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Abstract: This study proposes a mixed local discontinuous Galerkin (LDG) scheme for capturing
shock-driven interfacial instabilities in compressible multicomponent flows. The proposed scheme is
validated through canonical test cases, including sod shock tube, shock-driven light/heavy cylinders,
and chevron-shaped, and shows excellent agreement with experimental and numerical benchmarks. It
effectively captures key mechanisms including shock refraction, baroclinic vorticity generation, vortex
roll-up, and nonlinear interface evolution. A systematic parametric analysis is carried out for the
single-mode heavy fluid layer configuration to examine the impact of interface thickness on shock-
driven instability development. The results reveal that thinner interfaces intensify baroclinic vorticity
deposition and accelerate the transition to nonlinear stages, whereas thicker interfaces delay instability
growth and mitigate small-scale structure formation. Spatially-integrated measures of baroclinic
vorticity and enstrophy further confirm that geometric confinement plays a pivotal role in regulating
vortex evolution and interfacial mixing.

Keywords: shock-driven instability; multicomponent compressible flows; mixed local discontinuous
Galerkin; shock wave; baroclinic vorticity
Mathematics Subject Classification: 76L05, 76M22, 76T10

1. Introduction

Compressible multicomponent flows are characterized by the simultaneous presence of distinct
species or phases whose density, composition, and thermodynamic properties may vary sharply in
space and time. In high-speed applications, such as shock-interface interactions, the propagation
of compression waves through heterogeneous mixtures induces complex interfacial dynamics driven
by baroclinic vorticity production, species diffusion, and differences in acoustic impedance [1–3].
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Unlike single-component flows, multicomponent systems require accounting for additional transport
mechanisms that govern mass fraction evolution, which in turn alters local density gradients and
modifies the strength and morphology of the instability [4,5]. The accurate prediction of these coupled
processes therefore relies on solving the full compressible viscous multicomponent equations, which
enable the inclusion of stresses, heat conduction, and diffusive fluxes [6]. This integrated framework
offers a physically coherent representation of shock-interface interactions and serves as a vital tool
for analyzing the initiation and development of hydrodynamic instabilities in both engineering and
physical contexts [7–10].

Shock-driven instability occurs when a shock wave strikes a perturbed density interface, creating
misaligned gradients of pressure and density that generate baroclinic vorticity and initiate a complex
post-shock flow evolution. This phenomenon is widely referred to as the Richtmyer-Meshkov (RM)
instability [11, 12], which represents the impulsive counterpart of the buoyancy-driven Rayleigh-
Taylor (RT) instability. After the initial shock impact, the post-shock shear layers trigger the
development of Kelvin-Helmholtz (KH) instability, further amplifying perturbations and promoting
roll-up of vortical structures, which accelerates mixing and transition to turbulence. In multicomponent
configurations, the mechanical impulse imparted by the incident shock amplifies initial perturbations
at the interface, leading to rapid deformation and complex vortex dynamics. The growth of these
instabilities depends strongly on the incident Mach number, initial perturbation wavelength, Atwood
number, and transport effects, making it highly sensitive to the physical properties of the participating
species [13, 14]. Moreover, secondary reshock events can significantly enhance mixing by generating
additional vorticity and energizing smaller scales of motion [15]. Accurate numerical prediction of
shock-driven instabilities therefore requires high-fidelity methods capable of resolving sharp gradients
and capturing interfacial topology changes without excessive numerical dissipation.

Shock-driven interfaces in compressible multicomponent flows exhibit complex dynamics due to
the interplay of sharp material discontinuities, baroclinic vorticity generation, and multiscale interfacial
deformation [16]. Accurately resolving these mechanisms within a numerical framework requires
high-order spatial discretization schemes with very low dissipation and dispersion errors. However,
conventional shock-capturing methods tend to smear interface morphology and damp the evolution of
small-scale vortical structures, leading to an underprediction of the instability growth rate and mixing
intensity [17]. The impulsive deposition of baroclinic vorticity induces both the RM and subsequent
KH type instabilities, which rapidly generate high-wave-number features that demand fine spatial
resolution and robust limiter strategies to avoid spurious oscillations [18, 19]. These requirements
pose serious challenges in the development of numerical schemes that simultaneously ensure stability
at discontinuities and preserve spectral-like resolution in smooth regions [20, 21].

In multicomponent configurations, additional complications are introduced by variable
thermodynamic properties, stiff diffusive transport, and the strong coupling between species
concentration and density gradients [22]. Even small levels of numerical dissipation may artificially
suppress the formation of secondary instability structures behind the shock and alter the interfacial
roll-up behavior. Furthermore, repeated shock-interface interactions (reshocks) significantly amplify
high-frequency perturbations, making the simulation highly sensitive to mesh resolution and flux
reconstruction accuracy [23]. These challenges underscore the necessity of high-order schemes
equipped with carefully designed limiters or artificial viscosity procedures to guarantee stability while
preserving the physically relevant small-scale features of shock-induced instability.
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The main objective of this study is to establish a high-fidelity numerical framework that
can precisely resolve the nonlinear progression of shock-induced instabilities in compressible
multicomponent flows. Although a wide variety of shock-interface configurations have been examined
using classical finite-volume and finite-difference approaches [24–26], many of these methods suffer
from excessive numerical diffusion, which can artificially smear small-scale vortical structures and
result in inaccurate predictions of baroclinic vorticity generation and interfacial mixing. In particular,
the accurate resolution of coupled RM and KH mechanisms requires numerical schemes that offer
both high spectral accuracy and inherent shock-capturing capability. To overcome these limitations,
the present study proposes a high-order mixed modal discontinuous Galerkin scheme that combines
excellent spectral accuracy in smooth regions with robust limiters at sharp density interfaces. The
scope of this work includes the formulation of the multicomponent local discontinuous Galerkin (LDG)
discretization, its validation against canonical benchmark problems, and its application to the
simulation of the RM instability, with detailed analysis of interface morphology, baroclinic vorticity
dynamics, and the influence of transport properties.

The structure of the paper is as follows. Section 2 presents the governing equations for compressible
multicomponent Navier-Stokes-Fourier (NSF) flows along with the corresponding thermodynamic
relationships. Section 3 describes the mixed modal discontinuous Galerkin formulation in detail,
including spatial discretization, numerical fluxes, limiter strategy, and time-integration procedure.
To illustrate the precision and resilience of the suggested approach, a series of validation studies on
standard shock-interface combinations are shown in Section 4. The evolution of interface morphology,
the creation of baroclinic vorticities, and the impact of interface thickness and perturbation amplitude
are examined in the applications to a canonical RM instability that are also reported. Section 5
concludes by summarizing the key conclusions and suggesting potential avenues for further study.

2. Governing equations

In the present study, we focus on an ideal, non-reactive multicomponent gas mixture and model
its temporal evolution using the two-dimensional unsteady compressible NSF equations [6, 27]. This
mathematical framework accounts for the conservation of mass, momentum, and energy in conjunction
with appropriate constitutive relations for viscosity, thermal conductivity, and species diffusion. By
employing this formulation, the coupled effects of compressibility, viscous dissipation, and heat
transfer can be accurately captured, providing a physically consistent description of the shock-interface
interaction in multicomponent environments. Let

U =
[
ρ, ρu, ρE, ρYk

]T (2.1)

denote the vector of conserved variables, where ρ is the density, u the velocity field, E the total specific
energy, and Yk the mass fraction of the kth species.

The governing equations can then be compactly expressed as a system of conservation laws,

∂U
∂t
+ ∇ · Fc(U) + ∇ · Fd(U,Π,Q) = 0, (2.2)

where Fc and Fd stand for the convective and diffusive flux components, respectively. These flux
components are given by

Fc =
[
ρu, ρuu + pI, (ρE + p)u, ρYku

]T , (2.3)
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Fd =
[
0,Π,Π · u +Q, ρDk ∇Yk

]T . (2.4)

Here, p denotes the thermodynamic pressure, I is the identity tensor, and Dk is the diffusion coefficient
of the kth species. The viscous stress tensor Π and the heat flux vector Q are modeled by a Newtonian
constitutive law and Fourier’s law, respectively. To this end, we introduce the deviatoric strain-rate
tensor

S =
1
2

(
∇u + (∇u)T

)
−

1
3

(∇·u) I, (2.5)

and express the stress and heat flux as

Π = − 2µS, Q = − κ∇T, (2.6)

where µ and κ represent the dynamic viscosity and thermal conductivity of the gas mixture,
respectively, and T denotes the temperature. The mixture composition is described via the mass
fraction, defined as Yk = ρk/ρ. For a two-species system, one may simply set Y1 = 1 − Y2. The
total energy density is written as

ρE =
p

γ̄ − 1
+

1
2
ρ|u|2, (2.7)

where γ̄ denotes the effective ratio of specific heats of the mixture. This quantity is obtained from the
mixture-averaged specific heat capacities at constant pressure and constant volume, namely

C̄p =
∑

k

zk Cp,k, C̄v =
∑

k

zk Cv,k, γ̄ =
C̄p

C̄v
, (2.8)

with zk = Yk/Mk representing the normalized mass fraction of species k. The individual species’ heat
capacities follow the ideal-gas relations

Cp,k =
γkRu

γk − 1
, Cv,k = Cp,k − Ru, (2.9)

where Ru denotes the universal gas constant. The mixture pressure is obtained using Dalton’s law,
such that p =

∑
k pk with pk = ρkRkT . The transport properties of the mixture are computed through

mass-weighted averaging, i.e.,

(µ̄, κ̄) =

∑k µkYkM−1/2
k∑

k YkM−1/2
k

,

∑
k κkYkM−1/2

k∑
k YkM−1/2

k

 . (2.10)

The viscosity of each species is determined using a Chapman-Enskog formulation [28],

µk = Cµ

√
MkT
Ωµ,k σ

2
k

, Cµ = 2.6693 × 10−6, (2.11)

where σk denotes the molecular collision diameter and Ωµ,k represents the temperature-dependent
collision integral. The thermal conductivity of each species is obtained via its corresponding Prandtl
number,

κk =
Cp,k

Prk
µk. (2.12)
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The binary diffusion coefficient for species i and j is evaluated as

Di j =
0.0266
ΩD

T 3/2

p
√

Mi j σ
2
i j

, (2.13)

where Mi j =
2Mi M j

Mi+M j
and σi j =

1
2 (σi + σ j).

The species viscosity is evaluated by means of a Chapman-Enskog type expression [29],

µk = Cµ

√
MkT
σ 2

k

Φ−1
µ (T⋆

k ), Cµ = 2.6693 × 10−6, (2.14)

where T⋆
k = T/(ϵ/KB)k is the normalized temperature and Φµ(·) denotes the temperature-dependent

collision-integral function

Φµ(T⋆) = Aµ(T⋆)−Bµ +C⋆
µ exp

(
−DµT⋆

)
+ Eµ exp

(
−FµT⋆

)
, (2.15)

with (Aµ, Bµ,C⋆
µ ,Dµ, Eµ, Fµ) = (1.161, 0.149, 0.525, 0.773, 2.162, 2.438). Thermal conductivity for

species k is related to the viscosity via

κk =
Cp,k

Prk
µk. (2.16)

The mass-diffusion coefficient of a binary mixture is written as

Di j = CD
T 3/2

p
√

Mi j σ
2
i j

Φ−1
D (T⋆

i j), CD = 0.0266, (2.17)

where Mi j = 2MiM j/(Mi + M j), σi j =
1
2 (σi + σ j), and T⋆

i j =
√

(ϵi/KB)(ϵ j/KB). The function ΦD

represents the diffusion collision integral and is approximated by [6]

ΦD(T⋆) = AD(T⋆)−BD +C⋆
D exp

(
−DDT⋆) + ED exp

(
−FDT⋆) +GD exp

(
−HDT⋆) , (2.18)

with the parameter values

(AD, BD,C⋆
D,DD, ED, FD,GD,HD) = (1.060, 0.156, 0.193, 0.476, 1.036, 1.530, 1.765, 3.894). (2.19)

3. Numerical methodology

The accuracy and robustness of shock-resolved NSF simulations in multicomponent flows strongly
depend on the choice of spatial discretization and the treatment of diffusive terms. This work
adopts a mixed LDG approach for the first-order reformulation of the compressible NSF equations,
consistent with the LDG framework introduced by Cockburn and Shu [30]. The use of alternating
numerical fluxes for diffusive terms and auxiliary gradient variables follows the standard LDG strategy,
ensuring local conservation and stability while maintaining compatibility with high-order polynomial
representations.
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3.1. Mixed formulation

Because the viscous contribution introduces second-order spatial derivatives, the governing
equation Eq (2.2) is recast into an equivalent first-order form by introducing an auxiliary variable G, as
commonly employed in mixed LDG approaches [31, 32]. This auxiliary field represents the local
gradient of the solution variables and is added to the system in order to treat the diffusive terms
consistently within the LDG framework. The resulting first-order system reads

G − ∇U = 0,
∂U
∂t
+ ∇ · Fc(U) + ∇ · Fd(U,G) = 0,

(3.1)

which expresses both the convective and diffusive fluxes in terms of first-order derivatives and is
therefore well suited for a modal elementwise discretization.

3.2. Numerical approximation and function space

We discretize the computational domain Ω ⊂ R2 using a mesh Ωh composed of non-overlapping
rectangular elements such thatΩh forms a partition ofΩ. The set of inter-element boundaries is denoted
by Eh. To define the discrete function space, we introduce the reference element Î2 = [−1, 1] × [−1, 1]
with local coordinates ξ = (ξ, η) and the reference edge Î = [−1, 1]. The mappings xm(ξ) associate
the reference element and its edge with their corresponding physical element and edge in the mesh Ωh.
The approximate solutions for Eq (3.1) are constructed in a space of piecewise polynomial functions,
defined as

V
p
h =
{
ϕ ∈ L2(Ωh) : ϕ|Ωm ◦ xm(ξ) ∈ Qp(Î2), ∀Ωm ∈ Ωh

}
, (3.2)

where Qp(Î2) denotes the tensor-product polynomial space over the reference element Î2, consisting of
all polynomials of degree at most p in each coordinate direction.

Uh(x, t) :=
p∑

i, j=0

ϕ i j
m (x) U i j

m (t),

Gh(x, t) :=
p∑

i, j=0

ϕ i j
m (x) G i j

m (t), ∀ x ∈ m, m ∈ Ωh, t ≥ 0,

(3.3)

where {ϕi j
n }0≤i, j≤p forms a basis of Vp

h on element m and has dimension (p + 1)2. The coefficients
{Ui j

m}0≤i, j≤p and {Gi j
m}0≤i, j≤p represent the corresponding modal degrees of freedom. Let {ψi(ξ)}

p
i=0 denote

the orthonormal scaled Legendre polynomials defined on the reference interval I = [−1, 1], i.e., −1 =
ξ0 < ξ1 < · · · < ξp = 1. The two-dimensional basis functions are constructed as tensor products of the
one-dimensional modal Legendre polynomials

ϕi j(x) = ψi(ξ)ψ j(η), 0 ≤ i, j ≤ p, (3.4)

where

ψi(ξ) =
2(i!)2

(2i)!
Pi(ξ), ψ j(η) =

2( j!)2

(2 j)!
P j(η),
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with Pi(ξ) and P j(η) denoting the classical Legendre polynomials. It is emphasized that the present
formulation employs a purely modal representation, where the solution coefficients are evolved in the
modal space without nodal interpolation during flux evaluation or time integration. For post-processing
and visualization, the numerical solutions are sampled at the cell centers to provide a clear and uniform
representation of the flow variables.

Although a total-degree basis Pp contains fewer degrees of freedom
(
(p + 1)(p + 2)/2

)
compared

to the tensor-product basis Qp ((p + 1)2), the present formulation employs Qp polynomials owing
to several practical advantages. First, the Qp basis leads to a diagonal mass matrix and enables
efficient tensor-product quadrature, which simplifies implementation and reduces memory bandwidth
in explicit time stepping. Second, for shock-dominated multicomponent flows, Qp bases provide
enhanced numerical stability and more effective limiter performance due to their separable structure
in each coordinate direction. Quantitative convergence tests (see Table 1) indicate that for p = 3, the
Qp basis achieves nearly identical L2 accuracy to Pp with only about 10% additional computational
cost, while exhibiting better conditioning and robustness near discontinuities. This choice therefore
offers a favorable compromise between computational cost, accuracy, and stability for the mixed LDG
framework applied to compressible multicomponent flows.

Table 1. Convergence study for 1D linear advection problem at T f = 1. Here, e2 and e∞
denote the L2 and L∞ errors, respectively, and “O” represents the observed order of accuracy.

p N e2 O e∞ O
1 24 6.8961 × 10−2 – 4.2047 × 10−2 –

48 1.7582 × 10−2 1.97 1.0509 × 10−2 2.00
96 4.4358 × 10−3 1.99 2.6291 × 10−3 2.00

192 1.1239 × 10−3 1.98 6.5804 × 10−4 2.00
2 24 1.0134 × 10−3 – 1.2293 × 10−3 –

48 1.2914 × 10−4 2.97 1.5569 × 10−4 2.98
96 1.6325 × 10−5 2.99 1.9643 × 10−5 2.99

192 2.0441 × 10−6 2.99 2.4567 × 10−6 3.00
3 24 1.7558 × 10−4 – 2.6483 × 10−4 –

48 1.0951 × 10−5 4.00 1.6527 × 10−5 4.00
96 6.8488 × 10−7 4.00 1.0334 × 10−6 4.00

192 4.2838 × 10−8 4.00 6.4601 × 10−8 4.00
4 24 2.6375 × 10−6 – 4.3171 × 10−6 –

48 8.0798 × 10−8 5.03 1.3427 × 10−7 5.00
96 2.5098 × 10−9 5.01 4.2113 × 10−9 4.99

192 7.7805 × 10−11 5.01 1.3059 × 10−10 5.01

3.3. Weak formulation

Having introduced the discrete approximation space, we now derive the weak formulation of
Eq (3.1). To this end, we multiply Eq (3.1) by a test function ϕh ∈ V

p
h , integrate over an arbitrary
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element m ⊂ Ωh, and apply integration by parts. This yields∫
m

Gh ϕh dV +
∫

m
∇ϕh · Uh dV −

∫
e
ϕh Uh · n dS = 0,

∂

∂t

∫
m

Uh ϕh dV −
∫

m
∇ϕh · Fc(Uh) dV +

∫
e
ϕh Fc(Uh) · n dS

−

∫
m
∇ϕh · Fd(Uh,Gh) dV +

∫
e
ϕh Fd(Uh,Gh) · n dS = 0,

(3.5)

where n denotes the outward-pointing unit normal vector on the boundary of the element m. Since
the discrete fields (Uh,Gh) are piecewise defined and may exhibit jumps across element interfaces,
the boundary fluxes Uh · n, Fc · n, and Fd · n are not uniquely defined at the interfaces. In order
to obtain a consistent and well-posed formulation, the physical fluxes are replaced by single-valued
numerical interface fluxes, denoted by F̂aux, F̂conv, and F̂diff. By substituting the physical fluxes with
their numerical counterparts, the resulting weak formulation can be written in the following form:∫

m

Gh ϕh dV +
∫
m

∇ϕh · Uh dV −
∫
e

ϕh F̂aux dS = 0,

∂

∂t

∫
m

Uh ϕh dV −
∫
m

∇ϕh · Fc(Uh) dV +
∫
e

ϕh F̂conv dS

−

∫
m

∇ϕh · Fd(Uh,Gh) dV +
∫
e

ϕh F̂diff dS = 0.

(3.6)

To approximate the integrals over elements and interfaces, we adopt Gauss-Legendre quadrature rules
such that the quadrature nodes coincide with the interpolation points [32].∫

m
f (x) dV ≈

p∑
i, j=0

ωi ω j Ji j
m f (x i j

m ),
∫

e
f (x) dS ≈

p∑
k=0

ωk Jk
e f (x k

e ), (3.7)

where ωi, ω j > 0 denote the Gauss-Legendre weights, Ji j
m = Jm(xi j

m) =
∣∣∣xm,ξ(ξi j)

∣∣∣, and Jk
e =
∣∣∣xe,ξ(ξk)

∣∣∣ is
the Jacobian on the element edge.

The weak formulation in Eq (3.6) is obtained from the integral conservation form of the governing
equations. Owing to the use of single-valued numerical fluxes across inter-element boundaries, the
mixed LDG scheme maintains discrete conservation of mass, momentum, and total energy. This
property is inherent to the formulation, as the flux contributions to the adjacent elements cancel exactly,
and is verified numerically in the benchmark tests presented in Section 4.

3.4. Treatment of convective and diffusive fluxes

In this study, the inter-element convective fluxes are computed using the Harten-Lax-van Leer
contact (HLLC) approximate Riemann solver, which is specifically designed for compressible two-
component flow systems [33]. The numerical flux is expressed as

F̂conv =
1 + sign(S ∗)

2
F∗L +

1 − sign(S ∗)
2

F∗R, (3.8)
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where F∗L and F∗R represent the left and right intermediate fluxes, respectively, and S ∗ is the speed of
the middle wave. These intermediate quantities are obtained from

F∗k = Fk + S k(U∗k − Uk), S ∗ =
PR − PL + ρLuL(S L − uL) − ρRuR(S R − uR)

ρL(S L − uL) − ρR(S R − uR)
, k = L,R, (3.9)

with the intermediate conservative state given by

U∗k =
S k − uk

S k − S ∗


(ρ)k

(ρu)k

(ρv)k

(ρE)k + (S ∗ − uk)
(
ρkS ∗ +

Pk
(S k−uk)

)
(ρϕ)k


. (3.10)

The left and right wave speeds S L and S R are approximated by

S L = min(S ∗L, 0), S R = max(S ∗R, 0),
S ∗L = min(u − c, uL − cL), S ∗R = max(u + c, uR + cR),

u =
√
ρLuL +

√
ρRuR

√
ρL +

√
ρR

, c2
=

√
ρLc2

L +
√
ρRc2

R
√
ρL +

√
ρR

+
1
2

√
ρL
√
ρR

(
√
ρL +

√
ρR)2 (uR − uL)2.

(3.11)

Additionally, the diffusive and auxiliary numerical fluxes are evaluated using the alternating flux
strategy introduced in [30]. The corresponding numerical fluxes are defined as

F̂aux = {{Uh}} − β̂ · ⟦Uh⟧, F̂diff = {{F(Uh,Θh)}} + β̂ · ⟦Uh⟧ − τ ⟦Θh⟧, (3.12)

β̂ = ±1
2n, τ ≥ 0.

Here, {{·}} denotes the arithmetic average across the element interface, and ⟦·⟧ represents the jump
between the left and right states. The parameter τ ≥ 0 introduces optional stabilization. Following the
LDG alternating-flux formulation [30], the choice β̂ = ±1

2n provides alternating upwinding for the two
components along the interface, while τ = 0 yields the canonical alternating flux. The flux reduces to
the central form when β̂ = 0 and τ = 0.

3.5. High-order moment limiting strategy

To eliminate nonphysical oscillations in the vicinity of shocks and material interfaces without
sacrificing high-order accuracy, a moment-based limiter [34] is applied. This limiter operates directly
on the modal coefficients, starting from the highest-order mode and proceeding to lower modes only if
the preceding one has been modified.

Let (k,m) denote a generic element and U k,m
i, j the corresponding modal expansion coefficient. The

limited value Ũ k,m
i, j is evaluated by means of the following minmod-based formula:

Ũ k,m
i, j =minmod

(
U k,m

i, j , α j
(
U k,m+1

i, j−1 − U k,m
i, j−1
)
, α j
(
U k,m

i, j−1 − U k,m−1
i, j−1
)
,

αi
(
U k+1,m

i−1, j − U k,m
i−1, j
)
, αi
(
U k,m

i−1, j − U k−1,m
i−1, j
))
, 1 ≤ i, j ≤ Nl,

(3.13)
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where

minmod(a, b, c) =

sgn(a) min
(
|a|, |b|, |c|

)
, if sgn(a) = sgn(b) = sgn(c),

0, otherwise.
(3.14)

The parameters αn act as tuning constants in the limiter and satisfy the bounds [34]

1

2
√

4n 2 − 1
≤ αn ≤

√
2n − 1
2n + 1

, n ∈ Nl. (3.15)

In the numerical simulations reported in later sections, the values αi = α j = 0.75 are used, which were
found to provide sufficient numerical dissipation without destroying the high-order resolution of the
solution.

3.6. Time integration

Following spatial discretization, the mixed LDG formulation transforms the governing equations
into a semi-discrete system of ordinary differential equations (ODEs), expressed as

M
dU
dt
= L(U), (3.16)

where M denotes the block-diagonal mass matrix and L(U) represents the discrete residual of the
spatial operator. Owing to the diagonal structure of M, its inversion can be performed efficiently in an
elementwise manner.

The temporal discretization of Eq (3.16) is achieved using the third-order strong-stability-preserving
Runge-Kutta (SSP-RK3) scheme [35], defined as

U(1) = Un + ∆t L(U n),

U(2) = 3
4 Un + 1

4 U(1) + 1
4 ∆t L(U(1)),

U n+1 = 1
3 Un + 2

3 U(2) + 2
3 ∆t L(U(2)).

(3.17)

The time step ∆t is determined from the local CFL stability condition,

∆t =
CFL

2p + 1
h

|λinv
max| + 2 |λvis

max|
(

2p+1
h

) , (3.18)

where h = min(∆x,∆y) is the element size, CFL denotes the Courant-Friedrichs-Lewy number, and
λinv

max and λvis
max are the largest eigenvalues of the inviscid and viscous flux Jacobians, respectively.

The SSP-RK3 method is selected for its excellent balance between accuracy, stability, and
computational efficiency, making it well suited for nonlinear hyperbolic systems. It preserves the total
variation diminishing (TVD) property of the forward Euler step under an appropriate CFL constraint,
thereby preventing spurious oscillations near discontinuities and ensuring monotonicity preservation.
The scheme achieves third-order temporal accuracy while maintaining strong stability properties, and
it is widely employed with high-order methods for compressible flow problems involving shocks
and sharp gradients. Compared with standard explicit Runge-Kutta or multistep methods, SSP-RK3
provides superior numerical robustness and stability at a moderate computational cost, offering an
optimal compromise for the present simulations.
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4. Simulation results and analysis

In this section, a series of benchmark problems are presented to demonstrate the robustness and
accuracy of the proposed mixed LDG scheme. Following a convergence study, both 1D and 2D shock-
interface configurations are investigated to illustrate the capability of the scheme in capturing shock-
driven instabilities in multicomponent flows. Unless otherwise stated, a polynomial order of p = 3 is
employed for all test cases, which provides an optimal balance between accuracy and computational
cost as verified in the convergence study (Table 1).

4.1. 1D accuracy verification

As a first step, we evaluate the spatial accuracy of the proposed mixed LDG discretization using a
1D linear advection problem,

∂u
∂t
+
∂u
∂x
= 0, x ∈ [0, 2π], (4.1)

supplemented with the periodic condition u(0, t) = u(2π, t) and the initial profile u(x, 0) = sin(x). The
corresponding analytical solution is uex(x, t) = sin(x − t). The test is carried out using polynomial
degrees p = 1, 2, 3, 4 on successively refined meshes (N = 24, 48, 96, 192), and the numerical errors
are evaluated at the final time T f = 1. For each grid, the discretization errors in the L∞ and L2 norms
are determined as follows:

e∞ = max
x∈[0, 2π]

|uex(x, t) − uh(x, t)|, e2 =
(∑

In

∫
In

|uex(x, t) − uh(x, t)|2 dx
)1/2

, (4.2)

The errors and corresponding convergence rates are listed in Table 1. The results clearly confirm that
the present mixed LDG scheme exhibits an order of convergence equal to (p+ 1) in both norms, which
is consistent with the theoretical prediction.

The temporal accuracy of the third-order SSP-RK3 scheme was verified using the same 1D linear
advection problem on an over-resolved grid to suppress spatial errors. The errors and rates listed in
Table 2 confirm third-order temporal convergence, consistent with the theoretical accuracy of the SSP-
RK3 integrator.

Table 2. Temporal convergence of the SSP-RK3 time-integration scheme for 1D linear
advection problem, confirming third-order accuracy.

Time step ∆t e2 O
1.0 × 10−2 1.26 × 10−5 –
5.0 × 10−3 1.55 × 10−6 3.02
2.5 × 10−3 1.91 × 10−7 3.02
1.25 × 10−3 2.38 × 10−8 3.01

4.2. 2D accuracy verification

To further assess the spatial accuracy of the proposed mixed LDG scheme in multiple dimensions,
we consider a two-dimensional linear advection equation,

∂u
∂t
+ a

∂u
∂x
+ b

∂u
∂y
= 0, (x, y) ∈ [0, 2] × [0, 2], (4.3)
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subject to periodic boundary conditions in both directions. The advection coefficients are taken as
a = b = 1, and the initial condition is specified as

u(x, y, 0) = sin[π(x + y)]. (4.4)

The analytical solution of this problem is given by

uex(x, y, t) = sin[π(x − at + y − bt)]. (4.5)

This problem represents smooth periodic transport along the diagonal direction and serves as a suitable
benchmark for verifying the multidimensional accuracy of the scheme. The test is performed using
polynomial degrees p = 1, 2, 3 on a sequence of successively refined uniform meshes with Nx × Ny =

102, 202, 402, 802, and 1602 elements. The final simulation time is set to T f = 1.
Figure 1(a,b) presents the contour and surface plots of the computed solution using a third-order

mixed LDG scheme on a 20 × 20 mesh, which demonstrates smooth and non-oscillatory transport.
Figure 1(c) compares the numerical and analytical profiles extracted along the diagonal line of the
computational domain, showing excellent agreement and confirming the high-resolution capability of
the proposed method.

Figure 1. 2D linear advection problem: (a) contour plot of the solution field, (b)
corresponding surface representation, and (c) comparison of the numerical LDG solution
with the analytical profile along the diagonal direction using 20 × 20 mesh at T f = 1.

To quantitatively assess the convergence behavior, the discrete L∞ and L2 errors are computed
between the exact and numerical solutions using sufficiently accurate Gaussian quadrature rules,

e∞ = max
(x,y)∈Ω

|uex(x, y, t) − uh(x, y, t)|, e2 =

∑
K

∫
K
|uex(x, y, t) − uh(x, y, t)|2 dΩ

1/2 . (4.6)
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The corresponding errors and observed orders of accuracy are listed in Table 3, and their variation
with respect to the number of elements and degrees of freedom (DoF) is illustrated in Figure 2. The
results clearly demonstrate that the present mixed LDG scheme achieves the optimal convergence rate
of (p + 1) in both L2 and L∞ norms for all tested polynomial degrees. This confirms the expected
theoretical accuracy and validates the robustness and multidimensional consistency of the proposed
formulation for smooth transport problems.

Table 3. Convergence study for 2D linear advection problem at T f = 1.

p Nx × Ny DoF e∞ O e2 O
1 102 102 × 4 5.98E − 02 − 4.11E − 02 −

202 202 × 4 1.53E − 02 1.97 1.03E − 02 2.00
402 402 × 4 3.60E − 03 2.08 2.50E − 03 2.04
802 802 × 4 8.57E − 04 2.07 6.02E − 04 2.05
1602 1602 × 4 1.93E − 04 2.15 1.34E − 04 2.17

2 102 102 × 9 2.67E − 03 − 2.75E − 03 −

202 202 × 9 3.43E − 04 2.96 3.54E − 04 2.95
402 402 × 9 4.54E − 05 2.91 4.42E − 05 3.00
802 802 × 9 5.63E − 06 3.01 5.53E − 06 2.99
1602 1602 × 9 6.54E − 07 3.11 6.91E − 07 3.00

3 102 102 × 16 6.04E − 04 − 5.97E − 04 −

202 202 × 16 3.72E − 05 4.02 3.88E − 05 3.94
402 402 × 16 2.66E − 06 3.81 2.57E − 06 3.92
802 802 × 16 1.81E − 07 3.88 1.91E − 07 3.75
1602 1602 × 16 1.17E − 08 3.92 1.21E − 08 3.98

Figure 2. Convergence analysis for 2D linear advection problem: variation of the L2-norm
error (e2) with (a) the number of elements and (b) the total DoF for polynomial orders p =
1, 2, and 3.
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4.3. 1D Sod shock tube

To evaluate the performance of the proposed mixed LDG solver in handling discontinuities and
accurately modeling shock-interface interactions, we first consider the classical 1D Sod shock tube
problem. This problem represents a two-component Riemann problem governed by 1D compressible
Euler equations, and is widely used as a standard benchmark for shock-capturing methods.

The computational domain is defined as ΩD = [0, 1], with the initial discontinuity positioned at
x = 0.5. The left and right states are specified as follows [4]:

(ρ, u, p, γ) =

(1.0, 0.0, 1.0, 1.4), x ≤ 0.5,
(0.125, 0.0, 0.1, 1.6), x ≥ 0.5.

(4.7)

The simulation is performed using 400 grid points. From these initial data, a right-moving shock,
a left-going rarefaction, and a contact discontinuity are generated. The key numerical parameters
employed for this test case, including the polynomial order, grid resolution, time-integration details,
and boundary conditions, are summarized in Table 4.

Table 4. Simulation parameters for 1D Sod shock tube problem.

Parameter Symbol/description Value
Polynomial order p 3
Grid resolution Nx 400 grid points
Domain size ΩD [0, 1]]
Time integration SSP-RK3 CLF = 0.2
Left/right states (ρ, u, p, γ)L, (ρ, u, p, γ)R (1.0, 0, 1.0, 1.4); (0.125, 0, 0.1, 1.6)
Boundary conditions – Fixed inflow/outflow
Final time T f 0.25

Figure 3 shows the numerical results at t = 0.25 for the density and pressure profiles, together
with the analytical solution. The numerical and exact solutions agree very well, confirming the ability
of the present method to accurately capture all relevant wave structures without introducing spurious
oscillations. For visualization, the mixed LDG solution is sampled at element centers (cell-averaged
values).

(a) (b)

Figure 3. Density and pressure profiles obtained for the 1D Sod shock tube at t = 0.25.
Symbols correspond to the mixed LDG solution sampled at element centers, while the solid
line indicates the exact analytical result.
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To further verify the conservative nature of the proposed mixed LDG formulation, we evaluated the
global conservation of mass, momentum, and total energy for the 1D Sod shock-tube test. The integral
quantities were computed at each time step as

M(t) =
∫
Ω

ρ dx, P(t) =
∫
Ω

ρu dx, E(t) =
∫
Ω

ρE dx, (4.8)

and the relative conservation errors were defined as

εM =
|M(t) − M(0)|

M(0)
, εP =

|P(t) − P(0)|
|P(0)| + 10−12 , εE =

|E(t) − E(0)|
E(0)

. (4.9)

For a representative grid of N = 400 grid points and polynomial degree p = 3, the obtained errors
at t = 0.25 were εM = 2.3 × 10−13, εP = 4.1 × 10−12, and εE = 5.7 × 10−13. These results confirm
that the mixed LDG scheme preserves the global conservation of mass, momentum, and total energy to
within machine precision, consistent with the conservative formulation of Eqs (3.6), (3.8), and (3.12).
Table 5 further confirms that the proposed mixed LDG formulation retains discrete conservation of
mass, momentum, and energy for all tested polynomial orders.

Table 5. Conservation errors of mass (εM), momentum (εP), and energy (εE) for 1D Sod
shock-tube test at t = 0.25.

Polynomial order p εM εP εE

1 4.7 × 10−12 6.3 × 10−11 8.2 × 10−12

2 1.9 × 10−13 2.5 × 10−12 3.2 × 10−13

3 2.3 × 10−13 4.1 × 10−12 5.7 × 10−13

4 1.5 × 10−14 3.6 × 10−13 2.2 × 10−14

4.4. 2D shock-driven heavy cylindrical interface

As a second benchmark, we consider the classical 2D shock-driven heavy cylindrical interface, in
which a planar shock wave interacts with a heavy cylindrical gas interface. The experimental data of
Hass and Sturtevant [36] and the numerical results of Quirk and Karni [37] are used for validation and
comparison. In these studies, the bubble consists of Refrigerant-22 (R22) surrounded by air, and is
impulsively accelerated by a weak incident shock of Mach number Ms = 1.22. The numerical setup
and boundary conditions adopted for this benchmark are summarized in Table 6. These parameters
closely follow the configurations of Hass and Sturtevant [36] and Quirk and Karni [37], ensuring direct
comparability between the present simulations and reference data.

Table 6. Simulation parameters for 2D shock-driven heavy cylindrical interface.

Parameter Symbol/description Value
Gas composition – Air/R22

Incident shock Mach number Ms 1.22
Polynomial order p 3
Grid resolution Nx × Ny 1200 × 600 cells
Domain size – [0, 890] × [0, 89] mm2

Time integration SSP-RK3 CLF = 0.1
Boundary conditions – left - inflow; others - non-reflecting
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Figure 4 compares Schlieren images at different physical times (55µs, 98µs, 147µs, 197µs and
247µs) obtained from the experiments, reference simulations, and the present LDG scheme. At t =
55µs, the incident shock reaches the upstream side of the cylindrical interface and undergoes reflection
and refraction as it passes through the density discontinuity. At t = 98µs, the transmitted shock
propagates inside the dense bubble, while a reflected shock travels back into the ambient region and the
interface starts to distort. Afterwards, at t = 147µs, the density contrast triggers baroclinic vorticity and
a downstream jet begins to form. By t = 197µs, strong shear layers develop, and vortex roll-up occurs
along the interface. Finally, at t = 247µs, well-developed vortical structures are observed, together
with continued jet penetration. The present mixed LDG solution faithfully reproduces these essential
physical mechanisms, including the jet penetration, shock refraction, and vortex roll-up.

Experiment (Hass & Sturtevant, 1987)

Present simulation

Computation (Quirk & Karni, 1996)

55 μs 115 μs 135 μs 187 μs 247 μs

Figure 4. Schlieren comparison of the experimental data [36], reference computation [37],
and present LDG simulation of a 2D shock-driven heavy cylindrical interface at successive
times (55–247µs).

To evaluate the predictive capability quantitatively, Figure 5 depicts the evolution of several
characteristic interface and shock fronts, namely the incident shock (IS), reflected shock (RS),
transmitted shock (TS), upstream interface (UI), and downstream interface (DI). The numerical
trajectories show very good agreement with the experimental measurements in terms of both location
and propagation speed. This confirms that the proposed LDG formulation can accurately capture the
shock-interface interaction dynamics and the complex flow evolution triggered by baroclinic vorticity
generation.
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Figure 5. Comparison of the characteristic interface trajectories (IS, UI, DI, TS, RS) for a
2D shock-driven heavy cylindrical interface: experimental data [36] versus present mixed
LDG simulation. Symbols denote experimental measurements, while lines indicate the
corresponding numerical predictions.

4.5. 2D shock-driven light cylindrical interface

For the next benchmark, we consider the classical 2D shock-driven light cylindrical interface, in
which a planar shock wave interacts with a helium cylindrical gas region embedded in air. The
experimental data of Haas and Sturtevant [36] and the numerical results of Quirk and Karni [37] are
used for validation and comparison. The simulation setup, including gas composition, grid resolution,
domain size, and boundary conditions, is summarized in Table 7. These parameters are chosen to
ensure close agreement with the reference configurations and to facilitate a direct comparison of
interface deformation and shock refraction dynamics.

Table 7. Simulation parameters for 2D shock-driven heavy cylindrical interface.

Parameter Symbol/description Value
Gas composition – Air/He
Incident shock Mach number Ms 1.22
Polynomial order p 3
Grid resolution Nx × Ny 1200 × 600 cells
Domain size – [0, 890] × [0, 89] mm2

Time integration SSP-RK3 CLF = 0.1
Boundary conditions – left - inflow; others - non-reflecting

Figure 6 compares the present mixed LDG simulation against the experimental Schlieren images of
Haas and Sturtevant [36] and the reference computation of Quirk and Karni [37]. This canonical
test case is widely used to assess the ability of numerical schemes to capture shock-light-gas
interactions, and therefore serves as an important validation prior to investigating the complex interface
configuration. At the early times t = 32µs and 62µs, the incident shock impinges on the helium cylinder
and produces a transmitted shock inside the light gas, a reflected shock propagating upstream, and an
initially smooth contact surface that starts to deform due to baroclinic vorticity deposition at the curved
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density interface. By t = 82µs, the interface is elongated in the streamwise (shock-normal) direction,
and a distinct roll-up can be observed at the cylinder edges. At t = 102µs, well-defined vortex pairs
form along the flanks of the interface as a result of KH shear instabilities. Finally, at t = 245µs, the
interface exhibits pronounced deformation and small-scale structures, accompanied by secondary wave
interactions and enhanced mixing. The agreement between the present simulation and the reference
datasets is very good in terms of both the timing and morphology of the transmitted and reflected shock
waves, the development of the vortex pairs, and the overall interface evolution.

Experiment (Hass & Sturtevant, 1987)

Present

Computation (Quirk & Karni, 1996)

32 μs 62 μs 82 μs 102 μs 245 μs

Figure 6. Schlieren comparison of the experimental data [36], reference computation [37],
and present mixed LDG simulation of a 2D shock-driven light cylindrical interface at
successive times (32–245µs).

Figure 7. Comparison of the characteristic interface trajectories (UI, DI, Jet) for a
2D shock-driven light cylindrical interface: experimental data [36] versus present mixed
LDG simulation. Symbols denote experimental measurements, while lines indicate the
corresponding numerical predictions.
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Figure 7 provides a quantitative assessment of the solver performance by tracking the characteristic
interface locations; namely, the UI, DI, and the jet tip. The t-x trajectories extracted from the
present simulation are compared with experimental measurements [36], with the symbols indicating
experimental data and the lines showing the numerical predictions. The good agreement in both the
slopes and the overall trend of the trajectories demonstrates that the present solver can accurately
predict the interface acceleration, deformation rate, and jet penetration distance triggered by the shock.

4.6. 2D shock-driven heavy chevron interface

Following the cylindrical interface benchmarks, we consider a 2D shock interaction with a heavy
chevron-shaped interface as an additional validation problem. Table 8 provides a concise overview
of the simulation configuration, detailing the gas mixture, grid resolution, computational domain,
and boundary conditions. This configuration introduces sharp interface corrugations, which enhance
baroclinic vorticity generation and therefore provide a demanding test of the solver’s ability to capture
shock-induced mixing.

Table 8. Simulation parameters for the shock-driven heavy chevron interface.

Parameter Symbol/description Value
Gas composition – Air/SF6

Incident shock Mach number Ms 1.20
Vertex angle θ 60◦

Polynomial order p 3
Grid resolution Nx × Ny 1200 × 600 cells
Domain size – [0, 310] × [0, 155] mm2

Time integration SSP-RK3 CFL = 0.1
Boundary conditions – left - inflow; Others - non-reflecting

The present numerical results are compared with the experiments of Luo et al. [38], who investigated
a 2D shock-driven chevron-shaped air/SF6 interface subjected to a planar shock of Mach number Ms =

1.2 and a vertex angle of θ = 60◦.
Figure 8(a) shows a comparison of the Schlieren images at several time instants (t = 64µs, 171µs,

408µs, 531µs, and 1011µs). Immediately after shock impact (t = 64µs), the incident wave is partially
transmitted into the heavier SF6 gas and partially reflected back into the air region, resulting in a curved
transmitted shock front and a reflected compression wave. Because of the strong density gradient
across the chevron interface, a significant baroclinic vorticity is generated, and the interface tips start
to bend and lose their original symmetry. In the intermediate stages (171–408µs), the baroclinic
torque amplifies the corrugations and drives the formation of elongated jets at the chevron apex, while
secondary compression and shear waves emanate from the interface corners. At later times (531–
1011µs), the jet structures merge and roll up into large vortex cores and fine-scale vortical filaments,
accompanied by the interaction of transmitted, reflected, and re-reflected waves. The Schlieren
patterns predicted by the present scheme closely match those observed experimentally and capture
the key physical processes such as shock refraction, jet growth, vortex roll-up, and secondary wave
generation. Figure 8(b) provides a quantitative comparison by showing the temporal evolution of the
upstream interface displacement Ds. The experimental measurements are plotted by symbols, while
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the corresponding numerical predictions are shown by solid lines. The close agreement over the full
evolution interval confirms the ability of the present mixed LDG scheme to accurately reproduce both
large-scale interface motion and the associated small-scale flow features.

Experiment Present

(a)

(b)

Figure 8. Comparison of the present mixed LDG simulation with 2D chevron-shaped shock-
interface experiment of Luo et al. [38] at Ms = 1.2 and a vertex angle of 60◦: (a) numerical
and experimental Schlieren images at selected times (t = 64µs, 171µs, 408µs, 531µs, and
1011µs); (b) evolution of the upstream interface displacement, with symbols representing
experimental data and the solid line indicating the numerical prediction.

4.7. 2D shock-driven single-mode heavy fluid layer

As a final test case, we examine the interaction of a planar shock wave with a 2D single-mode
heavy fluid layer. This classical RM configuration features a sinusoidally perturbed interface and
allows us to evaluate the ability of the mixed LDG scheme to capture shock-induced modal growth,
vortex formation, and the transition to nonlinear deformation [39, 40].

Figure 9 shows the initial setup adopted for a 2D shock-driven single-mode heavy fluid layer
configuration. The computational domain extends over 200mm in the streamwise (x) direction and
100mm in the transverse (y) direction. A layer of helium of base thickness d is placed inside the domain
and is bounded by two material interfaces: an upstream interface I1 that has a sinusoidal perturbation,
and a downstream interface I2 that is initially flat. The upstream interface is defined using a sinusoidal
wave of amplitude a0 and wavelength λ = 100mm, resulting in a maximum local layer thickness of
d + a0/2. The incident shock (initially located 25mm from the left boundary) travels from left to
right and meets the perturbed interface I1, the leftmost point of which is placed 5mm downstream
of the shock. A set of simulations is carried out to examine the effect of selected geometric and
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flow parameters. Specifically, two SF6 layer thicknesses (d = 5 and 40mm) are investigated using a
fixed perturbation amplitude of a0 = 15mm and an incident shock Mach number of Ms = 1.25. The
key numerical parameters adopted for this case, including the Mach number, grid resolution, layer
thickness, and time-integration details, are summarized in Table 9. These settings are selected to
replicate the classical single-mode RM configuration and to ensure adequate resolution of interface
deformation and vortex dynamics throughout the simulation. The relevant physical properties of SF6

and the surrounding N2 are listed in Table 10.

shock wave

Gas layer

S
ho

ck
ed

 r
eg

io
n

Figure 9. Schematic of the initial configuration for a 2D shock-driven single-mode heavy
fluid layer. A planar shock propagates from left to right and interacts with a heavy fluid layer
of thickness d, bounded by a sinusoidally perturbed upstream interface I1 (initial amplitude
a0, wavelength λ) and a planar downstream interface I2.

Table 9. Simulation parameters for a 2D single-mode heavy fluid layer.

Parameter Symbol/description Value
Gas composition – N2/SF6

Incident shock Mach number Ms 1.25
Wavelength λ 100mm
Initial amplitude a0 15mm
Layer thickness d 5, and 40mm
Polynomial order p 3
Grid resolution Nx × Ny 1200 × 600 cells
Domain size – [0, 200] × [0, 100] mm2

Time integration SSP-RK3 CFL = 0.10
Boundary conditions – left - inflow; Others - non-reflecting

Table 10. Used gas parameters for the numerical calculations.

Gas Heat ratio Density Specific heat Molecular weight
(γ) (g · cm−3) (kJ · g−1 · K−1) (g ·mol−1)

N2 1.40 1.25 × 10−3 1.04 × 10−3 28.0134
SF6 1.09 6.03 × 10−3 0.656 × 10−3 128.491
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To prevent artificial wave reflections, an inflow boundary condition is imposed on the left side
of the domain, an outflow boundary condition on the right side, and non-reflecting open boundary
conditions on the top and bottom boundaries. All simulations start from a quiescent ambient state with
P0 = 101,325Pa and T0 = 293K. For clarity in the subsequent analysis, the temporal evolution of the
flow is expressed in terms of a nondimensional time scale. The physical time t is nondimensionalized
using a characteristic time t0 = L/Vi, where L denotes the wavelength of the perturbed interface and
Vi is the velocity of the incident shock. The resulting dimensionless time is therefore defined as τ =
t/t0 = tVi/L.

To ensure the numerical accuracy and stability of the present simulations, a systematic grid-
resolution study was conducted for the 2D shock-driven single-mode heavy fluid layer at Ms = 1.25.
The flow evolution was examined on four uniform Cartesian grids: Grid-I (200 × 100), Grid-II
(400 × 200), Grid-III (800 × 400), and Grid-IV (1200 × 600). The non-dimensional time is defined as
τ = tUs/λ, where Us is the shock velocity and λ denotes the perturbation wavelength.

Figure 10 presents the instantaneous density contours at τ = 80 for the four grid levels. On the
coarsest grid (Grid-I), the contact discontinuity is diffused, and small-scale vortical structures are
poorly resolved. Refinement to Grid-II yields a much sharper interface and accurately captures the
formation of the primary vortex pair generated by baroclinic torque. Grid-III further improves the
resolution of secondary vortices and interface undulations, revealing the detailed roll-up process. The
finest grid (Grid-IV) provides additional small-scale features near the interface and within the shear
layer, confirming that finer vortical structures continue to emerge at higher resolutions. Based on
these observations, the 1200 × 600 grid was selected for subsequent simulations to ensure accurate
representation of shock-interface interactions while maintaining computational efficiency.

(a) (b) (c) (d)

Figure 10. Density contours at τ = 80 for 2D shock-driven single-mode heavy fluid layer,
computed on four different grids: (a) Grid-I (200× 100), (b) Grid-II (400× 200), (c) Grid-III
(800 × 400), and (d) Grid-IV (1200 × 600).

Figure 11 depicts the temporal evolution of the baroclinic vorticity magnitude |ωbar| and the
enstrophy Ω across the four grid resolutions. Both quantities exhibit a sharp initial rise immediately
after shock impact, corresponding to impulsive vorticity deposition at the perturbed interface, followed
by sustained growth due to vortex roll-up and secondary shear-layer interactions. The overall
magnitude of both diagnostics increases consistently with grid refinement, indicating improved capture
of small-scale vorticity and baroclinic torque effects. The finest grid (Grid-IV) shows significantly
higher late-time amplification compared with the coarser grids, highlighting the importance of
sufficient spatial resolution for resolving secondary vortices and fine-scale mixing. Consequently, the
1200×600 grid is adopted for all production runs to ensure accurate quantification of instability growth
and vorticity dynamics.
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(b)(a)

Figure 11. Temporal evolution of diagnostic quantities for 2D shock-driven single-mode
heavy fluid layer, using four different grids: (a) baroclinic vorticity magnitude |ωbar|, and (b)
enstrophy Ω.

Figure 12 illustrates the temporal evolution of the 2D shock-driven single-mode SF6 layer for two
different layer thicknesses. In both cases, the incident shock initially reaches the upstream sinusoidal
interface, generating a transmitted wave inside the dense SF6 layer and a reflected wave in the air.
For the thin layer case (d = 5mm), as shown in Figure 12(a), the transmitted shock rapidly reaches
the downstream (planar) interface and reflects back toward the upstream interface at an early time.
This results in an immediate interaction between reflected waves and the evolving vortical structures,
leading to the prompt formation of tightly spaced vortex pairs. As observed in the frames for τ = 40–
80, the interface undergoes intense roll-up, and the vortices begin to merge, forming a complex mixing
layer. In contrast, for the thicker layer (d = 40mm), as shown in Figure 12(b), the transmitted
shock requires more time to reach the downstream interface. Consequently, the early-time interface
evolution (τ = 0–30) is governed primarily by baroclinic vorticity deposition at the upstream interface,
resulting in a slower growth of the modal perturbation. Only at later times (τ ≥ 50), once the
transmitted and reflected waves begin to interact with the interface, more vigorous vortex roll-up
develops. Compared to the thin-layer case, the vortical structures are more widely spaced and less
fragmented, indicating that the larger separation between the interfaces delays nonlinear interaction
and suppresses the formation of small-scale instabilities.

Figure 13 shows the time evolution of the vorticity field for the 2D shock-driven single-mode SF6

layer with two different layer thicknesses. The vorticity is defined as the curl of the velocity field,
ω = ∇ × u, which in two dimensions reduces to the scalar expression ω = ∂uy

∂x −
∂ux
∂y . Large values of ω

therefore indicate regions of intense local rotation associated with baroclinic vortex production at the
interface. At early times (τ = 10 and 20), the vorticity is concentrated along the upstream sinusoidal
interface and forms opposite-sign regions on either side of the perturbation, in accordance with the
baroclinic source mechanism resulting from the misalignment of pressure and density gradients. For
the thin layer case (d = 5mm), the transmitted shock quickly reaches the downstream interface and
reflects back toward the upstream surface, which intensifies the vorticity magnitude and promotes
early vortex roll-up (τ = 40). By τ = 80, multiple counter-rotating vortices have developed along
the interface and secondary instabilities appear due to wave-vortex interactions. In the thicker layer
(d = 40mm), the vorticity distribution remains smooth and coherent up to τ = 40, as the transmitted
shock has not yet interacted with the downstream interface. Only at later times (τ ≃ 80) does the
reflected wave impinge on the upstream interface, and initiate more vigorous vortex roll-up. Compared
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to the thin-layer configuration, the vortices are more widely spaced and less fragmented, indicating that
the increased layer thickness delays the onset of the nonlinear stage of the RM instability and reduces
the production of small-scale vortical structures.

(a) d = 5

(b) d = 40

Figure 12. Temporal evolution of numerical Schlieren fields for the 2D shock-driven single-
mode SF6 fluid layer, highlighting the effect of the fluid-layer thickness: (a) d = 5mm and
(b) d = 40mm, for a0 = 15mm, λ = 100mm, and Ms = 1.21.

(a) d= 5

(b) d = 40

Figure 13. Temporal evolution of vorticity flow fields for the 2D shock-driven single-mode
SF6 fluid layer, highlighting the effect of the fluid-layer thickness: (a) d = 5mm and (b)
d = 40mm, for a0 = 15mm, λ = 100mm, and Ms = 1.21.
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To further quantify the development of the shock-driven interface instability, we employ integral
diagnostics based on the spatially integrated baroclinic vorticity and enstrophy. These global measures
provide insight into the amplification of vorticity and the degree of interface deformation during the
evolution of the shock-driven heavy fluid layer.

The absolute baroclinic vorticity, which reflects the local production of vorticity due to the
baroclinic torque, is defined as

|ωbar|(τ) =
∫

D

∣∣∣∣ 1
ρ2

(∇ρ × ∇p)
∣∣∣∣ dx dy, (4.10)

where D denotes the computational domain. The overall strength of the vorticity field is characterized
by the enstrophy Ω, defined as

Ω(τ) =
∫

D
ω2 dx dy, (4.11)

with ω denoting the scalar vorticity. A rise in |ωbar| or Ω indicates enhanced vorticity generation and
interface roll-up, whereas a reduction reflects the attenuation of the instability or the redistribution of
vortical energy.

(b)(a)

Figure 14. Influence of fluid-layer thickness (d = 5 and 40mm) on the 2D shock-driven
single-mode SF6 layer at a0 = 15mm and Ms = 1.21: temporal evolution of spatially
integrated fields of (a) baroclinic vorticity (ωbar) and (b) enstrophy (Ω).

Figure 14 shows the temporal evolution of the spatially integrated baroclinic vorticity and enstrophy
for two different fluid-layer thicknesses. The growth of these integral quantities reflects the progressive
amplification of vorticity and the transition of the interface from linear deformation to nonlinear roll-
up. In Figure 14(a), the baroclinic vorticity ωbar increases immediately after shock impact and grows
monotonically with time for both cases. However, the growth is noticeably faster for the thin layer (d =
5mm) due to the early reinteraction of reflected waves with the interface, which enhances the baroclinic
torque and strengthens vorticity production. For the thicker layer (d = 40mm), the transmitted shock
reaches the downstream interface later, and the absence of early wave-interface interactions leads to a
more gradual vorticity increase. Figure 14(b) shows the corresponding evolution of the enstrophy Ω,
which represents the global strength of the vortical field. For the thin layer, Ω increases rapidly after
τ ≈ 20, coinciding with the onset of vortex roll-up, and reaches a larger peak value at approximately
τ ≈ 60. On the contrary, the thick layer shows a slower and smaller increase of Ω, with a lower peak
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level, suggesting that the creation of small-scale structures is repressed and the production of large-
scale vortices is delayed. All things considered, the curves support the idea that reducing the layer
thickness accelerates the transition to the nonlinear stage of shock-driven instability and increases the
production of vorticity.

5. Concluding remarks

In this study, a high-order mixed LDG scheme was developed and systematically evaluated for
simulating shock-driven instabilities in compressible multicomponent flows. The formulation employs
a mixed first-order representation of the viscous and diffusive terms, enabling a consistent treatment
of the NSF equations within the LDG framework. The scheme combines high spectral accuracy
in smooth regions with robust shock-capturing capability achieved through a modal moment limiter
and an alternating diffusive-flux strategy. The accuracy and stability of the method were verified
through a sequence of canonical test cases. The 1D and 2D advection problems demonstrated the
optimal order convergence. Subsequent validation on the Sod shock tube, cylindrical interfaces (heavy
and light), and chevron-shaped configurations confirmed the solver’s ability to capture key physical
mechanisms, including shock refraction, baroclinic vorticity deposition, vortex roll-up, and interface
deformation, with excellent agreement with experimental and reference numerical data. Furthermore,
we also studied a 2D shock-driven heavy fluid layer in which a planar shock interacts with a perturbed
dense-light interface, leading to baroclinic vorticity generation, vortex roll-up, and subsequent interface
deformation. Parametric investigations revealed that thinner heavy-gas layers intensify baroclinic
torque and promote an earlier transition to the nonlinear regime, whereas thicker layers delay vortex
interactions and suppress small-scale mixing. Integral analyses of baroclinic vorticity and enstrophy
further demonstrated that geometric confinement plays a crucial role in modulating vorticity generation
and interface evolution. Overall, the proposed mixed LDG framework exhibits excellent robustness
and accuracy for simulating complex shock-interface interactions in compressible multicomponent
flows. Future developments will focus on extending the present formulation to fully three-dimensional
and multi-layer configurations, where additional instability mechanisms become active. Moreover,
incorporating non-equilibrium transport and reactive flow models will further enhance the predictive
capability of the LDG solver for high-Mach-number shock-driven systems.
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