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1. Introduction

In natural ecosystems, a considerable number of animal species exhibit life cycles encompassing at
least two distinct developmental stages: the immature stage and the mature stage. This stage-structured
characteristic exerts a profound influence on key population dynamics, including population growth,
interspecific competition, and species interaction patterns. Over the past decades, predator-prey models
that integrate stage structure have been the subject of extensive research (see [1–4]). To mathematically
characterize such biological phenomena, Zhang et al. [5] proposed the following predator-prey model,
which specifically incorporates stage structure in the prey population:

dx1
dt = Bx2 −Cx1 − D1x1 − γx2

1 − kx1y, t > 0,
dx2
dt = Cx1 − D2x2, t > 0,

dy
dt = −D3y + δ1kx1y − ηy2, t > 0.

(1.1)
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Let the concentrations of immature prey, mature prey, and predators be denoted by x1(t), x2(t), and
y(t), respectively. The positive parameter B represents the birth rate of immature prey. The parameter
C > 0 denotes the conversion rate of immature prey to mature prey. The positive constants γ and η
stand for the mortality rate caused by intra-specific competition among immature prey and that among
predators, respectively. The parameter k > 0 describes the consumption rate of immature prey (by
predators). The parameters Di > 0 (i = 1, 2, 3) represent the mortality rates of immature prey, mature
prey, and predators, respectively. The parameter δ1 > 0 denotes the predation rate of predators (on
prey).

When η = 0, a more general form of the model can be derived from (1.1) as shown below:
du1
dt = au2 − bu1 − γu2

1 − g(u1)v, t > 0,
du2
dt = u1 − u2, t > 0,

dv
dt = −µv + δg(u1)v, t > 0.

(1.2)

The term g(u1)v represents the interspecific interaction, where g(u1) denotes the functional response
function. This function is commonly formulated in forms such as Holling Type I (i.e., g(u1) = u1),
Holling Type II (i.e., g(u1) = u1

λ+u1
with a positive constant λ > 0), and Holling Type III (i.e., g(u1) =

uθ1
λθ+uθ1

with constants θ > 1 and λ > 0). In the case 0 < g(u1) < L (where L > 0), Xu [6] investigated the
stability of equilibrium points and the Hopf bifurcation of model (1.2). Furthermore, considering the
random diffusion mechanism, Xu [6] also discussed the following model:

u1t − d1∆u1 = au2 − bu1 − γu2
1 − g(u1)v, x ∈ Ω, t > 0,

u2t − d2∆u2 = u1 − u2, x ∈ Ω, t > 0,
vt − d3∆v = −µv + δg(u1)v, x ∈ Ω, t > 0,

(1.3)

where Ω ⊂ RN(N ≥ 1), and u1(x, t) and u2(x, t) denote the population densities of immature prey
and mature prey, respectively. v(x, t) represents the population density of predators. The parameters
di (i = 1, 2, 3) are positive constants, which stand for the random diffusion rates of the three
species, respectively. When g(u1)v = u1v, Xu [6] established the existence of a globally bounded
classical solution to model (1.3). When g(u1)v = m u1v

u1+v (where m > 0 is a constant), Wang and
Wu [7] established the global asymptotic stability of the unique positive constant equilibrium under
appropriate conditions. Additionally, they derived results regarding the existence and non-existence
of non-trivial solutions. Considering the impact of prey stage structure on predator-prey models, Li
et al. [8] proposed the following model incorporating a tactic term:

u1t = d1∆u1 − χ∇ · (u1∇u2) + au2 − bu1 − γu2
1 − u1v, x ∈ Ω, t > 0,

u2t = d2∆u2 + u1 − u2, x ∈ Ω, t > 0,
vt = d3∆v − ρ∇ · (v∇u1) − µv + δu1v, x ∈ Ω, t > 0,

(1.4)

where Ω ⊂ RN(N ≥ 1). The term −χ∇ · (u1∇u2) describes the directional movement of immature prey
toward the density gradient of mature prey. Additionally, the term −ρ∇ · (v∇u1) denotes the movement
of predators toward the density gradient of immature prey. Li et al. [8] established the existence of
Hopf bifurcation and steady-state bifurcation for model (1.4). When d1 = χ = 0 and au2 = hu2
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(where hu2 denotes the non-uniform natural reproduction rate at which mature prey produce immature
prey), Mi et al. [9] established the existence of a globally bounded classical solution for (1.4) in the
two-dimensional case. In particular, when η > 0, Wu et al. [10] investigated the boundedness and
asymptotic behavior of solutions to (1.4) with intra-specific competition among predators. For more
related works, readers can refer to [11, 12].

Inspired by the work of [10], we replace the term d1∆u1 − χ∇ · (u1∇u2) with d1∇ · (D1(u1)∇u1) −
χ∇ · (S 1(u1)∇u2), and the term d3∆v− ρ∇ · (v∇u1) with d3∇ · (D2(v)∇v)− ρ∇ · (S 2(v)∇u1). The resulting
model is specified as follows:

u1t = d1∇ · (D1(u1)∇u1) − χ∇ · (S 1(u1)∇u2) + au2 − bu1 − γu2
1 − u1v, x ∈ Ω, t > 0,

u2t = d2∆u2 + u1 − u2, x ∈ Ω, t > 0,
vt = d3∇ · (D2(v)∇v) − ρ∇ · (S 2(v)∇u1) − µv − ηv2 + δu1v, x ∈ Ω, t > 0,
∂νu1 = ∂νu2 = ∂νv = 0, x ∈ ∂Ω, t > 0,
u1(x, 0) = u10(x), u2(x, 0) = u20(x), v(x, 0) = v0(x), x ∈ Ω

(1.5)

in a bounded domain Ω ⊂ RN (N ≥ 1) with a smooth boundary. When b < 0, the term −bu1 − γu2
1

represents the logistic source of immature prey; when b > 0, it denotes the mortality rate of immature
prey. The nonlinear diffusion functions Di(s) (i = 1, 2) and nonlinear prey-taxis sensitivity functions
S i(s) (i = 1, 2) satisfy Di(s), S i(s) ∈ C2[0,∞),

Di(s) ≥ (s + 1)αi and S i(s) ≤ s(s + 1)βi−1, (1.6)

where s ≥ 0, αi, βi ∈ R (i = 1, 2). The initial values (u10, u20, v0) satisfy

u20 ∈ W2,2q(Ω), (u10, v0) ∈
[
W1,2q(Ω)

]2
, where u10, u20, v0 > 0, q >

N
2
. (1.7)

In the present manuscript, we prove that when the parameters satisfy2β1 − α1 < 1 + 4
N+2 ,

2β2 − α2 < 2,
(1.8)

the classical solution of this quasilinear prey-taxis model is globally bounded.

Theorem 1.1. Let Ω ⊂ RN(N ≥ 1) be a bounded domain with smooth boundary, and the initial data
(u10, u20, v0) satisfy (1.7). If the condition (1.8) holds, then model (1.5) has a global classical solution

(u1, u2, v) ∈
[
C0

(
Ω̄ × [0,∞)

)
∩C2,1

(
Ω̄ × (0,∞)

)]3

and there exists a constant M > 0 independent of t such that

‖u1(·, t)‖W1,∞(Ω) + ‖u2(·, t)‖W1,∞(Ω) + ‖v(·, t)‖L∞(Ω) ≤ M for all t > 0.

The structure of this paper is organized as follows. Section 2 presents the local existence theorem
of solutions and the lemmas required for subsequent calculations. In Section 3, we focus on deriving
the global boundedness of classical solutions to model (1.5), together with the proof of Theorem 1.1.
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2. Preliminaries

In the following context, for simplicity and to avoid ambiguity,
∫

Ω
ϕ dx will be abbreviated as

∫
Ω
ϕ

in subsequent discussions. Additionally, we use ci and Mi (i = 1, 2, 3, · · ·) to denote generic positive
constants independent of t, which may vary throughout the paper. The local existence of solutions to
model (1.5) follows directly from Amann’s theorem; for the sake of conciseness, we omit the detailed
proof here and only present the results.

Lemma 2.1. Assume Ω ⊂ RN(N ≥ 1) is a bounded domain with smooth boundary, and condition (1.7)
holds. Then, there exist Tmax ∈ (0,∞] and a nonnegative function

(u1, u2, v) ∈
[
C0

(
Ω̄ × [0,Tmax)

)
∩C2,1

(
Ω̄ × (0,Tmax)

)]3
(2.1)

such that model (1.5) has a classical solution. Moreover, if Tmax < ∞, then

lim sup
t↗Tmax

(
‖u1(·, t)‖W1,∞(Ω) + ‖u2(·, t)‖W1,∞(Ω) + ‖v(·, t)‖L∞(Ω)

)
= ∞. (2.2)

Proof. Let Z = (u2, u1, v)T . Then, model (1.5) can be rewritten as
Zt = ∇ · (P(Z)∇Z) + Q(Z), (x, t) ∈ Ω × (0,∞),
∂Z
∂ν

= 0, (x, t) ∈ ∂Ω × (0,∞),
Z(·, 0) = Z0 = (u10, u20, v0), x ∈ Ω,

(2.3)

where

P(Z) =


d2 −χS 1(u1) 0
0 d1D1(u1) −ρS 2(v)
0 0 d3D2(v)

 , Q(Z) =


u1 − u2

au2 − bu1 − γu2
1 − u1v

−µv − ηv2 + δu1v

 .
Clearly, for any initial value Z0, the matrix P(Z) is positive definite, which implies that Eq (2.3)

is uniformly parabolic. As indicated in references [13, 14], there exists a maximal existence time
Tmax ∈ (0,∞] such that Eq (2.3) admits a classical solution

(u1, u2, v) ∈
[
C0

(
Ω̄ × [0,Tmax)

)
∩C2,1

(
Ω̄ × (0,Tmax)

)]3
.

Furthermore, by virtue of the strong maximum principle, (u1, u2, v) is nonnegative. Subsequently, by
applying Amann’s theorem, we establish the local existence criterion for the solution. This completes
the proof. �

Next, we obtain an inequality from reference [15].

Lemma 2.2. Let Ω be a bounded domain, and let ϕ ∈ C2(Ω) satisfy ∂νϕ = 0 on ∂Ω. Then,

∂|∇ϕ|2

∂ν
≤ ι|∇ϕ|2,

where ι > 0 depending on Ω is an upper bound of the curvatures of ∂Ω.

Then, we collect an important lemma from [16].
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Lemma 2.3. Suppose that there exist some p > 1 and constants S ,H > 0, and∫ t+τ

t

∫
Ω

| f |p ≤ S and
∫ t+τ

t

∫
Ω

|z|p ≤ H, for all t ∈ (0,Tmax − τ),

where τ = min
{
1, Tmax

2

}
, moreover, the function z ∈ C2,1(Ω̄ × (0,Tmax)) solves


zt = ∆z + f (x, t), x ∈ Ω, 0 < t < Tmax,
∂z
∂ν

= 0, x ∈ ∂Ω, 0 < t < Tmax,

z(x, 0) = z0(x), x ∈ Ω,

where z0 ∈ W2,∞(Ω) with z0 ≥ 0 and ∂z0
∂ν

= 0 on ∂Ω. Then, there exists constant c1 > 0 fulfilling∫ t+τ

t
‖zt‖

p
Lp(Ω) +

∫ t+τ

t
‖z‖p

W2,p(Ω) ≤ c1

(
‖z0‖

p
W2,p(Ω) + S + H

)
,

for all t ∈ (0,Tmax − τ). Specifically, one also can find a constant c2 > 0 such that∫ t+τ

t

∫
Ω

|∆z|p ≤ c2

(
‖z0‖

p
W2,p(Ω) + S + H

)
, for all t ∈ (0,Tmax − τ).

We also introduce the following inequality [17].

Lemma 2.4. Let a, b > 0, T > 0, and τ ∈ (0,T ). Assume that ϕ : [0,T ) → [0,∞) is absolutely
continuous and fulfills

ϕ′(t) + aϕ(t) ≤ z(t) for all t ∈ (0,T ),

where z > 0, z ∈ L1
loc([0,T )), and∫ t+τ

t
z(s)ds ≤ b for all t ∈ [0,T − τ).

Then,

ϕ(t) ≤ max
{
ϕ(0) + b,

b
aτ

+ 2b
}

for all t ∈ (0,T ).

3. Proof of Theorem 1.1

In the present section, we concentrate on studying that the classical solutions to (1.5) are globally
bounded and will build the following energy functional:∫

Ω

(u1 + 1)p +

∫
Ω

up
2 +

∫
Ω

|∇u2|
2q, for all p > 2, q > 1. (3.1)

To lay the foundation for proving Theorem 1.1, the following estimates are needed.

AIMS Mathematics Volume 10, Issue 11, 26613–26632.



26618

Lemma 3.1. Suppose conditions (1.6) and (1.7) hold. Then, for p > 2 and all t ∈ (0,Tmax), the
following estimates hold:

1
p

d
dt

∫
Ω

(u1 + 1)p +
d1(p − 1)

2

∫
Ω

(u1 + 1)p+α1−2|∇u1|
2

≤
χ2(p − 1)

2d1

∫
Ω

(u1 + 1)p−α1+2β1−2|∇u2|
2 +

2(p − 1)a
p

p−1

p

∫
Ω

(u1 + 1)p

+
1

2p−1 ·
1
p

∫
Ω

up
2 −

γ

2

∫
Ω

(u1 + 1)p+1 + c1

(3.2)

and
1
p

d
dt

∫
Ω

up
2 + d2(p − 1)

∫
Ω

up−2
2 |∇u2|

2 ≤
2p−1

p

∫
Ω

(u1 + 1)p −
1
p

∫
Ω

up
2 . (3.3)

Proof. Multiplying the first equation of (1.5) by (u1 + 1)p−1 and integrating the result over Ω, gives

1
p

d
dt

∫
Ω

(u1 + 1)p + d1(p − 1)
∫

Ω

D1(u1)(u1 + 1)p−2|∇u1|
2

≤ χ(p − 1)
∫

Ω

S 1(u1)(u1 + 1)p−2∇u1 · ∇u2 + a
∫

Ω

(u1 + 1)p−1u2

− b
∫

Ω

(u1 + 1)p−1u1 − γ

∫
Ω

u2
1(u1 + 1)p−1.

(3.4)

Next, we estimate the terms on the right-hand side of (3.4). Applying Young’s inequality and the fact
sp ≤ (s + 1)p, one obtains

χ(p − 1)
∫

Ω

S 1(u1)(u1 + 1)p−2∇u1 · ∇u2

≤
d1(p − 1)

2

∫
Ω

(u1 + 1)p+α1−2|∇u1|
2 +

χ2(p − 1)
2d1

∫
Ω

S 2
1(u1)(u1 + 1)p−α1−2|∇u2|

2

≤
d1(p − 1)

2

∫
Ω

(u1 + 1)p+α1−2|∇u1|
2 +

χ2(p − 1)
2d1

∫
Ω

(u1 + 1)p−α1+2β1−2|∇u2|
2

(3.5)

and

a
∫

Ω

(u1 + 1)p−1u2 ≤
2(p − 1)a

p
p−1

p

∫
Ω

(u1 + 1)p +
1

2p−1 ·
1
p

∫
Ω

up
2 . (3.6)

Then, the inequality (s + 1)2 ≤ 2(s2 + 1) and Young’s inequality ensure that

−γ

∫
Ω

u2
1(u1 + 1)p−1 ≤ −

γ

2

∫
Ω

(u1 + 1)p+1 + γ

∫
Ω

(u1 + 1)p−1

≤ −
γ

2

∫
Ω

(u1 + 1)p+1 +
1
p

∫
Ω

(u1 + 1)p + c1,

(3.7)

where c1 > 0 depends only on p. Combining (3.4)–(3.7), we can obtain (3.2). Multiplying the second
equation of (1.5) by up−1

2 , an integration by parts shows that

1
p

d
dt

∫
Ω

up
2 + d2(p − 1)

∫
Ω

up−2
2 |∇u2|

2 =

∫
Ω

up−1
2 u1 −

∫
Ω

up
2 . (3.8)
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Young’s inequality implies that∫
Ω

up−1
2 u1 ≤

2p−1

p

∫
Ω

(u1 + 1)p +
p − 1
2p

∫
Ω

up
2 . (3.9)

Then the combination of (3.8) and (3.9) gives (3.3). �

Next, we shall establish the estimate of
∫

Ω
|∇u2|

2q.

Lemma 3.2. For any N ≥ 1, suppose conditions (1.6) and (1.7) hold. Then, for p > 1 and all
t ∈ (0,Tmax), there exists a positive constant c1 dependent on q such that

1
2q

d
dt

∫
Ω

|∇u2|
2q +

q − 1
2q2

∫
Ω

|∇|∇u2|
q|2

≤ c1

∫
Ω

|∇u2|
2q +

(
2(q − 1) +

N
2d2

) ∫
Ω

(u1 + 1)2|∇u2|
2q−2.

(3.10)

Proof. Using the second equation of (1.5), we can derive that

1
2q

d
dt

∫
Ω

|∇u2|
2q =

∫
Ω

|∇u2|
2q−2∇u2 · ∇u2t

= d2

∫
Ω

|∇u2|
2q−2∇u2 · ∇∆u2 +

∫
Ω

|∇u2|
2q−2∇u1 · ∇u2 −

∫
Ω

|∇u2|
2q.

(3.11)

Noting the fact 2∇u2 · ∇∆u2 = ∆|∇u2|
2 − 2|D2u2|

2, we can obtain

d2

∫
Ω

|∇u2|
2q−2∇u2 · ∇∆u2 =

d2

2

∫
Ω

|∇u2|
2q−2∆|∇u2|

2 − d2

∫
Ω

|∇u2|
2q−2|D2u2|

2

= −
d2(q − 1)

2

∫
Ω

|∇u2|
2q−4|∇|∇u2|

2|2

+
d2

2

∫
∂Ω

|∇u2|
2q−2∂|∇u2|

2

∂ν
− d2

∫
Ω

|∇u2|
2q−2|D2u2|

2.

(3.12)

By the pointwise inequality, the Sobolev embedding theorem and Lemma 2.2, one gets

d2

2

∫
∂Ω

|∇u2|
2q−2∂|∇u2|

2

∂ν
−

d2(q − 1)
2

∫
Ω

|∇u2|
2q−4

∣∣∣∇|∇u2|
2
∣∣∣2

≤ −
3(q − 1)

2q2

∫
Ω

∣∣∣∇|∇u2|
q
∣∣∣2 + c1

∫
Ω

|∇u2|
2q,

(3.13)

where the constant c1 > 0 depends only on q and Ω [18]. Using Young’s inequality again and |∆u2|
2 ≤

N|D2u2|
2, we can obtain∫

Ω

|∇u2|
2q−2∇u1 · ∇u2 = −

∫
Ω

u1|∇u2|
2q−2∆u2 − (q − 1)

∫
Ω

u1|∇u2|
2q−4∇|∇u2|

2 · ∇u2

≤
q − 1
2q2

∫
Ω

|∇|∇u2|
q|2 + 2(q − 1)

∫
Ω

(u1 + 1)2|∇u2|
2q−2

+
d2

2

∫
Ω

|∇u2|
2q−2|D2u2|

2 +
N

2d2

∫
Ω

(u1 + 1)2|∇u2|
2q−2.

(3.14)

Substituting (3.12)–(3.14) into (3.11), then the proof is completed. �
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Building on the above estimates, this section investigates how nonlinear diffusion functions and
nonlinear sensitivity functions affect the global boundedness of the model. To proceed, several
parameters required for proving the global boundedness of solutions are defined. For any p ≥ 1,
q ≥ 1, and m ≥ 1, we define

θ1 := θ1(p, q) =
2(p + 1)

3 + α1 − 2β1
, (3.15)

η1 := η1(p, q) =
2(q − 1)(p + 1)

p − 1
, (3.16)

κ1 := κ1(p, q; m) =

q
m −

q
θ1

q
m −

(
1
2 −

1
N

) , (3.17)

κ2 := κ2(p, q; m) =

q
m −

q
η1

q
m −

(
1
2 −

1
N

) , (3.18)

f1(p, q; m) :=
θ1

q
κ1(p, q; m) =

θ1
m − 1

q
m −

(
1
2 −

1
N

) , (3.19)

f2(p, q; m) :=
η1

q
κ2(p, q; m) =

η1
m − 1

q
m −

(
1
2 −

1
N

) . (3.20)

Next, we shall add some additional restrictions to the above parameters to prove the global boundedness
of the solution for (1.5).

Lemma 3.3. For any N ≥ 2 and sufficiently large p > 1, if

1 +
4

N + 2
> 2β1 − α1, (3.21)

then there exists q > 1 fulfilling

κ1(p, q; 2) ∈ (0, 1) and κ2(p, q; 2) ∈ (0, 1) (3.22)

and
f1(p, q; 2) < 2 and f2(p, q; 2) < 2. (3.23)

Proof. Assume

θ1 > m, η1 > m, q >
θ1

2
−

m
N
, q >

η1

2
−

m
N
. (3.24)

In fact, by a direct calculation, we deduce

d
dt

∫
Ω

(u1 + 2au2) ≤ (2a + |b1|)
∫

Ω

u1 − γ

∫
Ω

u2
1 − a

∫
Ω

u2,

which gives
d
dt

∫
Ω

(u1 + 2au2) +

∫
Ω

u1 + a
∫

Ω

u2 +
γ

2

∫
Ω

u2
1 ≤ c1. (3.25)
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Then, applying the Grönwall inequality, one deduces that

‖u1‖L1(Ω) + 2a‖u2‖L1(Ω) ≤ c2.

Integrating (3.25) over the interval (t, t + τ), we infer that∫ t+τ

t

∫
Ω

u2
1 ≤ c3. (3.26)

We integrate by parts in the second equation from (1.5) and use Young’s inequality to see that

d
dt

∫
Ω

|∇u2|
2 + d2

∫
Ω

|∆u2|
2 + 2

∫
Ω

|∇u2|
2 ≤

1
d2

∫
Ω

u2
1.

Using Lemma 2.4 and (3.26), one has
‖∇u2‖L2(Ω) ≤ c4.

Therefore, we only need to consider the case when m = 2. Due to the assumption in (3.24), we can
prove that (3.22) and (3.23) hold by direct calculation. It should be noted that, if

p > 2 + α1 − 2β1 and q > 2 (3.27)

and
p + 1

α1 − 2β1 + 3
−

2
N
< q <

(N + 2)(p + 1)
2N

−
2
N
, (3.28)

then θ1 and η1 also satisfy (3.24). Without loss of generality, we assume

q ∈
(

p + 1
α1 − 2β1 + 3

−
2
N
,

(N + 2)(p + 1)
2N

−
2
N

)
, (3.29)

if
2 −

4
N + 2

< α1 − 2β1 + 3, (3.30)

and hence, for sufficiently large p > 2, there always exists an appropriate q satisfying (3.29). Let

p∗ := max
{

1,−
Nα1

2
, 2 + α1 − 2β1,

2(N + 1)(α1 − 2β1 + 3)
N

− 1
}
, (3.31)

which, for any p > p∗ and some appropriate q, (3.22) and (3.23) hold. �

Based on Lemmas 3.1–3.3, we can establish the boundedness of u1, u2, and v in Lp(Ω), and thus
obtain the following lemma.

Lemma 3.4. Suppose conditions (1.6) and (1.7) hold. For any N ≥ 2 and sufficiently large p > 2, if

2β1 − α1 < 1 +
4

N + 2
,

then there exists a constant M1 > 0 such that for all t ∈ (0,Tmax),∫
Ω

(u1 + 1)p +

∫
Ω

up
2 +

∫
Ω

|∇u2|
2q ≤ M1.
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Proof. The demonstration will be carried out in two steps. The first step, combining Lemma 3.1
and 3.2, gives

d
dt

(
1
p

∫
Ω

(u1 + 1)p +
1
p

∫
Ω

up
2 +

1
2q

∫
Ω

|∇u2|
2q

)
+

4d2(p − 1)
p2

∫
Ω

∣∣∣∣∇u
p
2
2

∣∣∣∣2
+

2d1(p − 1)
(p + α1)2

∫
Ω

∣∣∣∣∇(u1 + 1)
p+α1

2

∣∣∣∣2 +
q − 1

q2

∫
Ω

|∇|∇u2|
q|

2

≤ I1 + I2 + c1

∫
Ω

|∇u2|
2q + c2,

(3.32)

where

I1 :=
χ2(p − 1)

2d1

∫
Ω

(u1 + 1)p−α1+2β1−2|∇u2|
2 +

(
2(q − 1) +

N
2d2

) ∫
Ω

(u1 + 1)2|∇u2|
2q−2 (3.33)

and

I2 :=

2(p − 1)a
p

p−1

p
+

2p−1

p
+

1
p

 ∫
Ω

(u1 + 1)p +

(
1

2p−1 ·
1
p
−

1
p

) ∫
Ω

up
2 −

γ

2

∫
Ω

(u1 + 1)p+1. (3.34)

We shall estimate I1. Thanks to Young’s inequality, one has

I1 ≤
γ

4

∫
Ω

(u1 + 1)p+1 + c3

∫
Ω

|∇u2|
θ1 + c4

∫
Ω

|∇u2|
η1 ,

where θ1 and η1 are defined in (3.15) and (3.16). From the Gagliardo-Nirenberg inequality, we have

c3

∫
Ω

|∇u2|
θ1 = c3 ‖|∇u2|

q‖

θ1
q

L
θ1
q (Ω)
≤ c5

(
‖∇|∇u2|

q‖
κ1
L2(Ω) · ‖|∇u2|

q‖
1−κ1

L
m
q (Ω)

+ ‖|∇u2|
q‖

L
m
q (Ω)

) θ1
q

and

c4

∫
Ω

|∇u2|
η1 = c4 ‖|∇u2|

q‖

η1
q

L
η1
q (Ω)
≤ c6

(
‖∇|∇u2|

q‖
κ2
L2(Ω) · ‖|∇u2|

q‖
1−κ2

L
m
q (Ω)

+ ‖|∇u2|
q‖

L
m
q (Ω)

) η1
q
,

where κ1 and κ2 are given by (3.17) and (3.18). Assuming m = 2 and choosing a suitable q from (3.29),
one has

c3

∫
Ω

|∇u2|
θ1 + c4

∫
Ω

|∇u2|
η1 ≤

q − 1
4q2

∫
Ω

|∇|∇u2|
q|

2 + c7. (3.35)

Next, we can estimate I2. For sufficiently large p > 2, there exists a positive constant c8 such that2(p − 1)a
p

p−1

p
+

2p−1

p
+

1
p

 ∫
Ω

(u1 + 1)p −
γ

4

∫
Ω

(u1 + 1)p+1 ≤ c8. (3.36)

After simple calculations, we can obtain

1
2p−1 ·

1
p
−

1
p
< 0. (3.37)

Substituting (3.36) and (3.37) into (3.34), there exists a constant c9 > 0 such that

I2 ≤ c9, for all t ∈ (0,Tmax). (3.38)
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In the second step, we shall use the Gagliardo-Nirenberg inequality multiple times to obtain the
following result:

1
p

∫
Ω

(u1 + 1)p =
1
p

∥∥∥∥(u1 + 1)
p+α1

2

∥∥∥∥ 2p
p+α1

L
2p

p+α1 (Ω)

≤ c10

∥∥∥∥∇(u1 + 1)
p+α1

2

∥∥∥∥ 2pκ3
p+α1

L2(Ω)

∥∥∥∥(u1 + 1)
p+α1

2

∥∥∥∥ 2p(1−κ3)
p+α1

L
2

p+α1 (Ω)

+ c10

∥∥∥∥(u1 + 1)
p+α1

2

∥∥∥∥2

L
2

p+α1 (Ω)

≤ c11

∥∥∥∥∇(u1 + 1)
p+α1

2

∥∥∥∥ 2pκ3
p+α1

L2(Ω)
+ c12

(3.39)

and

1
p

∫
Ω

up
2 ≤ c13

∥∥∥∥∇u
p
2
2

∥∥∥∥2κ4

L2(Ω)

∥∥∥∥u
p
2
2

∥∥∥∥2(1−κ4)

L
2
p (Ω)

+ c13

∥∥∥∥u
p
2
2

∥∥∥∥2

L
2
p (Ω)

≤ c14

∥∥∥∥∇u
p
2
2

∥∥∥∥2κ4

L2(Ω)
+ c14

≤
4d2(p − 1)

p2

∥∥∥∥∇u
p
2
2

∥∥∥∥2

L2(Ω)
+ c15,

(3.40)

where

κ3 =

N(p + α1)
2

(
1 − 1

p

)
1 − N

2 +
N(p + α1)

2

∈ (0, 1),

κ4 =

N p
2

(
1 − 1

p

)
1 − N

2 +
N p
2

∈ (0, 1).

(3.41)

Moreover, applying the Gagliardo-Nirenberg inequality and Young’s inequality again, one can show
that (

1
2q

+ c1

)
‖|∇u2|

q‖
2
L2(Ω)

≤ c16 ‖∇|∇u2|
q‖

2κ5

L2(Ω) ‖|∇u2|
q‖

2(1−κ5)

L
s
q (Ω)

+ c16 ‖|∇u2|
q‖

2
L

s
q (Ω)

≤ c17 ‖∇|∇u2|
q‖

2κ5

L2(Ω) + c17

≤
q − 1
4q2 ‖∇|∇u2|

q‖
2
L2(Ω) + c18,

(3.42)

where

κ5 =

Nq
s

(
1 − s

2q

)
1 − N

2 +
Nq
s

∈ (0, 1).
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Combining (3.32), (3.35), and (3.39)–(3.42), we obtain

d
dt

(
1
p

∫
Ω

(u1 + 1)p +
1
p

∫
Ω

up
2 +

1
2q

∫
Ω

|∇u2|
2q

)
+

1
p

∫
Ω

up
2 + c19

(∫
Ω

(u1 + 1)p

) p+α1
pκ3

+
1

2q

∫
Ω

|∇u2|
2q ≤ c20.

For every t ∈ (0,Tmax), we define

y(t) :=
1
p

∫
Ω

(u1 + 1)p +
1
p

∫
Ω

up
2 +

1
2q

∫
Ω

|∇u2|
2q.

Then, there exist c21 > 0 and c22 > 0 such that

y(t) + c21yk(t) ≤ c22,

where k = min
{
1, p+α1

pκ3

}
> 0. Thanks to the ODE comparison argument, one has

y(t) :=
1
p

∫
Ω

(u1 + 1)p +
1
p

∫
Ω

up
2 +

1
2q

∫
Ω

|∇u2|
2q ≤ c23, for all t > 0.

�

Lemma 3.5. Suppose conditions (1.6) and (1.7) hold. For any N ≥ 2 and sufficiently large p > 2, if

2β1 − α1 < 1 +
4

N + 2
,

then there exists a constant M2 > 0 such that for any t ∈ (0,Tmax),∥∥∥u1(·, t)
∥∥∥

L∞(Ω)
+

∥∥∥u2(·, t)
∥∥∥

W1,∞(Ω)
≤ M2.

Proof. For sufficiently large p > 2, according to the inequality sp ≤ (s + 1)p, and together with
Lemma 3.4, we can derive that∫

Ω

up
1 +

∫
Ω

up
2 +

∫
Ω

|∇u2|
2q ≤ M1, for all t ∈ (0,Tmax).

Combining the standard Moser-Alikakos iteration theory, we can complete the proof of Lemma 3.5. �

Lemma 3.6. Suppose conditions (1.6) and (1.7) hold. For any N ≥ 2 and sufficiently large p > 2, if

2β1 − α1 < 1 +
4

N + 2
,

then there exists a constant c > 0 such that for every t ∈ (0,Tmax),

d
dt

∫
Ω

(
|∇u1|

2q + (v + 1)p
)

+

∫
Ω

|∇u1|
2q +

∫
Ω

(v + 1)p

≤ −
1

32

∫
Ω

|∇u1|
2q−2|D2u1|

2 + 6M2
2
(
4(2q − 2)2 + N

) ∫
Ω

v2|∇u1|
2q−2

−
d3(p − 1)

2

∫
Ω

(v + 1)p+α2−2|∇v|2 +
ρ2(p − 1)

2d3

∫
Ω

(v + 1)p−α2+2β2−2|∇u1|
2

−
η

4

∫
Ω

(v + 1)p+1 + c.

(3.43)
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Proof. Applying the first equation of (1.5), we can conclude with

1
2q

d
dt

∫
Ω

|∇u1|
2q =

∫
Ω

|∇u1|
2q−2∇u1 · ∇u1t

=

∫
Ω

|∇u1|
2q−2∇u1 · ∇

(
d1∇ ·

(
(u1 + 1)α1∇u1

)
− χ∇ ·

(
u1(1 + u1)β1−1∇u2

)
+ au2 − bu1 − γu2

1 − u1v
)

= d1

∫
Ω

|∇u1|
2q−2∇u1 · ∇

(
α1(u1 + 1)α1−1|∇u1|

2 + (u1 + 1)α1∆u1

)
+ χ

∫
Ω

∇ ·
(
|∇u1|

2q−2∇u1
)
∇ ·

(
u1(1 + u1)β1−1∇u2

)
+

∫
Ω

|∇u1|
2q−2∇u1 · ∇

(
au2 − bu1 − γu2

1 − u1v
)

:= I(t) + J(t) + Q(t).

(3.44)

We will estimate the first term on the right-hand side of (3.44):

d1

∫
Ω

|∇u1|
2q−2∇u1 ·

(
α1(α1 − 1)(u1 + 1)α1−2|∇u1|

2∇u1 + α1(u1 + 1)α1−1∇|∇u1|
2
)

+ d1

∫
Ω

|∇u1|
2q−2∇u1 ·

(
α1(u1 + 1)α1−1∆u1∇u1 + (u1 + 1)α1∇∆u1

)
= d1α1(α1 − 1)

∫
Ω

(u1 + 1)α1−2|∇u1|
2q+2

+ d1α1

∫
Ω

(u1 + 1)α1−1|∇u1|
2q−2∇u1 · ∇|∇u1|

2 + d1α1

∫
Ω

(u1 + 1)α1−1|∇u1|
2q∆u1

+ d1

∫
Ω

(u1 + 1)α1 |∇u1|
2q−2∇u1 · ∇∆u1

:= I1(t) + I2(t) + I3(t) + I4(t).

(3.45)

According to Lemma 3.5, there exists a constant c1 > 0 such that

I1(t) ≤ c1

∫
Ω

|∇u1|
2q+2. (3.46)

To proceed, applying the identity ∇|∇u1|
2 = 2D2u1 · ∇u1 and Lemma 3.5, one has

I2(t) = 2d1α1

∫
Ω

(u1 + 1)α1−1|∇u1|
2q−1 ·

(
D2u1 · ∇u1

)
≤ c2

∫
Ω

|∇u1|
2q
∣∣∣D2u1

∣∣∣. (3.47)

Then, combining Lemma 3.5 again and the inequality |∆u1|
2 ≤ N |D2u1|

2, we can derive that

I3(t) ≤ d1α1

√
N

∫
Ω

(u1 + 1)α1−1|∇u1|
2q|D2u1| ≤ c3

∫
Ω

|∇u1|
2q|D2u1|. (3.48)
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Furthermore, we shall estimate the last term on the right-hand side of (3.45),

I4(t) = d1

∫
Ω

(u1 + 1)α1 |∇u1|
2q−2∇u1 · ∇∆u1

=
d1

2

∫
Ω

(u1 + 1)α1 |∇u1|
2q−2∆|∇u1|

2 − d1

∫
Ω

(u1 + 1)α1 |∇u1|
2q−2|D2u1|

2

=
d1

2

∫
∂Ω

(u1 + 1)α1 |∇u1|
2q−2∂|∇u1|

2

∂ν
ds

−
d1α1

2

∫
Ω

(u1 + 1)α1−1|∇u1|
2q−2∇u1 · ∇|∇u1|

2

−
d1(q − 1)

2

∫
Ω

(u1 + 1)α1 |∇u1|
2q−4|∇|∇u1|

2| − d1

∫
Ω

(u1 + 1)α1 |∇u1|
2q−2|D2u1|

2

:= I41 − I42 − I43 − I44.

(3.49)

Applying Lemma 2.4 in [19], one has

I41 ≤ c4

∫
∂Ω

|∇u1|
2q−2∂|∇u1|

2

∂ν
ds ≤

d1(q − 1)
2

∫
Ω

|∇u1|
2q−4

∣∣∣∇|∇u1|
2
∣∣∣2 + c5

∫
Ω

|∇u1|
2q. (3.50)

Using Young’s inequality again, we can derive that

|I42| ≤ c6

∫
Ω

|∇u1|
2q|D2u1| ≤

1
2

∫
Ω

|∇u1|
2q−2|D2u1|

2 + c7

∫
Ω

|∇u1|
2q+2, (3.51)

where c6, c7 > 0 are constants. Meanwhile,

I43 ≥
d1(q − 1)

2

∫
Ω

|∇u1|
2q−4

∣∣∣∇|∇u1|
2
∣∣∣2 (3.52)

and

I44 ≥

∫
Ω

|∇u1|
2q−2

∣∣∣D2u1

∣∣∣2 . (3.53)

Then, substituting (3.46)–(3.53) into (3.45) and combining with Young’s inequality gives

I(t) ≤ −
1
2

∫
Ω

|∇u1|
2q−2

∣∣∣D2u1

∣∣∣2 + (c1 + c7)
∫

Ω

|∇u1|
2q+2 + (c2 + c3)

∫
Ω

|∇u1|
2q
∣∣∣D2u1

∣∣∣
+ c5

∫
Ω

|∇u1|
2q

≤ −
7

16

∫
Ω

|∇u1|
2q−2

∣∣∣D2u1

∣∣∣2 + c8

∫
Ω

|∇u1|
2q+2 + c8.

(3.54)
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Moreover,

J(t) = χ

∫
Ω

∇ ·
(
|∇u1|

2q−2∇u1
)(
∇ ·

(
u1(u1 + 1)β1−1∇u2

))
= χ

∫
Ω

(
2(q − 1)|∇u1|

2q−4∇|∇u1|
2 · ∇u1 + |∇u1|

2q−2∆u1

)(
(u1 + 1)β1−1∇u1 · ∇u2

+ (β1 − 1)u1(u1 + 1)β1−2∇u1 · ∇u2 + u1(u1 + 1)β1−1∆u2

)
= 2(q − 1)χ

∫
Ω

(u1 + 1)β1−1|∇u1|
2q−2∇|∇u1|

2 · ∇u2

+ χ

∫
Ω

(u1 + 1)β1−1|∇u1|
2q−2∇u1 · ∇u2∆u1

+ 2(q − 1)(β1 − 1)χ
∫

Ω

u1(u1 + 1)β1−2|∇u1|
2q−2∇|∇u1|

2 · ∇u2

+ (β1 − 1)χ
∫

Ω

u1(u1 + 1)β1−2|∇u1|
2q−2∇u1 · ∇u2∆u1

+ 2(q − 1)χ
∫

Ω

u1(u1 + 1)β1−1|∇u1|
2q−4∇|∇u1|

2∇u1∆u2

+ χ

∫
Ω

u1(u1 + 1)β1−1|∇u1|
2q−2∆u1∆u2

:= J1(t) + J2(t) + J3(t) + J4(t) + J5(t) + J6(t).

(3.55)

Together with Lemma 3.5, the inequality |∆u1|
2 ≤ N |D2u1|

2 and the identity ∇|∇u1|
2 = 2D2u1 · ∇u1,

we have
J1(t) ≤ c9

∫
Ω

|∇u1|
2q−2 |D2u1| ∇u1 · ∇u2 ≤

1
24

∫
Ω

|∇u1|
2q−2 |D2u1|

2 + c10, (3.56)

J2(t) ≤ c11

∫
Ω

|∇u1|
2q−2 |D2u1| ∇u1 · ∇u2 ≤

1
24

∫
Ω

|∇u1|
2q−2 |D2u1|

2 + c12, (3.57)

J3(t) ≤ c13

∫
Ω

|∇u1|
2q−2|D2u1| ∇u1 · ∇u2 ≤

1
24

∫
Ω

|∇u1|
2q−2|D2u1|

2 + c14, (3.58)

J4(t) ≤ c15

∫
Ω

|∇u1|
2q−2|D2u1| ∇u1 · ∇u2 ≤

1
24

∫
Ω

|∇u1|
2q−2|D2u1|

2 + c16, (3.59)

J5(t) ≤ c17

∫
Ω

|∇u1|
2q−2|D2u1| |∆u2| ≤

1
24

∫
Ω

|∇u1|
2q−2|D2u1|

2 + c18

∫
Ω

|∆u2|
q+1 (3.60)

and
J6(t) ≤ c19

∫
Ω

|∇u1|
2q−2|D2u1| |∆u2| ≤

1
24

∫
Ω

|∇u1|
2q−2|D2u1|

2 + c20

∫
Ω

|∆u2|
q+1. (3.61)

Substituting (3.56)–(3.61) into (3.55), one gets

J(t) ≤
1
4

∫
Ω

|∇u1|
2q−2

∣∣∣D2u1

∣∣∣2 + c21

(∫
Ω

|∆u2|
q+1 + 1

)
. (3.62)

Finally,

Q(t) ≤ a
∫

Ω

|∇u1|
2q−2∇u1 · ∇u2 −

∫
Ω

|∇u1|
2q−2∇u1 · ∇(u1v) := Q1(t) + Q2(t). (3.63)
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According to Lemma 3.5 and Young’s inequality, we have

Q1(t) ≤
1
24

∫
Ω

|∇u1|
2q−2

∣∣∣D2u1

∣∣∣2 + c22. (3.64)

Applying Lemma 3.5, Young’s inequality, and the identity ∇|∇u1|
2 = 2D2u1 · ∇u1 again, one has

Q2(t) =

∫
Ω

u1v∇ ·
(
|∇u1|

2q−2∇u1
)

=

∫
Ω

u1v
(
(2q − 2)|∇u1|

2q−4∇|∇u1|
2 · ∇u1 + |∇u1|

2q−2∆u1
)

≤ 2(2q − 2)M2

∫
Ω

v |∇u1|
2q−2 |D2u1| + M2

√
N

∫
Ω

v |∇u1|
2q−2 |D2u1|

≤
1

12

∫
Ω

|∇u1|
2q−2 |D2u1|

2 + 6M2
2
(
4(2q − 2)2 + N

) ∫
Ω

v2 |∇u1|
2q−2.

(3.65)

Substituting (3.64) and (3.65) into (3.63) gives

Q(t) ≤
1
8

∫
Ω

|∇u1|
2q−2

∣∣∣D2u1

∣∣∣2 + 6M2
2
(
4(2q − 2)2 + N

) ∫
Ω

v2|∇u1|
2q−2 + c22. (3.66)

Then, substituting (3.54), (3.62), and (3.66) into (3.44), it holds that

1
2q

d
dt

∫
Ω

|∇u1|
2q ≤ −

1
16

∫
Ω

|∇u1|
2q−2|D2u1|

2 + c8

∫
Ω

|∇u1|
2q+2 + c21

∫
Ω

|∆u2|
q+1

+ 6M2
2
(
4(2q − 2)2 + N

) ∫
Ω

v2|∇u1|
2q−2 + c23.

(3.67)

Next, we estimate ‖v‖Lp(Ω). There exists a positive constant c24 > 0, and through calculations of the
following expression, we can find that

−η

∫
Ω

s2(s + 1)p−1 = −η

∫
Ω

(s + 1)p+1 + 2η
∫

Ω

(s + 1)p − η

∫
Ω

(s + 1)p−1

≤ −η

∫
Ω

(s + 1)p+1 +

(
2η +

1
p

) ∫
Ω

(s + 1)p + c24,

which gives

1
p

d
dt

∫
Ω

(v + 1)p =

∫
Ω

(v + 1)p−1
[
d3∇ ·

(
(v + 1)α2∇v

)
− ρ∇ ·

(
v(v + 1)β2−1∇u1

)]
+

∫
Ω

(v + 1)p−1v
(
−µ − ηv + δu1

)
≤ −

d3(p − 1)
2

∫
Ω

(v + 1)p+α2−2 |∇v|2 +
ρ2(p − 1)

2d3

∫
Ω

(v + 1)p−α2+2β2−2 |∇u1|
2

− µ

∫
Ω

v(v + 1)p−1 − η

∫
Ω

v2(v + 1)p−1 + δ

∫
Ω

u1v(v + 1)p−1

≤ −
d3(p − 1)

2

∫
Ω

(v + 1)p+α2−2 |∇v|2 +
ρ2(p − 1)

2d3

∫
Ω

(v + 1)p−α2+2β2−2 |∇u1|
2

−
η

4

∫
Ω

(v + 1)p+1 + c25.

(3.68)
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Combining (3.67), (3.68), and Lemmas 2.3 and 3.5, we have

d
dt

∫
Ω

(
|∇u1|

2q + (v + 1)p) +

∫
Ω

|∇u1|
2q +

∫
Ω

(v + 1)p

≤ −
1

32

∫
Ω

|∇u1|
2q−2 |D2u1|

2 + 6M2
2
(
4(2q − 2)2 + N

) ∫
Ω

v2 |∇u1|
2q−2

−
d3(p − 1)

2

∫
Ω

(v + 1)p+α2−2 |∇v|2 +
ρ2(p − 1)

2d3

∫
Ω

(v + 1)p−α2+2β2−2 |∇u1|
2

−
η

4

∫
Ω

(v + 1)p+1 + c25.

(3.69)

�

Lemma 3.7. Suppose conditions (1.6) and (1.7) hold. For any N ≥ 2 and sufficiently large p > 2, if2β1 − α1 < 1 +
4

N + 2
,

2β2 − α2 < 2,

then there exist q > 1 and two constants M3,M4 > 0 such that for all t ∈ (0,Tmax),

‖∇u1‖L2q(Ω) + ‖v‖Lp(Ω) ≤ M3. (3.70)

Furthermore,
‖∇u1‖L∞(Ω) + ‖v‖L∞(Ω) ≤ M4. (3.71)

Proof. Suppose that p > 2 and q > 1. There exist positive constants c1 and c2 such that

ρ2(p − 1)
2d3

∫
Ω

(v + 1)p−α2+2β2−2 |∇u1|
2 + 6M2

2
(
4(2q − 2)2 + N

) ∫
Ω

v2 |∇u1|
2q−2

≤
1

64

∫
Ω

|∇u1|
2q−2 |D2u1|

2 + c1

∫
Ω

(v + 1)θ2 + c2

∫
Ω

vq+1
(3.72)

with θ2 = (p − α2 + 2β2 − 2)q+1
q , then, taking appropriate p − α2 + 2β2 − 2 < q < p, we have

c1

∫
Ω

(v + 1)θ2 + c2

∫
Ω

vq+1 ≤
η

8

∫
Ω

(v + 1)p+1 + c3. (3.73)

Substituting (3.72) and (3.73) into (3.69), we end up with

d
dt

∫
Ω

(
|∇u1|

2q + (v + 1)p) +

∫
Ω

|∇u1|
2q +

∫
Ω

(v + 1)p ≤ c4, (3.74)

which together with Lemma 2.4 and the standard Moser-Alikakos iteration method [20, Lemma A.1]
indicates (3.71). �

Proof of Theorem 1.1. When Ω ⊂ RN (N ≥ 1), if 2β1 − α1 < 1 + 4
N+2 and 2β2 − α2 < 2, using

Lemmas 3.1–3.7, for all t ∈ (0,Tmax), there exists a constant K > 0 independent of t such that

‖u1(·, t)‖W1,∞(Ω) + ‖u2(·, t)‖W1,∞(Ω) + ‖v(·, t)‖L∞(Ω) ≤ K,

which together with the extension criterion in Lemma 2.1 proves Theorem 1.1. �
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4. Conclusions

In this work, we investigate a predator-prey model with prey-stage structure. Compared with the
predator-prey model, one feature of this model is the inclusion of the prey-stage structure, dividing the
prey into two stages: the immature stage and the mature stage. Another feature is the intra-specific
competition among immature prey and that among predators, respectively. Through mathematical
analysis, we mainly discuss the dynamic properties of the quasilinear prey-taxis model with prey-
stage structure in any dimensional space, and demonstrate that the classical solution of the model
is globally bounded when a certain relationship is satisfied between the exponent of the nonlinear
diffusion function and the exponent of the nonlinear trophic sensitivity function.
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