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1. Introduction

In natural ecosystems, a considerable number of animal species exhibit life cycles encompassing at
least two distinct developmental stages: the immature stage and the mature stage. This stage-structured
characteristic exerts a profound influence on key population dynamics, including population growth,
interspecific competition, and species interaction patterns. Over the past decades, predator-prey models
that integrate stage structure have been the subject of extensive research (see [1-4]). To mathematically
characterize such biological phenomena, Zhang et al. [S] proposed the following predator-prey model,
which specifically incorporates stage structure in the prey population:

dxy

—L = Bx, — Cx; — Dyx; —yxj —kxyy, >0,

& = Cx — Dyxy, t>0, (1.1)
% = —D3y + 81kx;y — ny?, t>0.
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Let the concentrations of immature prey, mature prey, and predators be denoted by x;(f), x»(¢), and
y(t), respectively. The positive parameter B represents the birth rate of immature prey. The parameter
C > 0 denotes the conversion rate of immature prey to mature prey. The positive constants y and
stand for the mortality rate caused by intra-specific competition among immature prey and that among
predators, respectively. The parameter £ > 0 describes the consumption rate of immature prey (by
predators). The parameters D; > 0 (i = 1,2, 3) represent the mortality rates of immature prey, mature
prey, and predators, respectively. The parameter 6, > 0 denotes the predation rate of predators (on
prey).
When 1 = 0, a more general form of the model can be derived from (1.1) as shown below:
W= au, — buy —yu? — gluy)v, t>0,

4o — 4y — uy, t>0, (1.2)

dr
dv _

5= —uv +0g(ur)v, t>0.
The term g(u;)v represents the interspecific interaction, where g(u;) denotes the functional response
function. This function is commonly formulated in forms such as Holling Type I (i.e., g(u;) = uy),
Holling Type II (i.e., g(u;) = —~ with a positive constant A > 0), and Holling Type III (i.e., g(u;) =

A+uy

Ma . . .
T with constants 6 > 1 and A > 0). In the case 0 < g(u;) < L (where L > 0), Xu [6] investigated the
1

stability of equilibrium points and the Hopf bifurcation of model (1.2). Furthermore, considering the
random diffusion mechanism, Xu [6] also discussed the following model:

uy, — diAuy = auy — buy —yus — g(uy)v, x€Q,1>0,
Uy, — dr Aty = Uy — U, xeQ,t>0, (1.3)
v, —d3Av = —uv + 6g(up)v, xeQ,t>0,

where Q ¢ RY(N > 1), and u;(x,?) and u,(x, ) denote the population densities of immature prey
and mature prey, respectively. v(x, ¢) represents the population density of predators. The parameters
d; (i = 1,2,3) are positive constants, which stand for the random diffusion rates of the three
species, respectively. When g(u;)v = u;v, Xu [6] established the existence of a globally bounded
classical solution to model (1.3). When g(u;)v = mu‘jfv (where m > 0 is a constant), Wang and
Wu [7] established the global asymptotic stability of the unique positive constant equilibrium under
appropriate conditions. Additionally, they derived results regarding the existence and non-existence
of non-trivial solutions. Considering the impact of prey stage structure on predator-prey models, Li

et al. [8] proposed the following model incorporating a tactic term:

uy, = diAuy — V- (uVuyp) + auy — buy — yu% —uv, x€t>0,
Uy = dr Ay + Uy — U, xeQ, >0, (14)
v, = d3Av — pV - WVuy) — uv + duyv, xeQ, >0,

where Q C RY(N > 1). The term —y'V - (u; Vu,) describes the directional movement of immature prey
toward the density gradient of mature prey. Additionally, the term —pV - (vVu;) denotes the movement
of predators toward the density gradient of immature prey. Li et al. [8] established the existence of
Hopf bifurcation and steady-state bifurcation for model (1.4). When d;, = y = 0 and au, = h,,
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(where h,, denotes the non-uniform natural reproduction rate at which mature prey produce immature
prey), Mi et al. [9] established the existence of a globally bounded classical solution for (1.4) in the
two-dimensional case. In particular, when n > 0, Wu et al. [10] investigated the boundedness and
asymptotic behavior of solutions to (1.4) with intra-specific competition among predators. For more
related works, readers can refer to [11, 12].

Inspired by the work of [10], we replace the term diAu; — xV - (u;Vu,) with &,V - (D1 (uy)Vuy) —
XV - (S1(u1)Vuy), and the term d;Av — pV - (WVuy) with d3V - (D,(v)Vv) — pV - (§2(v)Vuy). The resulting
model is specified as follows:

uy, =dV-(Di(u)Vuy) — xV - (S1(u1)Vuy) + au, — buy — yu% —uv, x€Q,t>0,

uy = daAuy + uy — uy, xeQ >0,

v, = d3V - (D,(V)VV) — pV - (S2(v)Vuy) — v — qv? + duyv, xeQ,t>0, (1.5
o,u; = 0uy =0,v =0, x€e0Q,t >0,

ui(x,0) = uyo(x), uz(x, 0) = uz(x), v(x,0) = vo(x), x€Q

in a bounded domain Q c RV (N > 1) with a smooth boundary. When b < 0, the term —bu; — yu?
represents the logistic source of immature prey; when b > 0, it denotes the mortality rate of immature

prey. The nonlinear diffusion functions D;(s) (i = 1,2) and nonlinear prey-taxis sensitivity functions
S(s) (i = 1,2) satisfy D;(s), S (s) € C?[0, =),

Di(s) = (s + D% and S,(s) < s(s + 1)1, (1.6)

where s > 0, @;, 5; € R (i = 1,2). The initial values (u¢, U9, vo) satisfy

2 N
Uz € W>(Q), (19, vo) € [Wl’zq(Q)] , where u;o, uz,vo > 0,9 > 3 (L.7)

In the present manuscript, we prove that when the parameters satisfy

{2ﬁ1-(}’1<1+ﬁ, (1 8)

2B, —ap <2,

the classical solution of this quasilinear prey-taxis model is globally bounded.

Theorem 1.1. Let Q C RN(N > 1) be a bounded domain with smooth boundary, and the initial data
(110, Uz, vo) satisfy (1.7). If the condition (1.8) holds, then model (1.5) has a global classical solution

- - 3
(ur,12,v) € [C°(Q X [0, 00)) 0 € (% (0, 00)) |
and there exists a constant M > 0 independent of t such that
lloe1 (-, Dllwro () + N2, Dllwreoy + IVE, Dlls@y < M forall t > 0.

The structure of this paper is organized as follows. Section 2 presents the local existence theorem
of solutions and the lemmas required for subsequent calculations. In Section 3, we focus on deriving
the global boundedness of classical solutions to model (1.5), together with the proof of Theorem 1.1.
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2. Preliminaries

In the following context, for simplicity and to avoid ambiguity, fQ ¢ dx will be abbreviated as fg @
in subsequent discussions. Additionally, we use ¢; and M; (i = 1,2,3,---) to denote generic positive
constants independent of ¢, which may vary throughout the paper. The local existence of solutions to
model (1.5) follows directly from Amann’s theorem; for the sake of conciseness, we omit the detailed
proof here and only present the results.

Lemma 2.1. Assume Q C RY(N > 1) is a bounded domain with smooth boundary, and condition (1.7)
holds. Then, there exist Ty € (0, 0] and a nonnegative function

_ - 3
(1,4, v) € [ CO(Q X [0, Ta)) N C>' (Q X (0, Tona) )| 2.1
such that model (1.5) has a classical solution. Moreover, if Tiax < oo, then

lim sup (||M1(', Dllwroy + llua(c, Dllwresq) + V(- t)”L"“(Q)) = 00. (2.2)
t/leaX

Proof. Let Z = (uy,u;,v)". Then, model (1.5) can be rewritten as

Z,=V-(P2Z)V2)+ Q(Z), (x,1) € Qx(0,00),
& =0, (x,1) € 0Q X (0, c0), (2.3)
Z(-,0) = Zy = (w10, u20, Vo), X € Q,

where
dy —xSi(ur) 0

P(Z)=(0 d\Dy(u,) —pSz(V)], Q2) =
0 0 d3D2(V)

Clearly, for any initial value Z;, the matrix P(Z) is positive definite, which implies that Eq (2.3)
is uniformly parabolic. As indicated in references [13, 14], there exists a maximal existence time
T'ax € (0, 00] such that Eq (2.3) admits a classical solution

Uy —up
au, — bu; — yu% —uv|.

—v — v + Suyv

(1, uz,v) € [€°(Q X [0, Ten)) 1 € (@ % (O, Tmax))]3 .

Furthermore, by virtue of the strong maximum principle, (u;, u,, v) is nonnegative. Subsequently, by
applying Amann’s theorem, we establish the local existence criterion for the solution. This completes
the proof. O

Next, we obtain an inequality from reference [15].

Lemma 2.2. Let Q be a bounded domain, and let ¢ € C2(Q) satisfy d,¢ = 0 on Q. Then,

N

< Vgl

where t > 0 depending on Q is an upper bound of the curvatures of 0.

Then, we collect an important lemma from [16].
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Lemma 2.3. Suppose that there exist some p > 1 and constants S, H > 0, and

1+T 1+T
f f lf1? < S and f f lzI” < H, forallte (0, Ty —T),
t Q t Q

where T = min {1, T;"‘* }, moreover, the function z € C*'(Q % (0, Tax)) solves

z=Az+ f(x,1), x€Q, 0<t<Tna

%:O’ X € 0Q, 0 <t < Thaxs

2(x,0) =z0(x), x€Q,

where zo € W>*(Q) with zo > 0 and % = 0 on 0L Then, there exists constant c; > 0 fulfilling

+T 1+T
P P P
I ”Zt”Lp(Q) + V[ ”Z”WZ’I’(Q) S C] (”ZO”WZJ’(Q) + S + H) N

forall t € (0, Thax — 7). Specifically, one also can find a constant ¢, > 0 such that

1+T
f f Az < 3 (IRl ) + S + H), for all t € (0, Topax = 7).
t Q

We also introduce the following inequality [17].

Lemma 24. Let a,b > 0, T > 0, and T € (0,T). Assume that ¢ : [0,T) — [0, 00) is absolutely
continuous and fulfills

O'() +ap(t) < z(t) forallte (0,T),
where 7> 0, ze L' ([0,T)), and

loc

1+T
f 2(s)ds <b forallte[0,T —71).
t

Then,
b
©(t) < max {go(O) + b, p + 2b} forallt € (0,T).
3. Proof of Theorem 1.1

In the present section, we concentrate on studying that the classical solutions to (1.5) are globally
bounded and will build the following energy functional:

f(ul + 1) + f uj + f |Vu,|*, forall p>2,q> 1. (3.1
Q Q Q

To lay the foundation for proving Theorem 1.1, the following estimates are needed.
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Lemma 3.1. Suppose conditions (1.6) and (1.7) hold. Then, for p > 2 and all t € (0, Tpa), the
following estimates hold:

__f(ul + 1)[) dl(P2 )f( + 1)p+a/1—2lvu |

2 _ — 17 1
=D f (uy + 1y B2y o 227 DA 1)“ f (0 + 1) (32)
2d1 Q

Y
2p_1-;Lu§—§f(u + )P 4 e
1d o1 L,
| o= | e <7 w1 = | (3.3)
0" 0 0

Proof. Multiplying the first equation of (1.5) by (u; + 1)?~! and integrating the result over Q, gives

and

1d
—— f(ul + 1) +di(p - 1)fD1(M1)(M1 + 1)p_2|VMl|2
dt Jo o

S/\/(p—l)fSl(ul)(ul+l)p_ZVul-Vu2+af(u1+1)p_1u2 (3.4)
Q Q

—bf(u1+1)f’—1u1—yfu%(ulﬂ)f’—l.
Q Q

Next, we estimate the terms on the right-hand side of (3.4). Applying Young’s inequality and the fact
sP < (s + 1)?, one obtains

X(p - 1)[951(%)(%1 + 1)V, - Vu

di(p—-1 2(p-1
<M= f P2+ XL =D f ¥ + 1 HVwP (35)
Q 1 Q
di(p-1
< 1(172 )f(ul + 1)p+a/1—2|vu1|2+/\/ (56{ )f(ul + l)p a1 +261-2 |VM |
Q 1
and »
2p — Dart 11
af(u1+1)”‘1uzsuf(l+l)p+ﬁ —fug. (3.6)
Q p Q P Ja

Then, the inequality (s + 1)> < 2(s*> + 1) and Young’s inequality ensure that

—yfuﬁ(ulﬂ)!’—l <t f(u1+1)p+1+yf(ul+l)p_l
Q 2 Q Q
Y +1 1
S——f(u1+1)1’ +—f(u1+1)1’+c1,
2 Ja P Ja

where ¢; > 0 depends only on p. Combining (3.4)—(3.7), we can obtain (3.2). Multiplying the second
equation of (1.5) by u’z’_1 , an integration by parts shows that

1d
u2+d2(p 1)fu2 Vi, ? —f b lul—fug. (3.8)
Pd Q o

AIMS Mathematics Volume 10, Issue 11, 26613-26632.
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Young’s inequality implies that

20! -1
fug "uy < —f(ul 1y + L fufz’. (3.9)
Q P Ja 2p Ja

Then the combination of (3.8) and (3.9) gives (3.3). O

Next, we shall establish the estimate of fQ [V, |,

Lemma 3.2. For any N > 1, suppose conditions (1.6) and (1.7) hold. Then, for p > 1 and all
t € (0, Tiax), there exists a positive constant c; dependent on q such that

e

qut 24> Jq

< c1f|vu2|24+(2(q— 1)+—)f(u1 + 1)?[Vu|®2.
Q

Proof. Using the second equation of (1.5), we can derive that

2thf|Vuz|2q—fquzl2q 2Vu2 Vuy,

=d, f IVir|*~2Vu, - VAu, + f Vo2V, - Vuy — f |V, |,
Q Q Q
Noting the fact 2Vu, - VAu, = A|Vus|* — 2|D?us|?, we can obtain
d
ds f ViV, - VAw = 2 f VP2 ANV s — dy f Vi P2 D
Q 2 Q Q
dg -1
—% f Vit P49 Va2 3.12)
Q

d OVus|*
+ 2 [ el g, f Vs 772 |Dug .
2 Jsa dv Q

(3.10)

(3.11)

By the pointwise inequality, the Sobolev embedding theorem and Lemma 2.2, one gets

d Vu,|? 1
2 |V |2q Zal I/l2| dZ(q )f|v 2q 4|V|Vl/t | |
2 Fle) (91/

3(g -1
b f |V|Vu2|q| +c f Vi |,
2q4* Q o)

where the constant ¢; > 0 depends only on g and Q [18]. Using Young’s inequality again and |Au,|* <
N|D?u,|?, we can obtain

(3.13)

f Vi |V, - Vuy = — f i |V P77 Auy — (g = 1) f ui [V 74V |V, |* - Vuy
Q Q

< 2 > fwwuzm +2(q - 1)f(u1 + 1) V2 (3.14)
+3L|Vu2|2‘12 2up? +2_dzf(”1+1) |Vu, |72,
Substituting (3.12)—(3.14) into (3.11), then the proof is completed. O
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Building on the above estimates, this section investigates how nonlinear diffusion functions and
nonlinear sensitivity functions affect the global boundedness of the model. To proceed, several
parameters required for proving the global boundedness of solutions are defined. For any p > 1,
g > 1,and m > 1, we define

20p+ 1)
0, :=0,(p,q) = ——F—, 3.15
1:=61(p,q) 3T - 25, (3.15)
20g-D(p+1)
m:=mp,q) = 9 119 , (3.16)
p_
4 _ 49
- . _ m 0
Ky == Kl(paQam) - q _(l _ l)’ (317)
m N
g _ 4
K2 = Ko (poqim) = ————, (3.18)
m (z - N)
0, a1
filp,q;m) == —ki(p,q;m) = PETER (3.19)
g -(5-%)
mo_q
h m
fp,gsm) = —ka(p, g;m) = —————. (3.20)
1 I-(5-%)

Next, we shall add some additional restrictions to the above parameters to prove the global boundedness
of the solution for (1.5).

Lemma 3.3. For any N > 2 and sufficiently large p > 1, if

1+ 4 5 > 26 —ay, (3.21)
then there exists g > 1 fulfilling
ki1(p,q;2) € (0, 1) and k2(p, q; 2) € (0, 1) (3.22)
and
Ni(p.q:2) <2 and fr(p,q;2) < 2. (3.23)

Proof. Assume

0
O >m, m>m g>—o-2 q>%— (3.24)

m
2 N N’

In fact, by a direct calculation, we deduce

d

—f(ul+2au2)S(2a+|b1|)fu1—yfu%—afuz,

dr Jg Q Q Q
d Y 2
— | u+2au)+ | uy+a | m+= | uy<c. (3.25)
dt Jo Q Q 2 Jo

AIMS Mathematics Volume 10, Issue 11, 26613-26632.
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Then, applying the Gronwall inequality, one deduces that

il + 2allusllq) < co.

Integrating (3.25) over the interval (¢, ¢ + 7), we infer that

1+T
f f ui < c. (3.26)
t Q

We integrate by parts in the second equation from (1.5) and use Young’s inequality to see that

d 1
—f|vu2|2+d2f|Au2|2+2f|vu2|2s—fuf.
dt Jg Q Q dy Jo

Using Lemma 2.4 and (3.26), one has
IViallrz @) < ca.

Therefore, we only need to consider the case when m = 2. Due to the assumption in (3.24), we can
prove that (3.22) and (3.23) hold by direct calculation. It should be noted that, if

p>2+a—2Band g > 2 (3.27)
and 12 N+D(p+1) 2
+ + +
p—__<q<()¢)__’ (328)
) — Zﬁl +3 N 2N N
then 6, and 7, also satisfy (3.24). Without loss of generality, we assume
+1 2 (N+2)(p+1 2
ge P—__,w__, (3.29)
a—261+3 N 2N N
if
2—N+2<a1—2ﬁ1+3, (330)

and hence, for sufficiently large p > 2, there always exists an appropriate g satisfying (3.29). Let

N 2(N +1 -2 3
P = max{1,—ﬂ,2+al—2ﬁl, WV + Die =25, + )—1}, 3.31)
2 N
which, for any p > p* and some appropriate ¢, (3.22) and (3.23) hold. O

Based on Lemmas 3.1-3.3, we can establish the boundedness of u;, u,, and v in L”(2), and thus
obtain the following lemma.

Lemma 3.4. Suppose conditions (1.6) and (1.7) hold. For any N > 2 and sufficiently large p > 2, if

2ﬁ]—a]<1+

N+2’

then there exists a constant My > 0 such that for all t € (0, Tyax),

f(u1+l)p+fu§+f|Vuzlzq§M1.
Q Q Q

AIMS Mathematics Volume 10, Issue 11, 26613-26632.
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Proof. The demonstration will be carried out in two steps. The first step, combining Lemma 3.1

and 3.2, gives
d (1 1 4a’(p—1) 2
14 - .U 2q 2
ils f<m+1>+ i quw') J o

2

2d1(P f 2
V(uy + 1 q 3.32
el NGRS o (3.32)
<L+L+c f |Vu2|2q + ¢,
Q
where
2(p—1 N
I ::M f (uy + NP 2P2|yy, 1 + (2(q— 1)+—) f (uy + 1)?|Vu, 972 (3.33)
2d1 Q d2 Q
and

2p—Dart 2071 ] 11 1
I ::[ (p=Dar? | +—)f<u1+1>!’+(—_1._-—)fug’—szwl)p“. (3.34)
p P P)a 2=t p o plla 2 Ja

We shall estimate /;. Thanks to Young’s inequality, one has

I, SZf(u1+1)p+1+c3f|Vu2|9‘+c4f|Vu2|'“,
4 Q Q Q

where 6, and n; are defined in (3.15) and (3.16). From the Gagliardo-Nirenberg inequality, we have

9

a1
0 q 1-
63f|Vuz| P=allVielllY,  <cs (IIVIVuzI"IILz(Q) IV ll K‘Q +[[IVual ]|
Q

LT (Q) L7 @

and

m n

" - q

f Vil = ¢4 IVaalll %, <c6(||V|Vu2|q||Lz(Q) IVt +|||Vu2|‘I||L%<Q>) :
Q

La(Q)

where «; and «; are given by (3.17) and (3.18). Assuming m = 2 and choosing a suitable ¢ from (3.29),

one has |
c3 f Vi |t + C4f [Vu, " < q—z j‘lVquzl‘f’l2 + c7. (3.35)
Q Q 4q Q
Next, we can estimate /. For sufficiently large p > 2, there exists a positive constant cg such that
)4
2(p — Dar1 -
(p=bart 27 1 f(u1+1)p—zf(u1+ P < e (3.36)
p P)Ja 4 Jo
After simple calculations, we can obtain
1 1 1
— — == <0. (3.37)
2>t pp

Substituting (3.36) and (3.37) into (3.34), there exists a constant ¢ > 0 such that

I, <cy, forallte (0, Tyax). (3.38)
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In the second step, we shall use the Gagliardo-Nirenberg inequality multiple times to obtain the

following result:

f (+1) = - H(m + D)
p

and

1
P

where

2p
pray
2
L p‘HY] (Q)

2pk3
prag

2p(1-«3)
p-H‘tl

p+Y|

pra
< CIOHV(ul +

o+ 1)

L2(Q)
2

Lp+011 Q)

(3.39)

p+01

+ i H(u1 + 1)

2
LPFay (9))

2pk3
prag

L2(Q)

C12

pray
< ey [V + 1)

L 2(1-kq4)
u,

P2

+ Ci13 Huz

2K4
| :

L2(Q) L% (Q) L% Q)
2Ky
+Ci4
L2(Q)

< 4dz(p - 1) “

4
fbtg <cp3 HVM;
Q

e s (3.40)

+ Cy5,
2©) 15

K3
(3.41)

K4

Moreover, applying the Gagliardo-Nirenberg inequality and Young’s inequality again, one can show

— +¢

that
1
2q
<
<
where
AIMS Mathematics

2
)|||Vu2|q”L2(Q)

2
c16 IV IVl 125,

Vil /IP4 ) 4+ ex Vi
Va2 + i Vil

(3.42)

2
17 VIVl 55, + €17
L VIV )Py +
4 ) up LZ(Q) C18’

‘1
e € (0, 1).
L

Volume 10, Issue 11, 26613-26632.
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Combining (3.32), (3.35), and (3.39)—(3.42), we obtain

d(1 1 1
—(—f(ul+1)P+—fug+—f|vu2|24)
dt\p Jo P Ja 29 Jo

ptay

1 ]
+ — f I/lé7 + Ci9 (f(u] + 1)p) ’ + — f |V1/t2|2q < Cy.
P Ja Q 29 Jo

For every ¢ € (0, Tiax), we define

1 1 1
y(t) == — f(ul + 1)’ + —fug + — f |V, |*.
P Jao P Ja 29 Jo

Then, there exist ¢co; > 0 and ¢y, > 0 such that

() + c21yk(t) < ¢,

ptai
1, =5
PK3

1 1 1
y(t) = — f(ul + 1) + — f ué’ + — f IVu,[*? < ¢p3, forallz> 0.
P Ja P Ja 29 Ja

Lemma 3.5. Suppose conditions (1.6) and (1.7) hold. For any N > 2 and sufficiently large p > 2, if

where k = min{ } > (. Thanks to the ODE comparison argument, one has

O

28 —a;1 <1+ ——,
- N+2

then there exists a constant M, > 0 such that for any t € (0, Tiax),
””1(" t)”L“’(Q) + ||u2(-, t)”WL“’(Q) < M.

Proof. For sufficiently large p > 2, according to the inequality s < (s + 1)?, and together with
Lemma 3.4, we can derive that

f W+ f W+ f Vil < M, forall £ € (0, Toay).
Q Q Q

Combining the standard Moser-Alikakos iteration theory, we can complete the proof of Lemma 3.5. O

Lemma 3.6. Suppose conditions (1.6) and (1.7) hold. For any N > 2 and sufficiently large p > 2, if

2ﬂ1-0’1<1+N+2,

then there exists a constant ¢ > 0 such that for every t € (0, Tiax),

df 2 2
— Vi |7+ (v + 1)P +f|Vu|q+f(v+l)p
dt Q( ! ) Q : Q

1
< —— f \Vu, P72 D?uy |* + 6M5(4(2q — 2)* + N) f V|V, [2472

ds(p -1 (p-1
_ 3(P ) f(v + 1)p+az—2lvv|2 + ’[L f(v + 1)p_a2+2’82_2|V1/t1|2
— 24y Ja

—Zf(v+l)p+l+c.
Q
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Proof. Applying the first equation of (1.5), we can conclude with

1 d
—— | V7= | |Vu 7V, -V
zthL| u| fQ| u Ui Uiy

- fg Va2V ~V(d1V Ay + 1 Vi)
—xV - (u (1 + ul)ﬁ‘_IVuz) + auy — buy — yu% - ulv)
= d; fg Vi, 12V, V(al(ul + DTV + gy + D Aul)
+XfQV (Vi P72V )V - (1 + ug 'V
+ f Vi, 22V, - V(auz — bu; — yu% - ulv)
= I(t)Q+ J(@®) + Q).
We will estimate the first term on the right-hand side of (3.44):
d, fg Vi [PV, - (%(0/1 — D(uy + D" 72V PVuy + oy (g + 1)a'_]V|VM1|2)
+d, fg Vi, 42V, - (al(ul + D" Ay Vg + (g + 1)‘”VAu1)
= dia(a; — 1)L(”1 + )™ 72|V 4
+dya L (uy + DV P72V - VVu | + dyey fg (ur + DV P1Au,

+d, f (u; + DV, 7>V, - VAu,
Q

=1 (l) + IQ(Z’) + I3(l) + I4(l).

According to Lemma 3.5, there exists a constant ¢; > 0 such that
L(D) < f |V 2772,
Q
To proceed, applying the identity V|Vu;[> = 2D?u; - Vu; and Lemma 3.5, one has

L(1) = 2dya; f (uy + DV P71 (DPuy - V) < f Va4 D%uy.
Q Q

Then, combining Lemma 3.5 again and the inequality |Au;|*> < N|D*u,|*, we can derive that

L) <dia \/Nf(ul + 1)“‘_1|Vu1|2q|D2u1| <3 f |Vu1|2q|D2u1|.
Q Q

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)
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Furthermore, we shall estimate the last term on the right-hand side of (3.45),

L) =d, f (u; + D|Vuy 72V, - VA,
Q

d
= —lf(ul + 1)“‘|Vu1|2q‘2AIVu1|2—dlf(ul + 1) |V 272D uy |
Q Q

d 8V, ?
D o+ Do w2Vl
2 50 (')v

d
il f (uy + D™ Vg P72V, - V|V 2

d] (g -
2

=1y — Ly — Iz — L.

)f(ul + 1)"‘|Vu1|2"_4|V|Vu1|2|—dlf(ul + D)™ Vu, 72D uy
Q Q

Applying Lemma 2.4 in [19], one has

O|Vu,|? di(g-1
I < ¢y |V, [2472 [Vea| ds < 1 )f|V”1|Zq_4|V|VM1|2|2+05f|VM1|2q.
Q v 2 Q Q

Using Young’s inequality again, we can derive that

1
201 2 20-21 2. 12 242
4] < C6f IV "D uy| < §f|VM1| T2 D"u, | +C7f|VM1| e,
Q Q Q

where cg, c; > 0 are constants. Meanwhile,

di(g—-1
> S0 | @ prowivu
Q

and
_ 2
I44Zf|VM1|2q 2|D2u1| .
Q

Then, substituting (3.46)—(3.53) into (3.45) and combining with Young’s inequality gives

1 _ 2
I < -5 f Vi, P72 DPus|” + (e1 + ¢7) f Vi, 272 + (¢ + ¢3) f Vuy | D |
Q Q Q

+cs f |V, [*

S——fqu |24~ 2|D2u1| +Cgf|Vu1|2q+2+c

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)
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Moreover,
50 =x [ - (VPTG + 1)
=y fg (2(q— DIV, |24V |V [ - Vg + |Vu1|2q_2Au1)((u1 + 1PV, - Vu,
+(B1 = Dug(uy + DP72Vuy - Vuy + g (uy + 1)ﬂ1-1Au2)
=2(q -l L (uy + 1P Vg P12V Vi P - Vg

+ up + DNV P72V, - VuyAu
ng(l )ﬁ [V, | 1 2QU1 (3.55)

+2(g - DB - 1))(f wy(uy + VP72V P72V |V P - Vg
o

+(B -y f ui(uy + P72V 27V, - VuyAu,
Q
+2(g -y f uy(uy + VPV, P74V VPV Au,
Q
+x f ui(uy + PV 72 Auy Auy
Q

= J1(0) + Jo(t) + J3(0) + J4(0) + Is(2) + Je(2).

Together with Lemma 3.5, the inequality |Au;|> < N|D?u|* and the identity V|Vu,|> = 2D%u; - Vu,,
we have

1
Ji(?) < ¢y f Vi %72 |D?uy | Vg - Vup < 5 f Vi, %72 |D*uy | + ¢, (3.56)
Q Q
1
Jr(t) < cqy f Vi, 2972 |\D?uy | Vg - Vuy < o f IV, 2972 |D*uy |* + c1a, (3.57)
Q Q
_ 1 _
J3(t) < ci3 f Vi, P72 D?uy | Vg - Vi < o f Vi, 2Dy [* + ¢4, (3.58)
Q Q
_ 1 _
Ju(t) < 15 f IV, 72| D%uy| Vuy - Vu < o f IV, 4721 D%uy > + cy6, (3.59)
Q Q
_ 1 _
Js(t) < c17 f Vi, 972D uy | |Auy| < 7 f |V, 972Dy |* + c13 f |Auy |4 (3.60)
Q Q Q
and |
Jo(t) < 19 f IV P72 Dy | |Aua| < 7 f Vi, 972Dy [* + a9 f |Auo | (3.61)
Q Q Q
Substituting (3.56)—(3.61) into (3.55), one gets
1 . 2
< = u; q 1 21 ) + + . .
J(t)<4f|V P72 D] + ¢ (fmur“ 1) (3.62)
Q Q
Finally,
0(t) <a f Vi, %72V, - Vuy — f Vi, 272Vuy - Vuyy) = 01(0) + Oa(0). (3.63)
Q Q
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According to Lemma 3.5 and Young’s inequality, we have
0,(f) < — f |Vu, 2 |D? u1| +C. (3.64)
Applying Lemma 3.5, Young’s inequality, and the identity V|Vu,|* = 2D?u; - Vu, again, one has
Ox(1) = LWV (Vi 7> Vuy)

- f (g = 2)|Vuy P74V Vi [* - Vg + [V 272 Auy)
Q

(3.65)
<22 -2)M, f VIV 272 |Duy | + My VN f V|V 2472 | Dy |
Q Q
1
<35 f |Vu, 72 |D*uy|* + 6M5(4(2q — 2)* + N) f V[V 2972,
Q Q
Substituting (3.64) and (3.65) into (3.63) gives
1
o < 3 f Vi, 272 [D?uy | + 6M2(4(2¢ - 2)° + N) f VIVui 472 + . (3.66)
Q Q
Then, substituting (3.54), (3.62), and (3.66) into (3.44), it holds that
1
f Vi, 4 < —— f IV, P72 D%us | + ¢ f Vi, P42 + o f |Au|*!
2q dt 16 Q (3.67)

+ 6M§(4(2q - 2) + N) f 14 |VM1| 242 + Co3.
Q

Next, we estimate |[v|[z»q). There exists a positive constant ¢4 > 0, and through calculations of the
following expression, we can find that

—f7fs2(s+1)”‘1 =—77f(s+1)”+1+277f(s+1)”—77f(s+ 1!
Q Q Q Q
s—nf(s+1)P+1+(2n+1)f(s+1)1’+c24,
Q P Ja

—if(w 1) = f(v+ DP7dsV - (v + 1D™Vv) = pV - (v + 17 V)|
dr Jo Q

which gives

* f(V+ P (= = v + 6uy)
Q
ds(p— 1 (p-1
_—3(1’2 ) f v+ Dy yp ¢ 22D f (v + 122 vy P
Q 3

B 24 Q (3.68)
—,ufv(v+1)p1—771‘\/2(v+1)”1+(5]‘u1v(v+1)p1
Q
D [y« LD |y
Q
—Zf(v+l)p+l+c25
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Combining (3.67), (3.68), and Lemmas 2.3 and 3.5, we have

%f(qu1|2q+(v+l)p)+f|Vu1|Zq+f(v+1)p

<—— f |Vui 72 |D?uy|* + 6M3(4(2q — 2)* + N) f v |V, 2972

d _ —
_ 3(]7 ) f(v + 1)p+(12—2 |VV|2 + p(p—) f(v + 1)]7—(1/2+2ﬁ2—2 |Vl/t1|2
2 Q 2d3 Q

—gf(w 17! + s,
Q

(3.69)

O

Lemma 3.7. Suppose conditions (1.6) and (1.7) hold. For any N > 2 and sufficiently large p > 2, if

281 —a; <1+ ,
Fr-o N+2
2B, —ay <2,
then there exist g > 1 and two constants M5, My > 0 such that for all t € (0, Tyax),
IVuill2aq) + IVllr) < Ms. (3.70)
Furthermore,
Vil + IVll=@) < Ma. (3.71)

Proof. Suppose that p > 2 and g > 1. There exist positive constants ¢; and ¢, such that

p(p-1 — @2 +2B2-2 2 2 2 2 24-2
o (v + P2 P2V |* + 6M5(4Q2g — 2)° + N) | v [Vuy ™
3 Q Q

1
< — f Vi, %72 |D*uy | + ¢ f(v + D%+ czj‘v‘”rl
64 le) Q

with 0, = (p —an + 26, — ) , then, taking appropriate p — a; + 26, — 2 < g < p, we have

clf(v+ D% + ¢, qu“ f(v+ DP 4 cs. (3.73)

Substituting (3.72) and (3.73) into (3.69), we end up with

(3.72)

d
— f(|vu1|2‘1 +v+ D)+ f [V + f(v + 1P < ¢y, (3.74)
dt le) Q Q
which together with Lemma 2.4 and the standard Moser-Alikakos iteration method [20, Lemma A.1]
indicates (3.71). i

Proof of Theorem 1.1. When Q ¢ RY (N > 1), if 28, —a; < 1 + N+2 and 28, — @, < 2, using
Lemmas 3.1-3.7, for all # € (0, Thh.), there exists a constant K > 0 independent of ¢ such that

lloe1 (-, Dllwio () + N2, Dllwreoy + IV, Dllze@) < K,

which together with the extension criterion in Lemma 2.1 proves Theorem 1.1. O
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4. Conclusions

In this work, we investigate a predator-prey model with prey-stage structure. Compared with the
predator-prey model, one feature of this model is the inclusion of the prey-stage structure, dividing the
prey into two stages: the immature stage and the mature stage. Another feature is the intra-specific
competition among immature prey and that among predators, respectively. Through mathematical
analysis, we mainly discuss the dynamic properties of the quasilinear prey-taxis model with prey-
stage structure in any dimensional space, and demonstrate that the classical solution of the model
is globally bounded when a certain relationship is satisfied between the exponent of the nonlinear
diffusion function and the exponent of the nonlinear trophic sensitivity function.
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