all 𝑟 ∈ ℝ𝛼 , 𝑢, 𝑣 ∈ ℝ𝛽 the following equality holds: 

𝑟 ⋅ (𝑢+̈𝑣) = (𝑟 ⋅ 𝑢)+̈(𝑟 ⋅ 𝑣), 

since for all 𝑟 ∈ ℝ𝛼 , 𝑢, 𝑣 ∈ ℝ𝛽, we have 

𝑟 ⋅ (𝑢+̈𝑣) = 𝛽[𝛼−1(𝑟) × 𝛽−1(𝑢+̈𝑣)] 

= 𝛽{𝛼−1(𝑟) ×[𝛽−1(𝑢) + 𝛽−1(𝑣)]} 

= 𝛽{[𝛼−1(𝑟) × 𝛽−1(𝑢)] + [𝛼−1(𝑟) × 𝛽−1(𝑣)]} 

= 𝛽[𝛼−1(𝑟) × 𝛽−1(𝑢)]+̈𝛽[𝛼−1(𝑟) × 𝛽−1(𝑣)] 

𝑟 ⋅ (𝑢+̈𝑣) = (𝑟 ⋅ 𝑢)+̈(𝑟 ⋅ 𝑣). 

• Distributivity over scalar addition: For all 𝑟, 𝑠 ∈ ℝ𝛼 , 𝑣 ∈ ℝ𝛽 the following equality holds: 

(𝑟+̇𝑠) ⋅ 𝑣 = (𝑟 ⋅ 𝑣)+̈(𝑠 ⋅ 𝑣) 

since for all 𝑟, 𝑠 ∈ ℝ𝛼 , 𝑣 ∈ ℝ𝛽, we have 

(𝑟+̇𝑠) ⋅ 𝑣 = 𝛽[𝛼−1(𝑟+̇𝑠) × 𝛽−1(𝑣)] 

= 𝛽{[𝛼−1(𝑟) + 𝛼−1(𝑠)] × 𝛽−1(𝑣)} 

= 𝛽{[𝛼−1(𝑟) × 𝛽−1(𝑣)] + [𝛼−1(𝑠) × 𝛽−1(𝑣)]} 

= 𝛽[𝛼−1(𝑟) × 𝛽−1(𝑣)]+̈𝛽[𝛼−1(𝑠) × 𝛽−1(𝑣)] 

(𝑟+̇𝑠) ⋅ 𝑣 = (𝑟 ⋅ 𝑣)+̈(𝑠 ⋅ 𝑣). 

Definition 2.4.2.1. (⋆ -Vector Space) Let ⋆= (𝛼 arithmetic, 𝛽 arithmetic) . Then the vector space 

defined over the field (ℝ𝛼, +̇,×̇ ) with the operations of 𝛽-addition +̈ and scalar multiplication ⋅ on 

ℝ𝛽  is called a ⋆-vector space. 

Definition 2.4.2.2. (𝛼 -Normed Vector Space) Let 𝑋 ⊂ ℝ𝛼  be a vector space over ℝ𝛼 . A function 
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‖⋅‖𝛼: 𝑋 → ℝ𝛼 is called an 𝛼-norm on 𝑋 if for ∀𝑥, 𝑦 ∈ 𝑋 and ∀𝜆 ∈ ℝ𝛼, and the following conditions 

are satisfied: 

• ‖𝑥‖𝛼 = 0̇ ⟺ 𝑥 = 0̇, 

• ‖𝜆 ×̇ 𝑥‖𝛼 = |𝜆|𝛼 ×̇ ‖𝑥‖𝛼 , 

• ‖𝑥+̇𝑦‖𝛼 ≤̇ ‖𝑥‖𝛼+̇‖𝑦‖𝛼. 

In this case, the pair (𝑋, ‖⋅‖𝛼) is called an α-normed vector space. Moreover, every 𝛼-norm ‖⋅‖𝛼 

on 𝑋 induces an 𝛼-metric 𝑑𝛼, defined by 

𝑑𝛼(𝑥, 𝑦) = ‖𝑥−̇𝑦‖𝛼, 

which equips 𝑋 with a corresponding 𝛼-metric space structure [9]. 

Definition 2.4.2.3. (𝛼-Banach Space) Let (𝑋, ‖⋅‖𝛼) be an 𝛼-normed vector space. If every 𝛼-Cauchy 

sequence in 𝑋 converges to a limit in 𝑋, then the space (𝑋, ‖⋅‖𝛼) is called an 𝛼-Banach space (i.e., 

a complete 𝛼-normed space).  

To prove that an 𝛼-normed space is an 𝛼-Banach space, it is sufficient to show that every 𝛼-

Cauchy sequence in 𝑋 converges in 𝑋. If 𝑑𝛼: 𝑋 × 𝑋 → ℝ𝛼 is the 𝛼-metric induced by the norm ‖⋅‖𝛼, 

and if the metric space (𝑋, 𝑑𝛼) is complete, then the 𝛼-normed space (𝑋, ‖⋅‖𝛼) is also an 𝛼-Banach 

space [3]. 

2.4.3. ⋆-Linear operators 

Definition 2.4.3.1. Let ℝ𝛼  and ℝ𝛽  be two 𝛼 -normed vector spaces, and let ⋆= (ℝ𝛼 , ℝ𝛽) . A 

mapping 𝑇: ℝ𝛼 → ℝ𝛽 is called a ⋆-operator from ℝ𝛼 to ℝ𝛽. 

Definition 2.4.3.2. (⋆-Linear Operator) Let ℝ𝛼 and ℝ𝛽 be two 𝛼-normed vector spaces defined over 

a common field ℝ𝛾, and let ⋆= (ℝ𝛼 , ℝ𝛽). If 𝑇: ℝ𝛼 → ℝ𝛽 satisfies 

𝑇(𝑎 ⋅ 𝑥+̇𝑏 ⋅ 𝑦) = 𝑎 ⋅ 𝑇(𝑥)+̈𝑏 ⋅ 𝑇(𝑦), 

for all 𝑥, 𝑦 ∈ ℝ𝛼 and ∀𝑎, 𝑏 ∈ ℝ𝛾, then 𝑇 is called a ⋆-linear operator. 

2.4.4. ⋆-Differentiation operator 

Notation 2.4.4.1. Let 𝐶𝛽[𝑎, 𝑏]𝛼 denote the set of ⋆-continuous functions from the 𝛼-interval [𝑎, 𝑏]𝛼 

to ℝ𝛽. 

Theorem 2.4.4.1. If 𝑓 ∈ 𝐶𝛽[𝑎, 𝑏]𝛼 then (𝛽−1 ∘ 𝑓 ∘ 𝛼) ∈ 𝐶[𝛼−1(𝑎), 𝛼−1(𝑏)]. 

Proof. Suppose 𝑓 ∈ 𝐶𝛽[𝑎, 𝑏]𝛼. Since 𝑓 is ⋆-continuous on [𝑎, 𝑏]𝛼, for every 𝑐 ∈ [𝑎, 𝑏]𝛼 we have: 
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⋆ lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐). 

𝛽 [ lim
𝑡→𝛼−1(𝑐)

(𝛽−1 ∘ 𝑓 ∘ 𝛼) (𝑡)] = 𝑓(𝑐). 

lim
𝑡→𝛼−1(𝑐)

(𝛽−1 ∘ 𝑓 ∘ 𝛼) (𝑡) = 𝛽−1(𝑓(𝑐)). 

lim
𝑡→𝛼−1(𝑐)

(𝛽−1 ∘ 𝑓 ∘ 𝛼) (𝑡) = (𝛽−1 ∘ 𝑓)(𝑐). 

lim
𝑡→𝛼−1(𝑐)

(𝛽−1 ∘ 𝑓 ∘ 𝛼) (𝑡) = (𝛽−1 ∘ 𝑓 ∘ 𝛼)(𝛼−1(𝑐)). 

Therefore, (𝛽−1 ∘ 𝑓 ∘ 𝛼) is continuous at the point 𝛼−1(𝑐). Since we take 𝑐 to be arbitrary and 

𝛼−1([𝑎, 𝑏]𝛼) = [𝛼−1(𝑎), 𝛼−1(𝑏)], 𝛽−1 ∘ 𝑓 ∘ 𝛼 is continuous on the interval [𝛼−1(𝑎), 𝛼−1(𝑏)]. 

Notation 2.4.4.2. Let 𝐶𝛽
⋆(𝑟)[𝑎, 𝑏]𝛼 denote the set of functions that are ⋆-differentiable up to order 𝑟 

on [𝑎, 𝑏]𝛼, where 𝑟 ≥ 1 and 𝑟 ∈ ℕ. 

Theorem 2.4.4.2. Let ℝ𝛼 and ℝ𝛽 be two 𝛼-normed vector spaces, and let ⋆= (ℝ𝛼 , ℝ𝛽). The set 

𝐶𝛽[𝑎, 𝑏]𝛼 forms a vector space over the field ℝ𝛽 under the operations: 

• (𝑓+̈𝑔)(𝑡) = 𝑓(𝑡)+̈𝑔(𝑡), 

• (𝑐 ⋅ 𝑓)(𝑡) = 𝑐 ×̈ 𝑓(𝑡), for 𝑡 ∈ [𝑎, 𝑏]𝛼, 𝑐 ∈ ℝ𝛽. 

This space is denoted by (𝐶𝛽[𝑎, 𝑏]𝛼 , ℝ𝛽). 

Proof. For all 𝑓, 𝑔, ℎ ∈ 𝐶𝛽[𝑎, 𝑏]𝛼;  𝑐, 𝑐1, 𝑐2 ∈ ℝ𝛽 and 𝑡 ∈ [𝑎, 𝑏]𝛼 

• Commutativity of Addition: 

𝑓+̈𝑔 = 𝑔+̈𝑓. 

Since addition in ℝ𝛽 is commutative: ∀𝑡 ∈ [𝑎, 𝑏]𝛼 

𝑓(𝑡)+̈𝑔(𝑡) = 𝑔(𝑡)+̈𝑓(𝑡). 

• Associativity of Addition: 

𝑓+̈(𝑔+̈ℎ) = (𝑓+̈𝑔)+̈ℎ. 

Since addition in ℝ𝛽 is associative: ∀𝑡 ∈ [𝑎, 𝑏]𝛼 

𝑓(𝑡)+̈(𝑔(𝑡)+̈ℎ(𝑡)) = (𝑓(𝑡)+̈𝑔(𝑡))+̈ℎ(𝑡). 

• Existence of Zero Vector:  

Let 0𝛽(𝑡) = 0̈ for all 𝑡 ∈ [𝑎, 𝑏]𝛼. Then, 
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𝑓+̈0𝛽 = 𝑓. 

• Existence of Additive Inverse:  

For each 𝑓 ∈ 𝐶𝛽[𝑎, 𝑏]𝛼, define −̈𝑓 = 0𝛽−̈𝑓. Then, 

𝑓+̈(−̈𝑓) = 0𝛽. 

• Scalar Multiplication Identity: 

Let 1𝛽(𝑡) = 1̈ for all 𝑡 ∈ [𝑎, 𝑏]𝛼. Then, 

1𝛽 ×̈ 𝑓 = 𝑓. 

• Distributivity of Scalar Multiplication over Vector Addition: 

𝑐 ⋅ (𝑓+̈𝑔) = (𝑐 ⋅ 𝑓)+̈(𝑐 ⋅ 𝑔). 

• Distributivity over Field Addition: 

(𝑐1+̈𝑐2) ⋅ 𝑓 = (𝑐1 ⋅ 𝑓)+̈(𝑐2 ⋅ 𝑓). 

• Compatibility of Scalar Multiplication: 

(𝑐1 ×̈ 𝑐2) ⋅ 𝑓 = 𝑐1 ×̈ (𝑐2 ⋅ 𝑓). 

Hence, all vector space axioms are satisfied. Therefore, 

(𝐶𝛽[𝑎, 𝑏]𝛼, ℝ𝛽) 

is a vector space. 

Notation 2.4.4.3. Let 𝑔: [𝑎, 𝑏]𝛼 → ℝ𝛽  be 𝛽  continuous and ℎ: [𝑐, 𝑑] → ℝ  be continuous in a 

classical sense. Thus, we use the following notations 

max
𝑡∈[𝑎,𝑏]𝛼

𝛽
𝑔(𝑡) = max

𝛽
{𝑔(𝑡) | 𝑡 ∈ [𝑎, 𝑏]𝛼}. 

max
𝑥∈[𝑐,𝑑]

ℎ(𝑥) = max{ℎ(𝑥) | 𝑥 ∈ [𝑐, 𝑑]}. 

Lemma 2.4.4.1. Let 𝑓 ∈ 𝐶𝛽[𝑎, 𝑏]𝛼. Then the 𝛽-maximum value of |𝑓|𝛽 on [𝑎, 𝑏]𝛼 exists. 

Proof. We have 

max
𝑡∈[𝑎,𝑏]𝛼

𝛽
|𝑓|𝛽(𝑡) = 𝛽(max[𝛽−1{|𝑓|𝛽(𝑡): 𝑡 ∈ [𝑎, 𝑏]𝛼}]) 

= 𝛽(max[𝛽−1{|𝑓|𝛽(𝑡): 𝑡 ∈ [𝑎, 𝑏]𝛼}]) 

= 𝛽(max{(𝛽−1 ∘ |𝑓|𝛽)(𝑡): 𝑡 ∈ [𝑎, 𝑏]𝛼}). 
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Let us perform the change of variables  𝑥 = 𝛼−1(𝑡).  Since 𝑎 ≤̇ 𝑡 ≤̇ 𝑏 , it follows that  

𝛼−1(𝑎) ≤ 𝑥 ≤ 𝛼−1(𝑏) from the definition of 𝛼-order. Therefore, 

max
𝑥∈[𝑎,𝑏]𝛼

𝛽
|𝑓|𝛽(𝑡) = 𝛽(max{(𝛽−1 ∘ |𝑓|𝛽)(𝛼(𝑥)): 𝑥 ∈ [𝛼−1(𝑎), 𝛼−1(𝑏)]}) 

= 𝛽 ( max
𝑥∈[𝛼−1(𝑎),𝛼−1(𝑏)]

(𝛽−1 ∘ |𝑓|𝛽 ∘ 𝛼)(𝑥)). 

Since |𝑓|𝛽 = 𝛽 ∘ |𝛽−1 ∘ 𝑓| we can rewrite this as 

max
𝑥∈[𝑎,𝑏]𝛼

𝛽
|𝑓|𝛽(𝑡) = 𝛽 ( max

𝑥∈[𝛼−1(𝑎),𝛼−1(𝑏)]
(𝛽−1 ∘ 𝛽 ∘ |𝛽−1 ∘ 𝑓| ∘ 𝛼)(𝑥)) , 

max
𝑥∈[𝑎,𝑏]𝛼

𝛽
|𝑓|𝛽(𝑡) = 𝛽 ( max

𝑥∈[𝛼−1(𝑎),𝛼−1(𝑏)]
(|𝛽−1 ∘ 𝑓| ∘ 𝛼)(𝑥)). 

Since 𝛽−1 ∘ 𝑓  and |𝛽−1 ∘ 𝑓|  are ⋆1= (𝛼, 𝐼)  continuous, 𝛼  is ⋆2= (𝐼, 𝛼)  continuous, we have that  

|𝛽−1 ∘ 𝑓| ∘ 𝛼  is ⋆3= (𝐼, 𝐼)  continuous, i.e., |𝛽−1 ∘ 𝑓| ∘ 𝛼  a is continuous on the compact set 

[𝛼−1(𝑎), 𝛼−1(𝑏)]  in the classical sense. By the Weierstrass extreme value theorem, |𝛽−1 ∘ 𝑓| ∘ 𝛼 

attains a maximum on this interval. Hence, the 𝛽-maximum of |𝑓|𝛽 on [𝑎, 𝑏]𝛼 exists. 

Theorem 2.4.4.2. The vector space 𝐶𝛽[𝑎, 𝑏]𝛼 equipped with the 𝛼-norm 

‖𝑓‖𝐶𝛽[𝑎,𝑏]𝛼
= max{|𝑓(𝑡)|𝛽 ∶ 𝑡 ∈ [𝑎, 𝑏]𝛼 } 

is an 𝛼-normed vector space. 

Theorem 2.4.4.3. The set 𝐶𝛽
⋆(𝑟)[𝑎, 𝑏]𝛼 forms a vector space over ℝ𝛽 with operations: 

• (𝑓+̈𝑔)(𝑡) = 𝑓(𝑡)+̈𝑔(𝑡), 

• (𝑎 ⋅ 𝑓)(𝑡) = 𝑎 ×̈ 𝑓(𝑡), for 𝑡 ∈ [𝑎, 𝑏]𝛼, 𝑎 ∈ ℝ𝛽. 

This space is denoted by (𝐶𝛽
⋆(𝑟)[𝑎, 𝑏]𝛼, ℝ𝛽). 

Definition 2.4.4.1. (𝛼-Summation Operator) For 𝑥𝑖 ∈ ℝ𝛼, 0 ≤ 𝑖 ≤ 𝑛, the 𝛼-summation is defined by: 

∑ 𝑥𝑖

𝛼

0≤𝑖≤𝑛

= 𝑥0+̇𝑥1+̇ ⋯ +̇𝑥𝑛. 

Theorem 2.4.4.4. Let 𝐶𝛽
⋆(𝑟)[𝑎, 𝑏]𝛼  be the vector space of function defined on the closed interval 

[𝑎, 𝑏]𝛼 with values in the field ℝ𝛽, and suppose this space is equipped with the following 𝛼-norm: 

‖𝑓‖
𝐶𝛽

⋆(𝑟)
[𝑎,𝑏]𝛼

= ∑ ‖𝑓⋆(𝑖)‖
𝐶𝛽[𝑎,𝑏]𝛼

𝛽

0≤𝑖≤𝑟

. 



26658 
 

AIMS Mathematics  Volume 10, Issue 11, 26633–26661. 

Here, the 𝛼-summation with respect to the generator 𝛽 is used. Then  (𝐶𝛽
⋆(𝑟)[𝑎, 𝑏]𝛼 , ‖⋅‖

𝐶𝛽
⋆(𝑟)

[𝑎,𝑏]𝛼
) 

forms a 𝛼-normed vector space. 

Definition 2.4.4.2. Let 𝐴: 𝐷(𝐴) = (𝐶𝛽
⋆[𝑎, 𝑏]𝛼 , ‖⋅‖𝐶𝛽

⋆ [𝑎,𝑏]𝛼
) → (𝐶𝛽[𝑎, 𝑏]𝛼, ‖⋅‖𝐶𝛽[𝑎,𝑏]𝛼

) be an operator 

defined by 

𝐴𝑓(𝑡) = 𝑓⋆(𝑡), 𝑡 ∈ [𝑎, 𝑏]𝛼. 

This operator is called the ⋆-derivative operator. 

Proposition 2.4.4.1. The ⋆-derivative operator defined above is linear over ℝ𝛽. 

Proof. Let 𝐴: 𝐶𝛽
⋆[𝑎, 𝑏]𝛼 → 𝐶𝛽[𝑎, 𝑏]𝛼  be a ⋆ -derivative operator. Additionally, let 𝑓, 𝑔 ∈ 𝐶𝛽

⋆[𝑎, 𝑏]𝛼 

and 𝑐1, 𝑐2 ∈ ℝ𝛽 

𝐴(𝑐1 ×̈ 𝑓(𝑡)+̈𝑐2 ×̈ 𝑔(𝑡)) 

=⋆ lim
𝑥→𝑡

{[(𝑐1 ×̈ 𝑓(𝑥)+̈𝑐2 ×̈ 𝑔(𝑥))−̈(𝑐1 ×̈ 𝑓(𝑡)+̈𝑐2 ×̈ 𝑔(𝑡))]/ ̈[𝜄(𝑥)−̈𝜄(𝑡)]} 

=⋆ lim
𝑥→𝑡

{([(𝑐1 ×̈ 𝑓(𝑥))−̈(𝑐1 ×̈ 𝑓(𝑡))]+̈[(𝑐2 ×̈ 𝑔(𝑥))−̈(𝑐2 ×̈ 𝑔(𝑡))])/ ̈[𝜄(𝑥)−̈𝜄(𝑡)]} 

=⋆ lim
𝑥→𝑡

{[(𝑐1 ×̈ 𝑓(𝑥))−̈(𝑐1 ×̈ 𝑓(𝑡))]/ ̈[𝜄(𝑥)−̈𝜄(𝑡)]} +̈ ⋆ lim
𝑥→𝑡

{[(𝑐2 ×̈ 𝑔(𝑥))−̈(𝑐2 ×̈ 𝑔(𝑡))]/ ̈[𝜄(𝑥)−̈𝜄(𝑡)]} 

= [𝑐1 ×̈⋆ lim
𝑥→𝑡

{[𝑓(𝑥)−̈𝑓(𝑡)]/ ̈[𝜄(𝑥)−̈𝜄(𝑡)]}] +̈ [𝑐2 ×̈⋆ lim
𝑥→𝑡

{[𝑔(𝑥)−̈𝑔(𝑡)]/ ̈[𝜄(𝑥)−̈𝜄(𝑡)]}] 

= [𝑐1 ×̈ 𝑓⋆(𝑡)]+̈[𝑐2 ×̈ 𝑔⋆(𝑡)] 

= 𝑐1 ×̈ 𝐴(𝑓) + 𝑐2 ×̈ 𝐴(𝑔), 

which is needed to prove that ⋆-derivative operator is linear. 

2.4.5. ⋆-Integral operators 

Notation 2.4.5.1. Let ℛ𝛽[𝑎, 𝑏]𝛼 denote the set of all functions that are ⋆-Riemann integrable over 

the interval [𝑎, 𝑏]𝛼. 

Theorem 2.4.5.1. Let ℝ𝛼 and ℝ𝛽 be two α-normed vector spaces, and let ⋆= (ℝ𝛼 , ℝ𝛽). Then the 

set ℛ𝛽[𝑎, 𝑏]𝛼, equipped with the operations  

• (𝑓+̈𝑔)(𝑡) = 𝑓(𝑡)+̈𝑔(𝑡), 

• (𝑐 ⋅ 𝑓)(𝑡) = 𝑐 ×̈ 𝑓(𝑡), for all 𝑡 ∈ [𝑎, 𝑏]𝛼, 𝑐 ∈ ℝ𝛽, 

forms a vector space over the field ℝ𝛽. This space is denoted by (ℛ𝛽[𝑎, 𝑏]𝛼, ℝ𝛽). 
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Theorem 2.4.5.2. The vector space ℛ𝛽[𝑎, 𝑏]𝛼 , defined over the field ℝ𝛽 , becomes an 𝛼 -normed 

vector space under the 𝛼-norm given by 

‖𝑓‖ℛ𝛽[𝑎,𝑏]𝛼
= ∫ |𝑓(𝑥)|𝛽𝑑𝑥

⋆

[𝑎,𝑏]𝛼

. 

This normed space is denoted by (ℛ𝛽[𝑎, 𝑏]𝛼 , ‖⋅‖ℛ𝛽[𝑎,𝑏]𝛼
). 

Definition 2.4.5.1. Let 𝒥: ℛ𝛽[𝑎, 𝑏]𝛼 → ℝ𝛽 be the operator defined by 

𝒥[𝑎,𝑏]𝑓(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡

⋆

[𝑎,𝑏]𝛼

. 

This operator is called the ⋆-Fredholm integral operator. 

Definition 2.4.5.2. Let 𝑥 ∈ [𝑎, 𝑏]𝛼, and define the operator Κ: ℛ𝛽[𝑎, 𝑏]𝛼 → ℛ𝛽[𝑎, 𝑏]𝛼 by 

Κ𝑓(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡.

⋆

[𝑎,𝑥]𝛼

 

This operator is called the ⋆-Volterra integral operator. 

3. Conclusions 

In this study, we systematically examined the algebraic and topological foundations of non-

Newtonian analysis, an extension of classical mathematical structures achieved through generator 

functions and generalized arithmetic operations. The introduction of alpha-arithmetic led to the 

construction of a novel numerical framework in which arithmetic, topology, and analysis were 

redefined through generator-based transformations. 

The investigation began with defining the set of alpha real numbers (ℝ𝛼 ), obtained from the 

classical real numbers through a bijective and continuous generator function 𝛼 . Based on this 

foundation, group and field structures were established, and vector spaces were defined over ℝ𝛼 by 

means of alpha linear operations. 

From a topological perspective, we introduced concepts such as 𝛼-intervals, 𝛼-neighborhoods, 

and 𝛼 -open sets, along with an 𝛼 -metric that established a meaningful and coherent topological 

structure on ℝ𝛼. These constructions constitute adaptations of classical topological notions within the 

non-Newtonian framework. 

A key contribution of this study is the formulation of ⋆-analysis, a methodological framework 

enabling systematic transitions between arithmetic systems. Through ⋆-operators that map between 

𝛼 and 𝛽 systems, the framework enables structural compatibility across analytical settings. 

Overall, the findings demonstrated that non-Newtonian analysis provides a robust and extensible 

theoretical framework for generalizing classical algebraic and analytical structures. Its theoretical 
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flexibility and operational adaptability make it a promising direction for future research in pure and 

applied mathematics. 
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