This study proposes a mixed local discontinuous Galerkin (LDG) scheme for capturing shock-driven interfacial instabilities in compressible multicomponent flows. The proposed scheme is validated through canonical test cases, including sod shock tube, shock-driven light/heavy cylinders, and chevron-shaped, and shows excellent agreement with experimental and numerical benchmarks. It effectively captures key mechanisms including shock refraction, baroclinic vorticity generation, vortex roll‐up, and nonlinear interface evolution. A systematic parametric analysis is carried out for the single‐mode heavy fluid layer configuration to examine the impact of interface thickness on shock-driven instability development. The results reveal that thinner interfaces intensify baroclinic vorticity deposition and accelerate the transition to nonlinear stages, whereas thicker interfaces delay instability growth and mitigate small‐scale structure formation. Spatially-integrated measures of baroclinic vorticity and enstrophy further confirm that geometric confinement plays a pivotal role in regulating vortex evolution and interfacial mixing.
Citation: Salman Saud Alsaeed, Satyvir Singh. A mixed local discontinuous Galerkin scheme for capturing shock-driven instabilities in compressible multicomponent flows[J]. AIMS Mathematics, 2025, 10(11): 26389-26417. doi: 10.3934/math.20251160
This study proposes a mixed local discontinuous Galerkin (LDG) scheme for capturing shock-driven interfacial instabilities in compressible multicomponent flows. The proposed scheme is validated through canonical test cases, including sod shock tube, shock-driven light/heavy cylinders, and chevron-shaped, and shows excellent agreement with experimental and numerical benchmarks. It effectively captures key mechanisms including shock refraction, baroclinic vorticity generation, vortex roll‐up, and nonlinear interface evolution. A systematic parametric analysis is carried out for the single‐mode heavy fluid layer configuration to examine the impact of interface thickness on shock-driven instability development. The results reveal that thinner interfaces intensify baroclinic vorticity deposition and accelerate the transition to nonlinear stages, whereas thicker interfaces delay instability growth and mitigate small‐scale structure formation. Spatially-integrated measures of baroclinic vorticity and enstrophy further confirm that geometric confinement plays a pivotal role in regulating vortex evolution and interfacial mixing.
| [1] | Y. Zhou, Hydrodynamic instabilities and turbulence: Rayleigh-Taylor, Richtmyer-Meshkov, and Kelvin-Helmholtz mixing, Cambridge University Press, 2024. |
| [2] |
Y. Zhou, Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I, Phys. Rep., 720–722 (2017), 1–136. https://doi.org/10.1016/j.physrep.2017.07.005 doi: 10.1016/j.physrep.2017.07.005
|
| [3] |
Y. Zhou, Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II, Phys. Rep., 723–725 (2017), 1–160. https://doi.org/10.1016/j.physrep.2017.07.008 doi: 10.1016/j.physrep.2017.07.008
|
| [4] |
R. Abgrall, S. Karni, Computations of compressible multifluids, J. Comput. Phys., 169 (2001), 594–623. https://doi.org/10.1006/jcph.2000.6685 doi: 10.1006/jcph.2000.6685
|
| [5] |
R. Saurel, O. Lemetayer, A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation, J. Fluid Mech., 431 (2001), 239–271. https://doi.org/10.1017/S0022112000003098 doi: 10.1017/S0022112000003098
|
| [6] |
S. K. Shankar, S. Kawai, S. K. Lele, Two-dimensional viscous flow simulation of a shock accelerated heavy gas cylinder, Phys. Fluids, 23 (2011), 024102. https://doi.org/10.1063/1.3553282 doi: 10.1063/1.3553282
|
| [7] |
J. Lindl, O. Landen, J. Edwards, E. Moses, N. Team, Review of the National Ignition Campaign 2009–2012, Phys. Plasmas, 21 (2014), 020501. https://doi.org/10.1063/1.4865400 doi: 10.1063/1.4865400
|
| [8] |
J. Yang, T. Kubota, E. E. Zukoski, Applications of shock-induced mixing to supersonic combustion, AIAA J., 31 (1993), 854–862. https://doi.org/10.2514/3.11696 doi: 10.2514/3.11696
|
| [9] |
X. D. Cai, R. Deiterding, J. H. Liang, M. B. Sun, Y. Mahmoudi, Diffusion and mixing effects in hot jet initiation and propagation of hydrogen detonations, J. Fluid Mech., 836 (2018), 324–351. https://doi.org/10.1017/jfm.2017.770 doi: 10.1017/jfm.2017.770
|
| [10] | C. C. Kuranz, H. S. Park, C. M. Huntington, A. R. Miles, B. A. Remington, T. Plewa, et al., How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants, Nat. Commun., 9 (2018), 1564. |
| [11] |
R. D. Richtmyer, Taylor instability in shock acceleration of compressible fluids, Commun. Pure Appl. Math., 13 (1960), 297–319. https://doi.org/10.1002/cpa.3160130207 doi: 10.1002/cpa.3160130207
|
| [12] |
E. E. Meshkov, Instability of the interface of two gases accelerated by a shock wave, Fluid Dyn., 4 (1969), 101–104. https://doi.org/10.1007/BF01015969 doi: 10.1007/BF01015969
|
| [13] | D. Ranjan, J. Oakley, R. Bonazza, Shock-bubble interactions, Annu. Rev. Fluid Mech., 43 (2011), 117–140. https://doi.org/10.1146/annurev-fluid-122109-160744 |
| [14] |
M. Brouillette, The Richtmyer-Meshkov instability, Annu. Rev. Fluid Mech., 34 (2002), 445–468. https://doi.org/10.1146/annurev.fluid.34.090101.162238 doi: 10.1146/annurev.fluid.34.090101.162238
|
| [15] |
K. Ferguson, J. W. Jacobs, The influence of the shock-to-reshock time on the Richtmyer-Meshkov instability in reshock, J. Fluid Mech., 999 (2024), A68. https://doi.org/10.1017/jfm.2024.795 doi: 10.1017/jfm.2024.795
|
| [16] |
R. Saurel, C. Pantano, Diffuse-interface capturing methods for compressible two-phase flows, Annu. Rev. Fluid Mech., 50 (2018), 105–130. https://doi.org/10.1146/annurev-fluid-122316-050109 doi: 10.1146/annurev-fluid-122316-050109
|
| [17] |
V. Maltsev, M. Skote, P. Tsoutsanis, High-order methods for diffuse-interface models in compressible multi-medium flows: a review, Phys. Fluids, 34 (2022), 021301. https://doi.org/10.1063/5.0077314 doi: 10.1063/5.0077314
|
| [18] |
M. Latini, O. Schilling, W. S. Don, Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer-Meshkov instability, J. Comput. Phys., 221 (2007), 805–836. https://doi.org/10.1016/j.jcp.2006.06.051 doi: 10.1016/j.jcp.2006.06.051
|
| [19] |
X. Lei, J. Q. Li, A non-oscillatory energy-splitting method for the computation of compressible multi-fluid flows, Phys. Fluids, 30 (2018), 040906. https://doi.org/10.1063/1.5011093 doi: 10.1063/1.5011093
|
| [20] |
S. C. Pan, L. H. Han, X. Y. Hu, N. A. Adams, A conservative interface-interaction method for compressible multi-material flows, J. Comput. Phys., 371 (2018), 870–895. https://doi.org/10.1016/j.jcp.2018.02.007 doi: 10.1016/j.jcp.2018.02.007
|
| [21] |
J. Luo, X. Y. Hu, N. A. Adams, Efficient formulation of scale separation for multi-scale modeling of interfacial flows, J. Comput. Phys., 308 (2016), 411–420. https://doi.org/10.1016/j.jcp.2015.11.044 doi: 10.1016/j.jcp.2015.11.044
|
| [22] |
B. Thornber, M. Groom, D. Youngs, A five-equation model for the simulation of miscible and viscous compressible fluids, J. Comput. Phys., 372 (2018), 256–280. https://doi.org/10.1016/j.jcp.2018.06.028 doi: 10.1016/j.jcp.2018.06.028
|
| [23] |
M. Hahn, D. Drikakis, D. L. Youngs, R. J. R. Williams, Richtmyer-Meshkov turbulent mixing arising from an inclined material interface with realistic surface perturbations and reshocked flow, Phys. Fluids, 23 (2011), 046101. https://doi.org/10.1063/1.3576187 doi: 10.1063/1.3576187
|
| [24] |
H. C. Yee, B. Sjögreen, Numerical dissipation control in high-order methods for compressible turbulence: recent development, Fluids, 9 (2024), 1–70. https://doi.org/10.3390/fluids9060127 doi: 10.3390/fluids9060127
|
| [25] |
Q. J. Wang, R. Deiterding, J. H. Pan, Y. X. Ren, Consistent high resolution interface-capturing finite volume method for compressible multi-material flows, Comput. Fluids, 202 (2020), 104518. https://doi.org/10.1016/j.compfluid.2020.104518 doi: 10.1016/j.compfluid.2020.104518
|
| [26] |
P. Tsoutsanis, E. M. Adebayo, A. C. Merino, A. P. Arjona, M. Skote, CWENO finite-volume interface capturing schemes for multicomponent flows using unstructured meshes, J. Sci. Comput., 89 (2021), 64. https://doi.org/10.1007/s10915-021-01673-y doi: 10.1007/s10915-021-01673-y
|
| [27] |
J. Giordano, Y. Burtschel, Richtmyer-Meshkov instability induced by shock-bubble interaction: numerical and analytical studies with experimental validation, Phys. Fluids, 18 (2006), 036102. https://doi.org/10.1063/1.2185685 doi: 10.1063/1.2185685
|
| [28] | S. Chapman, T. G. Cowling, The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases, Cambridge University Press, 1990. |
| [29] |
C. R. Wilke, A viscosity equation for gas mixtures, J. Chem. Phys., 18 (1950), 517–519. https://doi.org/10.1063/1.1747673 doi: 10.1063/1.1747673
|
| [30] |
B. Cockburn, C. W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), 2440–2463. https://doi.org/10.1137/S0036142997316712 doi: 10.1137/S0036142997316712
|
| [31] |
S. Singh, A. Karchani, T. Chourushi, R. S. Myong, A three-dimensional modal discontinuous Galerkin method for the second-order Boltzmann-Curtiss-based constitutive model of rarefied and microscale gas flows, J. Comput. Phys., 457 (2022), 111052. https://doi.org/10.1016/j.jcp.2022.111052 doi: 10.1016/j.jcp.2022.111052
|
| [32] | S. Singh, Development of a 3D discontinuous Galerkin method for the second-order Boltzmann-Curtiss based hydrodynamic models of diatomic and polyatomic gases, Ph.D. thesis, Gyeongsang National University, 2018. |
| [33] |
E. Johnsen, T. Colonius, Implementation of WENO schemes in compressible multicomponent flow problems, J. Comput. Phys., 219 (2006), 715–732. https://doi.org/10.1016/j.jcp.2006.04.018 doi: 10.1016/j.jcp.2006.04.018
|
| [34] |
L. Krivodonova, Limiters for high-order discontinuous Galerkin methods, J. Comput. Phys., 226 (2007), 879–896. https://doi.org/10.1016/j.jcp.2007.05.011 doi: 10.1016/j.jcp.2007.05.011
|
| [35] |
D. I. Ketcheson, Highly efficient strong stability-preserving Runge-Kutta methods with low-storage implementations, SIAM J. Sci. Comput., 30 (2008), 2113–2136. https://doi.org/10.1137/07070485X doi: 10.1137/07070485X
|
| [36] |
J. F. Haas, B. Sturtevant, Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities, J. Fluid Mech., 181 (1987), 41–76. https://doi.org/10.1017/S0022112087002003 doi: 10.1017/S0022112087002003
|
| [37] |
J. J. Quirk, S. Karni, On the dynamics of a shock-bubble interaction, J. Fluid Mech., 318 (1996), 129–163. https://doi.org/10.1017/S0022112096007069 doi: 10.1017/S0022112096007069
|
| [38] |
X. S. Luo, P. Dong, T. Si, Z. G. Zhai, The Richtmyer-Meshkov instability of a 'V'shaped air/$\text{SF}_{6}$ interface, J. Fluid Mech., 802 (2016), 186–202. https://doi.org/10.1017/jfm.2016.476 doi: 10.1017/jfm.2016.476
|
| [39] |
S. S. Alsaeed, S. Satyvir, N. A. Alrubea, Numerical investigation of Atwood number effects on shock-driven single-mode stratified heavy fluid layer, Mathematics, 13 (2025), 1–26. https://doi.org/10.3390/math13183032 doi: 10.3390/math13183032
|
| [40] |
S. S. Alsaeed, S. Satyvir, N. A. Alrubea, Layer thickness impact on shock-accelerated interfacial instabilities in single-mode stratifications, Appl. Sci., 15 (2025), 1–26. https://doi.org/10.3390/app151910687 doi: 10.3390/app151910687
|