Research article Topical Sections

Bi-univalent functions connected to Bazilevič and $ \lambda $-Pseudo functions and their Lucas-Balancing polynomial applications

  • Published: 03 November 2025
  • MSC : 30C20, 30C45

  • In this work, we define two families $ \mathcal{V}_{\Sigma }(\mu, \gamma, \lambda; r) $ and $ \mathcal{W}_{\Sigma }(\mu, \gamma, \lambda; r) $ of holomorphic and bi-univalent functions connected with Bazilevič functions and $ \lambda $-pseudo functions defined by Lucas-Balancing polynomials. We demonstrate the upper bounds for the initial Taylor-Maclaurin coefficients. In addition, the Fekete-Szegö type inequalities are derived for functions in these families. Moreover, we indicate certain special cases and consequences for our results.

    Citation: Abbas Kareem Wanas, H. M. Srivastava, Adriana Cătaş, Sheza M. El-Deeb. Bi-univalent functions connected to Bazilevič and $ \lambda $-Pseudo functions and their Lucas-Balancing polynomial applications[J]. AIMS Mathematics, 2025, 10(11): 25193-25205. doi: 10.3934/math.20251115

    Related Papers:

  • In this work, we define two families $ \mathcal{V}_{\Sigma }(\mu, \gamma, \lambda; r) $ and $ \mathcal{W}_{\Sigma }(\mu, \gamma, \lambda; r) $ of holomorphic and bi-univalent functions connected with Bazilevič functions and $ \lambda $-pseudo functions defined by Lucas-Balancing polynomials. We demonstrate the upper bounds for the initial Taylor-Maclaurin coefficients. In addition, the Fekete-Szegö type inequalities are derived for functions in these families. Moreover, we indicate certain special cases and consequences for our results.



    加载中


    [1] A. Behera, G. K. Panda, On the square roots of triangular numbers, Fibonacci Quart., 37 (1999), 98–105. https://doi.org/10.1080/00150517.1999.12428864 doi: 10.1080/00150517.1999.12428864
    [2] S. Z. H. Bukhari, A. K. Wanas, M. Abdalla, S. Zafar, Region of variablity for Bazilevič functions, AIMS Mathematics, 8 (2023), 25511–25527. https://doi.org/10.3934/math.20231302 doi: 10.3934/math.20231302
    [3] L. I. Cotîrlǎ, New classes of analytic and bi-univalent functions, AIMS Mathematics, 6 (2021), 10642–10651. https://doi.org/10.3934/math.2021618 doi: 10.3934/math.2021618
    [4] L. I.Cotîrlǎ, A. K. Wanas, Applications of Laguerre polynomials for Bazilevič and $\theta $-pseudo-starlike bi-univalent functions associated with Sakaguchi-type functions, Symmetry, 15 (2023), 406. https://doi.org/10.3390/sym15020406 doi: 10.3390/sym15020406
    [5] P. L. Duren, Univalent functions, In: Grundlehren der mathematischen Wissenschaften, New York: Springer-Verlag, 259 (1983).
    [6] S. M. El-Deeb, T. Bulboacǎ, B. M. El-Matary, Maclaurin coefficient estimates of bi-univalent functions connected with the $q$-derivative, Mathematics, 8 (2020), 418. https://doi.org/10.3390/math8030418 doi: 10.3390/math8030418
    [7] M. Fekete, G. Szegö, Eine bemerkung uber ungerade schlichte funktionen, J. London Math. Soc., s1-8 (1933), 85–89. https://doi.org/10.1112/jlms/s1-8.2.85 doi: 10.1112/jlms/s1-8.2.85
    [8] R. Frontczak, A note on hybrid convolutions involving balancing and Lucas-Balancing numbers, Appl. Math. Sci., 12 (2018), 1201–1208. https://doi.org/10.12988/ams.2018.87111 doi: 10.12988/ams.2018.87111
    [9] R. Frontczak, On balancing polynomials, Appl. Math. Sci., 13 (2019), 57–66. https://doi.org/10.12988/ams.2019.812183 doi: 10.12988/ams.2019.812183
    [10] R. Keskin, O. Karaatli, Some new properties of balancing numbers and square triangular numbers, J. Integer Seq., 15 (2012), 1–13.
    [11] S. L. Krushkal, A variational theory for biunivalent holomorphic functions, Axioms, 13 (2024), 628. https://doi.org/10.3390/axioms13090628 doi: 10.3390/axioms13090628
    [12] S. L. Krushkal, Teichmüller balls and biunivalent holomorphic functions, J. Math. Sci., 288 (2025), 225–233. https://doi.org/10.1007/s10958-025-07678-4 doi: 10.1007/s10958-025-07678-4
    [13] G. Murugusundaramoorthy, L. I. Cotîrlǎ, D. Breaz, S. M. El-Deeb, Applications of Lucas Balancing polynomial to subclasses of bi-starlike functions, Axioms, 14 (2025), 50. https://doi.org/10.3390/axioms14010050 doi: 10.3390/axioms14010050
    [14] R. Öztürk, I. Aktaş, Coefficient estimates for two new subclasses of bi-univalent functions defined by Lucas-Balancing polynomials, Turkish J. Ineq., 7 (2023), 55–64.
    [15] B. K. Patel, N. Irmak, P. K. Ray, Incomplete balancing and Lucas-balancing numbers, Math. Rep., 20 (2018), 59–72.
    [16] P. K. Ray, Some congruences for balancing and Lucas-Balancing numbers and their applications, 2014.
    [17] R. Singh, On Bazilevič functions, Proc. Amer. Math. Soc., 38 (1973), 261–271. https://doi.org/10.1090/S0002-9939-1973-0311887-9 doi: 10.1090/S0002-9939-1973-0311887-9
    [18] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. https://doi.org/10.1016/j.aml.2010.05.009 doi: 10.1016/j.aml.2010.05.009
    [19] H. M. Srivastava, A. K. Wanas, Applications of the Horadam polynomials involving $\lambda$-pseudo-starlike bi-univalent functions associated with a certain convolution operator, Filomat, 35 (2021), 4645–4655. https://doi.org/10.2298/FIL2114645S doi: 10.2298/FIL2114645S
    [20] A. K. Wanas, Coefficient estimates for Bazilevič functions of bi-prestarlike functions, Miskolc Math. Notes, 21 (2020), 1031–1040. https://doi.org/10.18514/MMN.2020.3174 doi: 10.18514/MMN.2020.3174
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(282) PDF downloads(34) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog