This paper investigates the prey-stage structure within a quasilinear prey-taxis model defined in a smooth bounded domain in arbitrary-dimensional spaces. When the exponents of the nonlinear diffusion function and the nonlinear prey-taxis sensitivity function satisfy appropriate conditions, the global boundedness of the solution is established through the application of coupling estimation technique and Moser iteration.
Citation: Ziyue Wei, Guiling Wu, Lu Xu. Global boundedness of solutions to a quasilinear prey-taxis model with prey-stage structure[J]. AIMS Mathematics, 2025, 10(11): 26613-26632. doi: 10.3934/math.20251170
This paper investigates the prey-stage structure within a quasilinear prey-taxis model defined in a smooth bounded domain in arbitrary-dimensional spaces. When the exponents of the nonlinear diffusion function and the nonlinear prey-taxis sensitivity function satisfy appropriate conditions, the global boundedness of the solution is established through the application of coupling estimation technique and Moser iteration.
| [1] |
F. Chen, Permanence of periodic Holling type predator-prey system with stage structure for prey, Appl. Math. Comput., 182 (2006), 1849–1860. https://doi.org/10.1016/j.amc.2006.06.024 doi: 10.1016/j.amc.2006.06.024
|
| [2] |
S. Fu, L. Zhang, P. Hu, Global behavior of solutions in a Lotka-Volterra predator-prey model with prey-stage structure, Nonlinear Anal., 14 (2013), 2027–2045. https://doi.org/10.1016/j.nonrwa.2013.02.007 doi: 10.1016/j.nonrwa.2013.02.007
|
| [3] |
Z. She, H. Li, Dynamics of a density-dependent stage-structured predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl., 406 (2013), 188–202. https://doi.org/10.1016/j.jmaa.2013.04.053 doi: 10.1016/j.jmaa.2013.04.053
|
| [4] |
A. Xiang, L. Wang, Boundedness of a predator-prey model with density-dependent motilities and stage structure for the predator, Electron. Res. Arch., 30 (2022), 1954–1972. https://doi.org/10.3934/era.2022099 doi: 10.3934/era.2022099
|
| [5] |
X. Zhang, L. Chen, A. Neumann, The stage-structured predator-prey model and optimal harvesting policy, Math. Biosci., 168 (2000), 201–210. https://doi.org/10.1016/S0025-5564(00)00033-X doi: 10.1016/S0025-5564(00)00033-X
|
| [6] |
S. Xu, Dynamics of a general prey-predator model with prey-stage structure and diffusive effects, Comput. Math. Appl., 68 (2014), 405–423. https://doi.org/10.1016/j.camwa.2014.06.016 doi: 10.1016/j.camwa.2014.06.016
|
| [7] |
Z. Wang, J. Wu, Qualitative analysis for a ratio-dependent predator-prey model with stage structure and diffusion, Nonlinear Anal., 9 (2008), 2270–2287. https://doi.org/10.1016/j.nonrwa.2007.08.004 doi: 10.1016/j.nonrwa.2007.08.004
|
| [8] |
Y. Li, Z. Lv, X. Fan, Bifurcations of a diffusive predator-prey model with prey-stage structure and prey-taxis, Math. Methods Appl. Sci., 46 (2023), 18592–18604. https://doi.org/10.1002/mma.9581 doi: 10.1002/mma.9581
|
| [9] |
Y. Mi, C. Song, Z. Wang, Global existence of a diffusive predator-prey model with prey-stage structure and prey-taxis, Z. Angew. Math. Phys., 74 (2023), 90. https://doi.org/10.1007/s00033-023-01975-1 doi: 10.1007/s00033-023-01975-1
|
| [10] |
G. Wu, Y. Zhang, Q. Xin, Boundedness and stability of a predator-prey system with prey-stage structure and prey-taxis, Discrete Contin. Dyn. Syst. B, 30 (2025), 360–385. https://doi.org/10.3934/dcdsb.2024092 doi: 10.3934/dcdsb.2024092
|
| [11] |
D. Luo, Q. Wang, Spatio-temporal patterns and global bifurcation of a nonlinear cross-diffusion predator-prey model with prey-taxis and double Beddington-DeAngelis functional responses, Nonlinear Anal., 79 (2024), 104133. https://doi.org/10.1016/j.nonrwa.2024.104133 doi: 10.1016/j.nonrwa.2024.104133
|
| [12] |
R. Wang, X. Wang, Global existence and boundedness in a $3D$ predator-prey system with nonlinear diffusion and prey-taxis, Nonlinear Anal., 85 (2025), 104331. https://doi.org/10.1016/j.nonrwa.2025.104331 doi: 10.1016/j.nonrwa.2025.104331
|
| [13] |
H. Amann, Dynamic theory of quasilinear parabolic equations. Ⅱ. Reaction-diffusion systems, Differ. Integral Equ., 3 (1990), 13–75. https://doi.org/10.57262/die/1371586185 doi: 10.57262/die/1371586185
|
| [14] | H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, In: H. Schmeisser, H. Triebel, Function spaces, differential operators and nonlinear analysis, 133 (1993), 9–126. https://doi.org/10.1007/978-3-663-11336-2_1 |
| [15] |
N. Mizoguchi, P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. Henri Poinc. Anal. Non Linéaire., 31 (2014), 851–875. https://doi.org/10.1016/j.anihpc.2013.07.007 doi: 10.1016/j.anihpc.2013.07.007
|
| [16] |
C. Jin, Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanisms, Bull. Lond. Math. Soc., 50 (2018), 598–618. https://doi.org/10.1112/blms.12160 doi: 10.1112/blms.12160
|
| [17] |
C. Stinner, C. Surulescu, M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969–2007. https://doi.org/10.1137/13094058X doi: 10.1137/13094058X
|
| [18] |
S. Ishida, K. Seki, T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differ. Equ., 256 (2014), 2993–3010. https://doi.org/10.1016/j.jde.2014.01.028 doi: 10.1016/j.jde.2014.01.028
|
| [19] |
J. Wang, Global existence and boundedness of a forager-exploiter system with nonlinear diffusions, J. Differ. Equ., 276 (2021), 460–492. https://doi.org/10.1016/j.jde.2020.12.028 doi: 10.1016/j.jde.2020.12.028
|
| [20] |
Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252 (2012), 692–715. https://doi.org/10.1016/j.jde.2011.08.019 doi: 10.1016/j.jde.2011.08.019
|