This research conducted a study of the nonlinear (3 + 1)-dimensional Vakhnenko-Parkes (VP) equation since it acts as a vital model for high-frequency wave perturbations in relaxing high-rate active barotropic media. The analytical solutions emerged through the modified auxiliary equation method and the improved F-expansion method which serve as advanced tools for studying nonlinear waves. These methods present diverse solutions that contain solitary waves combined with periodic waves and rational forms. The obtained solutions exhibit their behavior through illustrated 2D and 3D plots showing how waves evolve and how their structures transform with varying parameters. This visual analysis shows how solutions disperse and stay stable thus making them relevant for fluid dynamics investigations and wave propagation studies. The analytical understanding of nonlinear wave models in high-frequency barotropic systems receives new insights through our results which enhance mathematical and physical VP equation descriptions.
Citation: M. S. Mehanna, Ibtehal Alazman, Aly R. Seadawy. Comprehensive study of a (3+1)-dimensional nonlinear Vakhnenko-Parkes dynamical equation with applications in nonlinear wave propagation in relaxing media[J]. AIMS Mathematics, 2025, 10(11): 25206-25226. doi: 10.3934/math.20251116
This research conducted a study of the nonlinear (3 + 1)-dimensional Vakhnenko-Parkes (VP) equation since it acts as a vital model for high-frequency wave perturbations in relaxing high-rate active barotropic media. The analytical solutions emerged through the modified auxiliary equation method and the improved F-expansion method which serve as advanced tools for studying nonlinear waves. These methods present diverse solutions that contain solitary waves combined with periodic waves and rational forms. The obtained solutions exhibit their behavior through illustrated 2D and 3D plots showing how waves evolve and how their structures transform with varying parameters. This visual analysis shows how solutions disperse and stay stable thus making them relevant for fluid dynamics investigations and wave propagation studies. The analytical understanding of nonlinear wave models in high-frequency barotropic systems receives new insights through our results which enhance mathematical and physical VP equation descriptions.
| [1] |
W. Yu, W. Liu, H. Triki, Q. Zhou, A. Biswas, Phase shift oscillation and collision of the anti-dark solitons for the (3+1)-dimensional coupled nonlinear Schrödinger equation in an optical fiber communication system, Nonlinear Dynam., 97 (2019), 1253–1262. https://doi.org/10.1007/s11071-019-05045-y doi: 10.1007/s11071-019-05045-y
|
| [2] |
X. Fan, T. Qu, S. Huang, X. Chen, M. Cao, Q. Zhou, et al., Analytic study on the influences of higher-order effects on optical solitons in fiber laser, Optik, 186 (2019), 326–331. https://doi.org/10.1016/j.ijleo.2019.04.102 doi: 10.1016/j.ijleo.2019.04.102
|
| [3] |
S. A. El-Tantawy, Nonlinear dynamics of soliton collisions in electronegative plasmas: The phase shifts of the planar KdV-and mkdV-soliton collisions, Chaos Soliton. Fract., 93 (2016), 162–168. https://doi.org/10.1016/j.chaos.2016.10.011 doi: 10.1016/j.chaos.2016.10.011
|
| [4] |
K. U. Tariq, A. Wazwaz, A. Ahmed, On some optical soliton structures to the Lakshmanan Porsezian Daniel model with a set of nonlinearities, Opti. Quant. Electron., 54 (2022), 432. https://doi.org/10.1007/s11082-022-03830-5 doi: 10.1007/s11082-022-03830-5
|
| [5] |
S. A. Khuri, New approach for soliton solutions for the (2 + 1)-dimensional KdV equation describing shallow water wave, Int. J. Numer. Method. H., 33 (2023), 965–973. https://doi.org/10.1108/HFF-08-2022-0498 doi: 10.1108/HFF-08-2022-0498
|
| [6] |
R. Zhang, S. Bilige, Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation, Nonlinear Dynam., 95 (2019), 1–8. https://doi.org/10.1007/s11071-018-04739-z doi: 10.1007/s11071-018-04739-z
|
| [7] |
Q. Zhou, Q. Zhu, Optical solitons in medium with parabolic law nonlinearity and higher order dispersion, Waves Random Complex, 25 (2014), 52–59. https://doi.org/10.1080/17455030.2014.956847 doi: 10.1080/17455030.2014.956847
|
| [8] |
G. H. Tipu, W. A. Faridi, Z. Myrzakulova, R. Myrzakulov, S. A. AlQahtani, N. F. AlQahtani, et al., On optical soliton wave solutions of non linear Kairat X equation via new extended direct algebraic method, Opt. Quantum Electron., 56 (2024), 655–673. https://doi.org/10.1007/s11082-024-06369-9 doi: 10.1007/s11082-024-06369-9
|
| [9] |
K. A. Rashedi, S. Noor, T. S. Alshammari, I. Khan, Lump and kink soliton phenomena of Vakhnenko equation, AIMS Math., 9 (2024), 21079–21093. https://doi.org/10.3934/math.20241024 doi: 10.3934/math.20241024
|
| [10] |
S. Abbagari, A. Houwe, L. Akinyemi, S. Doka, T. Bouetou, Dynamics of chirped solitary waves: Bifurcation and chaos in nonlinear chains with Morse potential, Phys. Scripta, 100 (2025). https://doi.org/10.1088/1402-4896/adab48 doi: 10.1088/1402-4896/adab48
|
| [11] |
I. E. Inan, Multiple soliton solutions of some nonlinear partial differential equations, Univ. J. Math. Appl., 1 (2018), 273–279. https://doi.org/10.32323/ujma.399596 doi: 10.32323/ujma.399596
|
| [12] |
M. Wang, Y. Zhou, Z. Li, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A, 216 (1996), 67–75. https://doi.org/10.1016/0375-9601(96)00283-6 doi: 10.1016/0375-9601(96)00283-6
|
| [13] |
X. Gao, J. Liu, G. Wang, Inhomogeneity, magnetic auto-Bäcklund transformations and magnetic solitons for a generalized variable-coefficient Kraenkel-Manna-Merle system in a deformed ferrite, Appl. Math. Lett., 171 (2025), 109615. https://doi.org/10.1016/j.aml.2025.109615 doi: 10.1016/j.aml.2025.109615
|
| [14] |
X. Gao, Open-ocean shallow-water dynamics via a (2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system: Oceanic Auto-Bäcklund transformation and oceanic solitons, China Ocean Eng., 39 (2025), 541–547. https://doi.org/10.1007/s13344-025-0057-y doi: 10.1007/s13344-025-0057-y
|
| [15] | M. Ablowitz, P. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, New York: Cambridge University Press, 1991. |
| [16] |
M. Ablowitz, Z. Musslimani, Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation, Nonlinearity, 29 (2016), 915–946. https://doi.org/10.1088/0951-7715/29/3/915 doi: 10.1088/0951-7715/29/3/915
|
| [17] |
R. Hirota, Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192. https://doi.org/https://doi.org/10.1103/PhysRevLett.27.1192 doi: 10.1103/PhysRevLett.27.1192
|
| [18] |
X. Lü, S. Chen, Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: One-lump-multi-stripe and one-lump-multi-soliton types, Nonlinear Dynam., 103 (2021), 947–977. https://doi.org/10.1007/s11071-020-06068-6 doi: 10.1007/s11071-020-06068-6
|
| [19] |
G. Wang, Z. Tan, X. Gao, J. Liu, A new (2+1)-dimensional like-Harry-Dym equation with derivation and soliton solutions, Appl. Math. Lett., 172 (2026), 109720. https://doi.org/10.1016/j.aml.2025.109720 doi: 10.1016/j.aml.2025.109720
|
| [20] |
K. A. Gepreel, S. Omran, Exact solutions for nonlinear partial fractional differential equations, Chinese Phys. B, 21 (2012), 110204. https://doi.org/10.1088/1674-1056/21/11/110204 doi: 10.1088/1674-1056/21/11/110204
|
| [21] |
Y. Özkan, E. Yaşar, A. Seadawy, On the multi-waves, interaction and peregrine-like rational solutions of perturbed radhakrishnan-kundu-lakshmanan equation, Phys. Scripta, 95 (2020), 085205. https://doi.org/10.1088/1402-4896/ab9af4 doi: 10.1088/1402-4896/ab9af4
|
| [22] |
S. Kumar, S. K. Dhiman, Lie symmetry analysis, optimal system, exact solutions and dynamics of solitons of a (3 + 1)-dimensional generalised BKP-Boussinesq equation, Pramana, 96 (2022), 31. https://doi.org/10.1007/s12043-021-02269-9 doi: 10.1007/s12043-021-02269-9
|
| [23] |
W. Ma, T. Huang, Y. Zhang, A multiple exp-function method for nonlinear differential equations and its application, Phys. Scripta, 82 (2010), 6. https://doi.org/10.1088/0031-8949/82/06/065003 doi: 10.1088/0031-8949/82/06/065003
|
| [24] |
A. Seadawy, N. Cheemaa, Propagation of nonlinear complex waves for the coupled nonlinear Schrödinger equations in two core optical fibers, Physica A, 529 (2019), 121330. https://doi.org/10.1016/j.physa.2019.121330 doi: 10.1016/j.physa.2019.121330
|
| [25] |
C. Chen, Y. Jiang, Simplest equation method for some time-fractional partial differential equations with conformable derivative, Comput. Math. Appl., 75 (2018), 2978–2988. https://doi.org/10.1016/j.camwa.2018.01.025 doi: 10.1016/j.camwa.2018.01.025
|
| [26] |
M. K. Elboree, The Jacobi elliptic function method and its application for two component BKP hierarchy equations, Comput. Math. Appl., 62 (2011), 4402–4414. https://doi.org/10.1016/j.camwa.2011.10.015 doi: 10.1016/j.camwa.2011.10.015
|
| [27] |
O. Tasbozan, E. Celik, A. Kurt, L. Akinyemi, Investigation on the new exact solutions of generalized Rosenau-Kawahara-RLW equation with p-th order nonlinearity occurring in ocean engineering models, Appl. Math. J. Chinese Univ., 39 (2024), 642–653. https://doi.org/10.1007/s11766-024-4631-5 doi: 10.1007/s11766-024-4631-5
|
| [28] |
F. Mahmud, M. Samsuzzoha, M. A. Akbar, The generalized Kudryashov method to obtain exact traveling wave solutions of the PHI-four equation and the Fisher equation, Results Phys., 7 (2017), 4296–4302. https://doi.org/10.1016/j.rinp.2017.10.049 doi: 10.1016/j.rinp.2017.10.049
|
| [29] |
M. S. M. Shehata, E. H. M. Zahran, The solitary wave solutions of important model in particle physics and engineering according to two different techniques, Am. J. Comput. Math., 9 (2019), 317–327. https://doi.org/10.4236/ajcm.2019.94023 doi: 10.4236/ajcm.2019.94023
|
| [30] |
M. R. Fahim, P. R. Kundu, M. E. Islam, M. A. Akbar, M. S. Osman, Wave profile analysis of a couple of (3+1)-dimensional nonlinear evolution equations by Sine-Gordon expansion approach, J. Ocean Eng. Sci., 7 (2022), 272–279. https://doi.org/10.1016/j.joes.2021.08.009 doi: 10.1016/j.joes.2021.08.009
|
| [31] |
S. Abbagari, A. Houwe, L. Akinyemi, M. Senol, T. B. Bouetou, W-chirped solitons and modulated waves patterns in parabolic law medium with anti-cubic nonlinearity, J. Nonlinear Opt. Phys., 34 (2025), 2350087. https://doi.org/10.1142/S021886352350087X doi: 10.1142/S021886352350087X
|
| [32] |
L. Akinyemi, I. Ainomugisha, Stability and solitary wave dynamics of higher-dimensional nonlinear Schrödinger equation with time-dependent potential, Nonlinear Dynam., 113 (2025), 23439–23456. https://doi.org/10.1007/s11071-025-11325-7 doi: 10.1007/s11071-025-11325-7
|
| [33] |
M. Arshad, A. Seadawy, D. Lu, J. Wang, Travelling wave solutions of generalized coupled Zakharov-Kuznetsov and dispersive long wave equations, Results Phys., 6 (2016), 1136–1145. https://doi.org/10.1016/j.rinp.2016.11.043 doi: 10.1016/j.rinp.2016.11.043
|
| [34] |
S. K. Naqvi, I. Aldawish, S. T. R. Rizvi, A. R. Seadawy, Bilinear neural network solutions for nonlinear waves in the Sawada-Kotera model studied in heat transfer, Eur. Phys. J. Plus, 140 (2025), 835. https://doi.org/10.1140/epjp/s13360-025-06781-4 doi: 10.1140/epjp/s13360-025-06781-4
|
| [35] |
K. Hosseini, M. Mirzazadeh, S. Salahshour, D. Baleanu, A. Zafar, Specific wave structures of a fifth-order nonlinear water wave equation, J. Ocean Eng. Sci., 7 (2021), 462–466. https://doi.org/10.1016/j.joes.2021.09.019 doi: 10.1016/j.joes.2021.09.019
|
| [36] |
K. Debin, H. Rezazadeh, N. Ullah, J. Vahidi, K. U. Tariq, L. Akinyemi, New soliton wave solutions of a (2 + 1)-dimensional Sawada-Kotera equation, J. Ocean Eng. Sci., 8 (2023), 527–532. https://doi.org/10.1016/j.joes.2022.03.007 doi: 10.1016/j.joes.2022.03.007
|
| [37] | W. Alhejaili, A. Wazwaz, S. A. El-Tantawy, New (3+1)-dimensional integrable extensions of the (modified) Vakhnenko-Parkes equation, Rom. J. Phys., 68 (2023), 102–116. |
| [38] |
S. M. Mabrouk, M. M. Mahdy, A. S. Rashed, R. Saleh, Exploring high-frequency waves and soliton solutions of fluid turbulence through relaxation medium modeled by vakhnenko-parkes equation, Comput. Methods Diffe., 13 (2025), 646–658. https://doi.org/10.22034/cmde.2024.60655.2599 doi: 10.22034/cmde.2024.60655.2599
|
| [39] |
V. A. Vakhnenko, Solitons in a nonlinear model medium, J. Phys. A-Math. Gen., 25 (1992), 4181–4187. https://doi.org/10.1088/0305-4470/25/15/025 doi: 10.1088/0305-4470/25/15/025
|
| [40] |
K. K. Victor, B. B. Thomas, On high frequency soliton solutions to a (2+1)-dimensional nonlinear partial differential evolution equation, Chinese Phys. Lett., 25 (2008), 425–428. https://doi.org/10.1088/0256-307X/25/2/020 doi: 10.1088/0256-307X/25/2/020
|
| [41] |
A. Wazwaz, Higher dimensional integrable Vakhnenko-Parkes equation: Multiple soliton solutions, Int. J. Numer. Method. H., 31 (2021), 2064–2071. https://doi.org/10.1108/HFF-09-2020-0560 doi: 10.1108/HFF-09-2020-0560
|
| [42] |
S. Kumar, N. Mann, Abundant closed-form solutions of the (3+1)-dimensional Vakhnenko-Parkes equation describing the dynamics of various solitary waves in ocean engineering, J. Ocean Eng. Sci., 32 (2022). https://doi.org/10.1016/j.joes.2022.04.007 doi: 10.1016/j.joes.2022.04.007
|
| [43] |
A. R. Seadawy, A. Ali, W. A. Albarakati, D. Baleanu, Propagation of traveling wave solutions to the Vakhnenko-Parkes dynamical equation via modified mathematical methods, Appl. Math.-A J. Chinese Univ., 37 (2022), 21–34. https://doi.org/10.1007/s11766-022-4056-y doi: 10.1007/s11766-022-4056-y
|
| [44] |
H. Rashid, M. Uddin, M. Hossain, M. Rahman, Exact traveling wave solutions to Vakhnenko-Parkes Equation, Int. J. Software Hardware Res. Eng., 2 (2014), 178–182. https://doi.org/10.9734/BJMCS/2015/10800 doi: 10.9734/BJMCS/2015/10800
|
| [45] |
Y. S. Ozkan, E. Yasar, M. S. Osman, Novel multiple soliton and front wave solutions for the 3D-Vakhnenko-Parkes equation, Mod. Phys. Lett. B, 36 (2022), 2250003. https://doi.org/10.1142/S0217984922500038 doi: 10.1142/S0217984922500038
|
| [46] |
Y. S. Ozkan, A. R. Seadawy, E. Yaşar, Multi-wave, breather and interaction solutions to (3+1) dimensional Vakhnenko-Parkes equation arising at propagation of high-frequency waves in a relaxing medium, J. Taibah Univ. Sci., 15 (2021), 666–678. https://doi.org/10.1080/16583655.2021.1999053 doi: 10.1080/16583655.2021.1999053
|
| [47] |
A. Arzu, K. Melike, B. Ahmet, Auxiliary equation method for fractional differential equations with modified Riemann-Liouville derivative, Int. J. Nonlinear Sci. Num., 17 (2016), 413–420. doi.org/10.1515/ijnsns-2016-0023 doi: 10.1515/ijnsns-2016-0023
|
| [48] |
G. Xu, Extended auxiliary equation method and its applications to three generalized NLS equations, Abstr. Appl. Anal., 2014 (2014). https://doi.org/10.1155/2014/541370 doi: 10.1155/2014/541370
|
| [49] |
S. Zhang, A generalized auxiliary equation method and its application to (2+1)-dimensional Korteweg de Vries equations, Comput. Math. Appl., 54 (2007), 1028–1038. https://doi.org/10.1016/j.camwa.2006.12.046 doi: 10.1016/j.camwa.2006.12.046
|
| [50] |
E. M. E. Zayed, K. A. E. Alurrfi, Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrödinger-type equations, Appl. Math. Comput., 289 (2016), 111–131. https://doi.org/10.1016/j.amc.2016.04.014 doi: 10.1016/j.amc.2016.04.014
|
| [51] |
M. A. Akbar, N. M. Ali, T. Tanjim, Outset of multiple soliton solutions to the nonlinear Schrödinger equation and the coupled Burgers equation, J. Phys. Commun., 3 (2019), 9. https://doi.org/10.1088/2399-6528/ab3615 doi: 10.1088/2399-6528/ab3615
|
| [52] |
S. M. R. Islam, S. Khan, S. M. Y. Arafat, M. A. Akbar, Diverse analytical wave solutions of plasma physics and water wave equations, Results Phys., 40 (2022). https://doi.org/10.1016/j.rinp.2022.105834 doi: 10.1016/j.rinp.2022.105834
|
| [53] |
J. Zhang, M. Wang, Y. Wang, Z. Fang, The improved F-expansion method and its applications, Phys. Lett. A, 350 (2006), 103–109. https://doi.org/10.1016/j.physleta.2005.10.099 doi: 10.1016/j.physleta.2005.10.099
|
| [54] |
M. S. Islam, M. A. Akbar, K. Khan, The improved F-expansion method and its application to the MEE circular rod equation and the ZKBBM equation, Cogent Math., 4 (2017). https://doi.org/10.1080/23311835.2017.1378530 doi: 10.1080/23311835.2017.1378530
|
| [55] |
Z. Qin, Z. H. Yan, An improved F-expansion method and its application to coupled Drinfel'd-Sokolov-Wilson equation, Commun. Theor. Phys., 50 (2008), 309. https://doi.org/10.1088/0253-6102/50/2/05 doi: 10.1088/0253-6102/50/2/05
|
| [56] |
M. S. Islam, M. A. Akbar, K. Khan, Analytical solutions of nonlinear Klein-Gordon equation using the improved F expansion method, Opt. Quantum Electron., 50 (2018), 224. https://doi.org/10.1007/s11082-018-1445-9 doi: 10.1007/s11082-018-1445-9
|