

http://www.aimspress.com/journal/Math

AIMS Mathematics, 10(11): 25193-25205.

DOI: 10.3934/math.20251115 Received: 23 April 2025 Revised: 18 July 2025 Accepted: 22 July 2025

Published: 03 November 2025

Research article

Bi-univalent functions connected to Bazilevič and λ -Pseudo functions and their Lucas-Balancing polynomial applications

Abbas Kareem Wanas¹, H. M. Srivastava^{2,3,4,5,6,7}, Adriana Cătaș^{8,*} and Sheza M. El-Deeb⁹

- ¹ Department of Mathematics, College of Education for Women, University of Al-Qadisiyah, Al Diwaniyah 58001, Al-Qadisiyah, Iraq
- Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada
- ³ Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- ⁴ Center for Converging Humanities, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- ⁵ Department of Applied Mathematics, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
- ⁶ Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street, Baku *AZ*1007, Azerbaijan
- Section of Mathematics, International Telematic University Uninettuno, 39 Corso Vittorio Emanuele II, I-00186 Rome, Italy
- ⁸ Department of Mathematics and Computer Science, University of Oradea, 1 University Street, 410087 Oradea, Romania
- ⁹ Department of Mathematics, College of Science, Qassim University, Buraydah, 51452, Saudi Arabia
- * Correspondence: Email: acatas@gmail.co.

Abstract: In this work, we define two families $V_{\Sigma}(\mu, \gamma, \lambda; r)$ and $W_{\Sigma}(\mu, \gamma, \lambda; r)$ of holomorphic and bi-univalent functions connected with Bazilevič functions and λ -pseudo functions defined by Lucas-Balancing polynomials. We demonstrate the upper bounds for the initial Taylor-Maclaurin coefficients. In addition, the Fekete-Szegö type inequalities are derived for functions in these families. Moreover, we indicate certain special cases and consequences for our results.

Keywords: bi-univalent function; holormorphic function; Bazilevič function; λ -Pseudo functions; upper bounds; Lucas-Balancing polynomials; convolution, Fekete-Szegö problem

Mathematics Subject Classification: 30C20, 30C45

1. Introduction

Indicate by \mathcal{B} the family of holomorphic functions in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$, of the form

$$\mathcal{F}(z) = z + \sum_{k=2}^{\infty} d_k z^k. \tag{1.1}$$

The subfamily of \mathcal{B} that consists of functions that are also univalent in \mathbb{U} is represented by \mathbb{S} .

Let $\mathcal{F} \in \mathbb{S}$ be said to be a starlike of order $\delta(0 \le \delta < 1)$ if

$$\Re\left(\frac{z\mathcal{F}'(z)}{\mathcal{F}(z)}\right) > \delta, \qquad (z \in \mathbb{U})$$

and a function $\mathcal{F} \in \mathbb{S}$ is called convex of order $\delta(0 \le \delta < 1)$ if

$$\Re\left(\frac{z\mathcal{F}''(z)}{\mathcal{F}'(z)}+1\right) > \delta, \qquad (z \in \mathbb{U}).$$

The families of functions $S^*(\delta)$ and $C(\delta)$ are called starlike of order δ and convex of order δ in \mathbb{U} , respectively.

A function $\mathcal{F} \in \mathcal{B}$ is called Bazilevič function in \mathbb{U} if (see [17]),

$$\Re\left(\frac{z^{1-\gamma}\mathcal{F}'(z)}{\left(\mathcal{F}(z)\right)^{1-\gamma}}\right) > 0 \qquad (z \in \mathbb{U}; \ \gamma \ge 0).$$

A function $\mathcal{F} \in \mathcal{B}$ is called a λ -pseudo-starlike function in \mathbb{U} if

$$\Re\left\{\frac{z\left(\mathcal{F}'(z)\right)^{\lambda}}{\mathcal{F}(z)}\right\} > 0, \qquad (z \in \mathbb{U}; \lambda \ge 1).$$

Let \mathcal{F} and \mathcal{G} be two analytic functions in \mathbb{U} . The function \mathcal{F} is said to be subordinated to \mathcal{G} if there exists a Schwarz function w(z), i.e., that is analytic in \mathbb{U} with w(0) = 0 and |w(z)| < 1, $z \in \mathbb{U}$, such that $\mathcal{F}(z) = \mathcal{G}(w(z))$ for all $z \in \mathbb{U}$. This subordination notion is denoted by

$$\mathcal{F} \prec \mathcal{G}$$
 or $\mathcal{F}(z) \prec \mathcal{G}(z)$.

If the function G is univalent in U, then we have the inclusion equivalence

$$\mathcal{F}(z) \prec \mathcal{G}(z) \Leftrightarrow \mathcal{F}(0) = \mathcal{G}(0)$$
 and $\mathcal{F}(\mathbb{U}) \subset \mathcal{G}(\mathbb{U})$.

Recently, several authors introduced and studied different subfamilies associated with Bazilevič and λ -pseudo functions (see, for example, [2, 4, 19, 20]).

Based on the Koebe one-quarter theorem [5], the image of \mathbb{U} under any univalent function $\mathcal{F} \in \mathcal{B}$ contains a disk of radius $\frac{1}{4}$, and each function $\mathcal{F} \in \mathbb{S}$ has an inverse \mathcal{F}^{-1} that is defined as $\mathcal{F}^{-1}(\mathcal{F}(z)) = z$ and

$$\mathcal{F}(\mathcal{F}^{-1}(w)) = w, \quad \left(|w| < r_0(\mathcal{F}), r_0(\mathcal{F}) \ge \frac{1}{4} \right),$$

where

$$G(w) = \mathcal{F}^{-1}(w) = w - d_2w^2 + (2d_2^2 - d_3)w^3 - (5d_2^3 - 5d_2d_3 + d_4)w^4 + \cdots$$

A function $\mathcal{F} \in \mathcal{B}$ is named bi-univalent function in \mathbb{U} if both \mathcal{F} and \mathcal{F}^{-1} are univalent functions in \mathbb{U} : The family of all bi-univalent functions in \mathbb{U} denoted by Σ .

A very large number of works related to the bi-univalent functions have been presented in the papers. In [3], Cotîrlă used the (p,q)-derivative operator and investigated the estimates on coefficients and the Fekete-Szegö functional for subclasses of analytic and bi-univalent functions. El-Deeb et al. [6] obtained estimates for the first two Taylor-Maclaurin coefficients associated with q-analogue derivative. In 2024, Krushkal [11] discussed a variational technique for biunivalent functions, which provides a powerful tool for solving the general extremal problems on the classes of biunivalent holomorphic functions, while in 2025 Krushkal [12] considered the connection between biunivalence and the geometry of Teichmuller balls and provided some sufficient conditions for biunivalence of holomorphic functions on the disk. Murugusundaramoorthy et al. [13] presented and examined a family of bi-starlike functions with respect to symmetric conjugate points associated with a Lucas balancing polynomial. We recall some examples of functions in the family Σ , from the work of Srivastava et al. [18],

$$\frac{z}{1-z}$$
, $-\log(1-z)$ and $\frac{1}{2}\log\left(\frac{1+z}{1-z}\right)$.

Fekete and Szegö (see [7]) disproved of the Littlewood-Paley conjecture that the coefficients of odd univalent functions are bounded by 1, which is the basis of the Fekete-Szegö problem $|d_3 - \eta d_2^2|$ for $\mathcal{F} \in \mathbb{S}$, which has a long history in the field of geometric function theory. Fekete-Szegö inequalities for various function families were obtained by many authors.

Behera and Panda [1] introduced the concept of balancing numbers B_n , $n \ge 0$. In actuality, the Diophantine equation can be calculated by the balancing number n and its balancer τ .

$$1+2+3+\cdots+(n-1)=(n+1)+(n+2)+\cdots+(n+\tau).$$

It is known that if n is a balancing number, then $8n^2 + 1$ is a perfect square, and its positive square root is called a Lucas-Balancing number [16]. Recently, Frontczak [8] was concerned with Balancing and Lucas-Balancing polynomials. These polynomials are a natural extension of Balancing and Lucas-Balancing numbers. He derived many interesting properties of the former related to Chebyshev polynomials. In [10], Keskin and Karaatli have studied some properties of balancing numbers and square triangular numbers. Comprehensive information about Lucas-Balancing numbers is accessible for interested readers in [16]. Lucas-Balancing polynomials are expansions of the Lucas-Balancing numbers that occur naturally. For $r \in \mathbb{C}$ and $n \ge 2$, the recurrence relation that follows defines the Lucas-Balancing polynomials [15].

$$C_n(r) = 6rC_{n-1}(r) - C_{n-2}(r),$$

with initial conditions

$$C_0(r) = 1,$$
 $C_1(r) = 3r$ and $C_2(r) = 18r^2 - 1.$ (1.2)

The Lucas-Balancing polynomials' generating function can be written as follows (see [9]):

$$\mathcal{B}(r,z) = \sum_{k=0}^{\infty} C_k(r) z^k = \frac{1 - 3rz}{1 - 6rz + z^2},$$
(1.3)

where $r \in [-1, 1]$ and $z \in \mathbb{U}$.

2. Definitions and preliminaries

Now, by using the Lucas-Balancing polynomials, we provide the following families of holomorphic bi-Bazilevič and λ -pseudo functions.

Definition 2.1. Let $V_{\Sigma}(\mu, \gamma, \lambda; r)$ be the family of functions $\mathcal{F} \in \Sigma$ satisfying the following subordinations:

$$(1-\mu)\frac{z^{1-\gamma}\mathcal{F}'(z)}{\left(\mathcal{F}(z)\right)^{1-\gamma}} + \mu \frac{z\left(\mathcal{F}'(z)\right)^{\lambda}}{\mathcal{F}(z)} < \frac{1-3rz}{1-6rz+z^2} =: \mathcal{B}(r,z)$$

and

$$(1-\mu)\frac{w^{1-\gamma}\mathcal{G}'(w)}{(\mathcal{G}(w))^{1-\gamma}} + \mu \frac{w(\mathcal{G}'(w))^{\lambda}}{\mathcal{G}(w)} < \frac{1-3rw}{1-6rw+w^2} =: \mathcal{B}(r,w),$$

where $0 \le \mu \le 1$, $\gamma \ge 0$, $\lambda \ge 1$, $r \in [-1, 1]$, and $\mathcal{G}(w) = \mathcal{F}^{-1}(w)$.

Remark 2.1. Put $\mu = \gamma = 0$ in Definition 2.1; the family $V_{\Sigma}(\mu, \gamma, \lambda; r)$ reduce to the family $S_{\Sigma}^*(\mathcal{B}(r, z))$, which was studied recently by Öztürk and Aktaş (see [14]).

Definition 2.2. Let $W_{\Sigma}(\mu, \gamma, \lambda; r)$ be the family of functions $\mathcal{F} \in \Sigma$ satisfying the following subordinations:

$$(1-\mu)\left(1+\frac{z^{2-\gamma}\mathcal{F}''(z)}{(z\mathcal{F}'(z))^{1-\gamma}}\right)+\mu\frac{\left((z\mathcal{F}'(z))'\right)^{\lambda}}{\mathcal{F}'(z)}<\frac{1-3rz}{1-6rz+z^2}=:\mathcal{B}(r,z)$$

and

$$(1-\mu)\left(1+\frac{w^{2-\gamma}\mathcal{G}''(w)}{(w\mathcal{G}'(w))^{1-\gamma}}\right)+\mu\frac{((w\mathcal{G}'(w))')^{\lambda}}{\mathcal{G}'(w)}<\frac{1-3rw}{1-6rw+w^2}=:\mathcal{B}(r,w),$$

where $0 \le \mu \le 1$, $\gamma \ge 0$, $\lambda \ge 1$, $r \in [-1, 1]$, and $\mathcal{G}(w) = \mathcal{F}^{-1}(w)$.

Remark 2.2. If we take $\mu = \gamma = 0$ in Definition 2.2, the family $W_{\Sigma}(\mu, \gamma, \lambda; r)$ reduce to the family $\mathcal{L}_{\mathcal{B}}C_{\Sigma}(\mathcal{B}(r, z))$, which was introduced recently by Öztürk and Aktaş (see [14]).

3. Main results

Theorem 3.1. Let \mathcal{F} given by (1.1) be in the family $\mathcal{V}_{\Sigma}(\mu, \gamma, \lambda; r)$ ($0 \le \mu \le 1, \gamma \ge 0, \lambda \ge 1$). Then

$$|d_2| \le \frac{3|r|\sqrt{6|r|}}{\sqrt{|2[(1-\mu)(\gamma+1) + \mu(2\lambda-1)]^2 - 9\Omega(\mu,\gamma,\lambda)r^2|}}$$

and

$$|d_3| \le \frac{3|r|}{(1-\mu)(\gamma+2) + \mu(3\lambda-1)} + \frac{9r^2}{\left[(1-\mu)(\gamma+1) + \mu(2\lambda-1)\right]^2},$$

where

$$\Omega(\mu, \gamma, \lambda) = (1 - \mu)(\gamma + 1) \left[4\mu(4\lambda - \gamma - 3) + 3\gamma + 2 \right] + 2\mu(2\lambda - 1)(3\lambda - 2). \tag{3.1}$$

Proof. Let $f \in \mathcal{V}_{\Sigma}(\mu, \gamma, \lambda; r)$ and $f^{-1} = g$. There are two holomorphic functions $\Phi, \Psi : \mathbb{U} \longrightarrow \mathbb{U}$, fulfill the following conditions:

$$(1 - \mu) \frac{z^{1 - \gamma} f'(z)}{(f(z))^{1 - \gamma}} + \mu \frac{z(f'(z))^{\lambda}}{f(z)} = \mathcal{B}(r, \Phi(z)), \quad z \in \mathbb{U}$$
 (3.2)

and

$$(1 - \mu) \frac{w^{1 - \gamma} g'(w)}{(g(w))^{1 - \gamma}} + \mu \frac{w(g'(w))^{\lambda}}{g(w)} = \mathcal{B}(r, \Psi(w)), \quad w \in \mathbb{U},$$
(3.3)

where

$$\Phi(z) = x_1 z + x_2 z^2 + x_3 z^3 + \cdots, z \in \mathbb{U}$$
(3.4)

and

$$\Psi(z) = y_1 w + y_2 w^2 + y_3 w^3 + \dots , w \in \mathbb{U}$$
 (3.5)

are Schwarz functions such that

$$\Phi(0) = \Psi(0) = 0$$
 and $|\Phi(z)| < 1, |\Psi(w)| < 1 \quad (z, w \in \mathbb{U}).$

On the other hand, it is known that the conditions $|\Phi(z)| < 1$ and $|\Psi(w)| < 1$ imply

$$|x_i| < 1$$
 and $|y_i| < 1$ for all $i \in \mathbb{N}$.

It follows from (3.2)–(3.5) that

$$(1-\mu)\frac{z^{1-\gamma}f'(z)}{(f(z))^{1-\gamma}} + \mu \frac{z(f'(z))^{\lambda}}{f(z)} = C_0(r) + C_1(r)x_1z + \left[C_1(r)x_2 + C_2(r)x_1^2\right]z^2 + \cdots$$
(3.6)

and

$$(1-\mu)\frac{w^{1-\gamma}g'(w)}{(g(w))^{1-\gamma}} + \mu \frac{w(g'(w))^{\lambda}}{g(w)} = C_0(r) + C_1(r)y_1w + \left[C_1(r)y_2 + C_2(r)y_1^2\right]w^2 + \cdots$$
(3.7)

Equating the coefficients in (3.6) and (3.7) yields

$$[(1 - \mu)(\gamma + 1) + \mu(2\lambda - 1)] a_2 = C_1(r)x_1,$$

$$[(1 - \mu)(\gamma + 2) + \mu(3\lambda - 1)] a_3 + \left[\frac{1}{2}(1 - \mu)(\gamma + 2)(\gamma - 1) + \mu(2\lambda(\lambda - 2) + 1)\right] a_2^2$$

$$= C_1(r)x_2 + C_2(r)x_1^2,$$
(3.8)

$$-[(1-\mu)(\gamma+1) + \mu(2\lambda-1)]a_2 = C_1(r)y_1, \tag{3.10}$$

and

$$[(1-\mu)(\gamma+2) + \mu(3\lambda-1)](2a_2^2 - a_3) + \left[\frac{1}{2}(1-\mu)(\gamma+2)(\gamma-1) + \mu(2\lambda(\lambda-2)+1)\right]a_2^2$$

$$= C_1(r)y_2 + C_2(r)y_1^2. \tag{3.11}$$

From (3.8) and (3.10), we have

$$x_1 = -y_1 (3.12)$$

and

$$2\left[(1-\mu)(\gamma+1) + \mu(2\lambda-1)\right]^2 a_2^2 = (C_1(r))^2 (x_1^2 + y_1^2). \tag{3.13}$$

By summing up Eq (3.9) to (3.11), we obtain

$$[(1-\mu)(\gamma+2)(\gamma+1) + 2\mu\lambda(2\lambda-1)]a_2^2 = C_1(r)(x_2+y_2) + C_2(r)(x_1^2+y_1^2).$$
(3.14)

Substituting from (3.13) the value of $x_1^2 + y_1^2$ in Eq (3.14), we deduce that

$$a_2^2 = \frac{(C_1(r))^3 (x_2 + y_2)}{\left[(1 - \mu)(\gamma + 2)(\gamma + 1) + 2\mu\lambda(2\lambda - 1) \right] (C_1(r))^2 - 2\left[(1 - \mu)(\gamma + 1) + \mu(2\lambda - 1) \right]^2 C_2(r)}.$$
 (3.15)

Applying (1.2) in (3.15), we obtain

$$a_2^2 = \frac{27r^3(x_2 + y_2)}{2\left[(1 - \mu)(\gamma + 1) + \mu(2\lambda - 1)\right]^2 - 9\Omega(\mu, \gamma, \lambda)r^2},$$
(3.16)

where $\Omega(\mu, \gamma, \lambda)$ is given by (3.1). Now, using the well-known triangular inequality and taking the square root of (3.16), we conclude that

$$|a_2| \le \frac{3|r|\sqrt{6|r|}}{\sqrt{|2[(1-\mu)(\gamma+1) + \mu(2\lambda-1)]^2 - 9\Omega(\mu,\gamma,\lambda)r^2|}}.$$

In order to find the bound on $|a_3|$, we subtract Eq (3.11) from (3.9) and consider Eq (3.12); we have

$$2[(1-\mu)(\gamma+2) + \mu(3\lambda-1)](a_3 - a_2^2) = C_1(r)(x_2 - y_2), \tag{3.17}$$

then, by substituting the value of a_2^2 from (3.13) into (3.17), we obtain

$$a_3 = \frac{C_1(r)(x_2 - y_2)}{2\left[(1 - \mu)(\gamma + 2) + \mu(3\lambda - 1)\right]} + \frac{(C_1(r))^2 (x_1^2 + y_1^2)}{2\left[(1 - \mu)(\gamma + 1) + \mu(2\lambda - 1)\right]^2}.$$
 (3.18)

Considering Eq (1.2) in (3.18), yield

$$a_3 = \frac{3r(x_2 - y_2)}{2\left[(1 - \mu)(\gamma + 2) + \mu(3\lambda - 1)\right]} + \frac{9r^2(x_1^2 + y_1^2)}{2\left[(1 - \mu)(\gamma + 1) + \mu(2\lambda - 1)\right]^2}.$$
 (3.19)

By making use of the triangular inequality of (3.19) and a straightforward calculation, we find that

$$|a_3| \le \frac{3|r|}{(1-\mu)(\gamma+2) + \mu(3\lambda-1)} + \frac{9r^2}{\left[(1-\mu)(\gamma+1) + \mu(2\lambda-1)\right]^2}.$$

When $\mu = \gamma = 0$, the analogous results presented by Öztürk and Aktaş [14] were obtained by using Theorem 3.1.

Corollary 3.1. [14] Let \mathcal{F} given by (1.1) is in the family $_{\mathcal{LB}}\mathcal{S}^*_{\Sigma}(\mathcal{B}(r,z))$. Then

$$|d_2| \le \frac{3|r|\sqrt{3|r|}}{\sqrt{|1 - 9r^2|}}$$

and

$$|d_3| \le 3|r|\left(3|r| + \frac{1}{2}\right).$$

Theorem 3.2. Assume that \mathcal{F} given by (1.1) is in the family $\mathcal{W}_{\Sigma}(\mu, \gamma, \lambda; r)$ ($0 \le \mu \le 1, \gamma \ge 0, \lambda \ge 1$). Then

$$|d_2| \le \frac{3|r|\sqrt{6|r|}}{\sqrt{\left|8\left(2\mu(\lambda - 1) + 1\right)^2 + 18\left[4\gamma - 23\mu(\lambda - 1) + 8\lambda\mu(\lambda - 2) + 4\mu(2 - \gamma) - 32\mu^2\left(\lambda - 1\right)^2 - 6\right]r^2}}$$

and

$$|d_3| \le \frac{|r|}{3\mu(\lambda - 1) + 2} + \frac{9r^2}{4(2\mu(\lambda - 1) + 1)^2}.$$

Proof. Let $g = f^{-1}$ and $f \in \mathcal{W}_{\Sigma}(\mu, \gamma, \lambda; r)$. There are the functions $\Phi, \Psi : \mathbb{U} \longrightarrow \mathbb{U}$ which are holomorphic, such that

$$(1-\mu)\left(1 + \frac{z^{2-\gamma}f''(z)}{(zf'(z))^{1-\gamma}}\right) + \mu \frac{((zf'(z))')^{\lambda}}{f'(z)} = \mathcal{B}(r, \Phi(z)), \quad z \in \mathbb{U}$$
 (3.20)

and

$$(1-\mu)\left(1 + \frac{w^{2-\gamma}g''(w)}{(wg'(w))^{1-\gamma}}\right) + \mu \frac{((wg'(w))')^{\lambda}}{g'(w)} = \mathcal{B}(r, \Psi(w)), \quad w \in \mathbb{U},$$
(3.21)

where $\Phi(z)$ and $\Psi(z)$ have the forms (3.4) and (3.5). From (3.20) and (3.21), we deduce that

$$(1-\mu)\left(1+\frac{z^{2-\gamma}f''(z)}{(zf'(z))^{1-\gamma}}\right)+\mu\frac{\left((zf'(z))'\right)^{\lambda}}{f'(z)}=C_0(r)+C_1(r)x_1z+\left[C_1(r)x_2+C_2(r)x_1^2\right]z^2+\cdots$$
(3.22)

and

$$(1-\mu)\left(1+\frac{w^{2-\gamma}g''(w)}{(wg'(w))^{1-\gamma}}\right)+\mu\frac{((wg'(w))')^{\lambda}}{g'(w)}=C_0(r)+C_1(r)y_1w+\left[C_1(r)y_2+C_2(r)y_1^2\right]w^2+\cdots. (3.23)$$

Equating the coefficients in (3.22) and (3.23), yields

$$2(2\mu(\lambda - 1) + 1) a_2 = C_1(r)x_1, \tag{3.24}$$

$$3(3\mu(\lambda - 1) + 2)a_3 + 4[2\lambda\mu(\lambda - 2) + \mu(2 - \gamma) + \gamma - 1]a_2^2 = C_1(r)x_2 + C_2(r)x_1^2, \tag{3.25}$$

$$-2(2\mu(\lambda-1)+1)a_2 = C_1(r)y_1 \tag{3.26}$$

and

$$3\left(3\mu(\lambda-1)+2\right)\left(2a_{2}^{2}-a_{3}\right)+4\left[2\lambda\mu(\lambda-2)+\mu(2-\gamma)+\gamma-1\right]a_{2}^{2}=C_{1}(r)y_{2}+C_{2}(r)y_{1}^{2}.\tag{3.27}$$

From (3.24) and (3.26), we have

$$x_1 = -y_1 (3.28)$$

and

$$8(2\mu(\lambda - 1) + 1)^2 a_2^2 = (C_1(r))^2 (x_1^2 + y_1^2). \tag{3.29}$$

If we add (3.25) to (3.27), we obtain

$$2\left[2+4\gamma+9\mu(\lambda-1)+8\lambda\mu(\lambda-2)+4\mu(2-\gamma)\right]a_2^2=C_1(r)(x_2+y_2)+C_2(r)(x_1^2+y_1^2). \tag{3.30}$$

Substituting from (3.29) the value of $x_1^2 + y_1^2$ in the relation (3.30), we deduce that

$$a_2^2 = \frac{(C_1(r))^3 (x_2 + y_2)}{2 \left[2 + 4\gamma + 9\mu(\lambda - 1) + 8\lambda\mu(\lambda - 2) + 4\mu(2 - \gamma)\right] (C_1(r))^2 - 8(2\mu(\lambda - 1) + 1)^2 C_2(r)}.$$
 (3.31)

Applying (1.2) in (3.31), we get

$$a_2^2 = \frac{27r^3(x_2 + y_2)}{8(2\mu(\lambda - 1) + 1)^2 + 18\left[4\gamma - 23\mu(\lambda - 1) + 8\lambda\mu(\lambda - 2) + 4\mu(2 - \gamma) - 32\mu^2(\lambda - 1)^2 - 6\right]r^2}.$$
(3.32)

Now, using the well-known triangular inequality and taking square root of (3.32), we conclude that

$$|a_2| \leq \frac{3|r|\sqrt{6|r|}}{\sqrt{\left|8\left(2\mu(\lambda-1)+1\right)^2+18\left[4\gamma-23\mu(\lambda-1)+8\lambda\mu(\lambda-2)+4\mu(2-\gamma)-32\mu^2\left(\lambda-1\right)^2-6\right]r^2}}$$

In order to find the bound on $|a_3|$, from the relation (3.25) we subtract (3.27) and consider Eq (3.28); we will obtain $x_1^2 = y_1^2$ and hence

$$6(3\mu(\lambda - 1) + 2)(a_3 - a_2^2) = C_1(r)(x_2 - y_2), \tag{3.33}$$

then by substituting from (3.29) the value of a_2^2 into (3.33), we get

$$a_3 = \frac{C_1(r)(x_2 - y_2)}{6(3\mu(\lambda - 1) + 2)} + \frac{(C_1(r))^2(x_1^2 + y_1^2)}{8(2\mu(\lambda - 1) + 1)^2}.$$
(3.34)

Considering Eq (1.2) in (3.34), yield

$$a_3 = \frac{r(x_2 - y_2)}{2(3\mu(\lambda - 1) + 2)} + \frac{9r^2(x_1^2 + y_1^2)}{8(2\mu(\lambda - 1) + 1)^2}.$$
 (3.35)

By making use of the triangular inequality of (3.35) and a straightforward calculation, we find that

$$|a_3| \le \frac{|r|}{3\mu(\lambda - 1) + 2} + \frac{9r^2}{4(2\mu(\lambda - 1) + 1)^2}.$$

If we take $\mu = \gamma = 0$ in Theorem 3.2, the results are reduced to the corresponding results of Öztürk and Aktaş (see [14]).

Corollary 3.2. [14] Let \mathcal{F} given by (1.1) is in the family $_{\mathcal{LB}}C_{\Sigma}(\mathcal{B}(r,z))$. Then

$$|d_2| \le \frac{3|r|\sqrt{3|r|}}{\sqrt{2|2+27r^2|}}$$

and

$$|d_3| \le \frac{|r|}{2} \left(\frac{9}{2} |r| + 1 \right).$$

We provide, in the next theorems, the Fekete-Szegö problem for the function families $\mathcal{V}_{\Sigma}(\mu, \gamma, \lambda; r)$ and $\mathcal{W}_{\Sigma}(\mu, \gamma, \lambda; r)$.

Theorem 3.3. For $0 \le \mu \le 1$, $\gamma \ge 0$, $\lambda \ge 1$, and $\eta \in \mathbb{R}$, let $\mathcal{F} \in \mathcal{V}_{\Sigma}(\mu, \gamma, \lambda; r)$ be of the form (1.1). Then

$$\begin{aligned} \left| d_{3} - \eta d_{2}^{2} \right| &\leq \begin{cases} \frac{3|r|}{(1-\mu)(\gamma+2) + \mu(3\lambda-1)}; \\ \left| \eta - 1 \right| &\leq \frac{\left| 2\left[(1-\mu)(\gamma+1) + \mu(2\lambda-1) \right]^{2} - 9\Omega(\mu,\gamma,\lambda)r^{2} \right|}{18r^{2}\left[(1-\mu)(\gamma+2) + \mu(3\lambda-1) \right]}, \\ \frac{54|r|^{3}|\eta - 1|}{\left| 2\left[(1-\mu)(\gamma+1) + \mu(2\lambda-1) \right]^{2} - 9\Omega(\mu,\gamma,\lambda)r^{2} \right|}; \\ \left| \eta - 1 \right| &\geq \frac{\left| 2\left[(1-\mu)(\gamma+1) + \mu(2\lambda-1) \right]^{2} - 9\Omega(\mu,\gamma,\lambda)r^{2} \right|}{18r^{2}\left[(1-\mu)(\gamma+2) + \mu(3\lambda-1) \right]}. \end{aligned}$$

Proof. It follows from (3.15) and (3.17) that

$$\begin{split} a_3 - \eta a_2^2 &= \frac{C_1(r)(x_2 - y_2)}{2\left[(1 - \mu)(\gamma + 2) + \mu(3\lambda - 1)\right]} + (1 - \eta) \, a_2^2 \\ &= \frac{C_1(r)(x_2 - y_2)}{2\left[(1 - \mu)(\gamma + 2) + \mu(3\lambda - 1)\right]} \\ &\quad + \frac{\left(C_1(r)\right)^3 \left(x_2 + y_2\right) \left(1 - \eta\right)}{\left[(1 - \mu)(\gamma + 2)(\gamma + 1) + 2\mu\lambda \left(2\lambda - 1\right)\right] \left(C_1(r)\right)^2 - 2\left[(1 - \mu)(\gamma + 1) + \mu(2\lambda - 1)\right]^2 C_2(r)} \\ &= C_1(r) \left[\left(\psi(\eta, r) + \frac{1}{2\left[(1 - \mu)(\gamma + 2) + \mu(3\lambda - 1)\right]}\right) x_2 \\ &\quad + \left(\psi(\eta, r) - \frac{1}{2\left[(1 - \mu)(\gamma + 2) + \mu(3\lambda - 1)\right]}\right) y_2 \right], \end{split}$$

where

$$\psi(\eta, r) = \frac{(C_1(r))^2 (1 - \eta)}{\left[(1 - \mu)(\gamma + 2)(\gamma + 1) + 2\mu\lambda (2\lambda - 1) \right] (C_1(r))^2 - 2 \left[(1 - \mu)(\gamma + 1) + \mu(2\lambda - 1) \right]^2 C_2(r)}.$$

Taking modulus and using triangle inequality with (1.2) in the last equation, we find that

$$\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases} \frac{3|r|}{(1-\mu)(\gamma+2)+\mu(3\lambda-1)}, & 0 \leq |\psi(\eta,r)| \leq \frac{1}{2\left[(1-\mu)(\gamma+2)+\mu(3\lambda-1)\right]}, \\ 6|r| |\psi(\eta,r)|, & |\psi(\eta,r)| \geq \frac{1}{2\left[(1-\mu)(\gamma+2)+\mu(3\lambda-1)\right]}. \end{cases}$$

After some computations, we obtain

$$\begin{split} \left|a_{3}-\eta a_{2}^{2}\right| &\leq \begin{cases} \frac{3|r|}{(1-\mu)(\gamma+2)+\mu(3\lambda-1)};\\ \left|\eta-1\right| &\leq \frac{\left|2\left[(1-\mu)(\gamma+1)+\mu(2\lambda-1)\right]^{2}-9\Omega(\mu,\gamma,\lambda)r^{2}\right|}{18r^{2}\left[(1-\mu)(\gamma+2)+\mu(3\lambda-1)\right]},\\ \frac{54|r|^{3}|\eta-1|}{\left|2\left[(1-\mu)(\gamma+1)+\mu(2\lambda-1)\right]^{2}-9\Omega(\mu,\gamma,\lambda)r^{2}\right|};\\ \left|\eta-1\right| &\geq \frac{\left|2\left[(1-\mu)(\gamma+1)+\mu(2\lambda-1)\right]^{2}-9\Omega(\mu,\gamma,\lambda)r^{2}\right|}{18r^{2}\left[(1-\mu)(\gamma+2)+\mu(3\lambda-1)\right]}. \end{cases} \end{split}$$

For $\mu = \gamma = 0$, the results of Öztürk and Aktaş [14] are provided by Theorem 3.3.

Corollary 3.3. [14] For $\eta \in \mathbb{R}$, let $\mathcal{F} \in {}_{f\mathcal{B}}S^*_{\Sigma}(\mathcal{B}(r,z))$ be of the form (1.1). Then

$$|d_3 - \eta d_2^2| \le \begin{cases} \frac{3}{2}|r|; & |\eta - 1| \le \frac{|1 - 9r^2|}{18r^2}, \\ \frac{27|r|^3|\eta - 1|}{|1 - 9r^2|}; & |\eta - 1| \ge \frac{|1 - 9r^2|}{18r^2}. \end{cases}$$

If we put $\eta = 1$ in Theorem 3.3, we get the next result:

Corollary 3.4. *If* $\mathcal{F} \in \mathcal{V}_{\Sigma}(\mu, \gamma, \lambda; r)$ *be of the form* (1.1), *then we have that*

$$|d_3 - d_2^2| \le \frac{3|r|}{(1-\mu)(\gamma+2) + \mu(3\lambda-1)}.$$

Theorem 3.4. For $0 \le \mu \le 1$, $\gamma \ge 0$, $\lambda \ge 1$, and $\eta \in \mathbb{R}$, let $\mathcal{F} \in \mathcal{W}_{\Sigma}(\mu, \gamma, \lambda; r)$ be of the form (1.1). Then

$$\left|d_{3}-\eta d_{2}^{2}\right| \leq \begin{cases} \frac{|r|}{3\mu(\lambda-1)+2};\\ |\eta-1| \leq \frac{\left|8(2\mu(\lambda-1)+1)^{2}+18\left[4\gamma-23\mu(\lambda-1)+8\lambda\mu(\lambda-2)+4\mu(2-\gamma)-32\mu^{2}(\lambda-1)^{2}-6\right]r^{2}\right|}{27r^{2}(3\mu(\lambda-1)+2)},\\ \frac{27|r|^{3}|\eta-1|}{\left|8(2\mu(\lambda-1)+1)^{2}+18\left[4\gamma-23\mu(\lambda-1)+8\lambda\mu(\lambda-2)+4\mu(2-\gamma)-32\mu^{2}(\lambda-1)^{2}-6\right]r^{2}\right|};\\ |\eta-1| \geq \frac{\left|8(2\mu(\lambda-1)+1)^{2}+18\left[4\gamma-23\mu(\lambda-1)+8\lambda\mu(\lambda-2)+4\mu(2-\gamma)-32\mu^{2}(\lambda-1)^{2}-6\right]r^{2}\right|}{27r^{2}(3\mu(\lambda-1)+2)}. \end{cases}$$
 Follows from (3.31) and (3.33) that

Proof. It follows from (3.31) and (3.33) that

$$a_3 - \eta a_2^2 = \frac{C_1(r)(x_2 - y_2)}{6(3\mu(\lambda - 1) + 2)} + (1 - \eta) a_2^2$$
$$= \frac{C_1(r)(x_2 - y_2)}{6(3\mu(\lambda - 1) + 2)}$$

$$+\frac{(C_{1}(r))^{3}(x_{2}+y_{2})(1-\eta)}{2\left[2+4\gamma+9\mu(\lambda-1)+8\lambda\mu(\lambda-2)+4\mu(2-\gamma)\right](C_{1}(r))^{2}-8(2\mu(\lambda-1)+1)^{2}C_{2}(r)}$$

$$=\frac{C_{1}(r)}{2}\left[\left(\phi(\eta,r)+\frac{1}{3(3\mu(\lambda-1)+2)}\right)x_{2}+\left(\phi(\eta,r)-\frac{1}{3(3\mu(\lambda-1)+2)}\right)y_{2}\right],$$

where

$$\phi(\eta, r) = \frac{(C_1(r))^2 (1 - \eta)}{\left[2 + 4\gamma + 9\mu(\lambda - 1) + 8\lambda\mu(\lambda - 2) + 4\mu(2 - \gamma)\right] (C_1(r))^2 - 4(2\mu(\lambda - 1) + 1)^2 C_2(r)}.$$

Taking modulus and using triangle inequality with (1.2) in the last equation, we find that

$$\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases} \frac{|r|}{3\mu(\lambda-1)+2}, & 0 \leq |\phi(\eta,r)| \leq \frac{1}{3(3\mu(\lambda-1)+2)}, \\ \\ 3|r||\phi(\eta,r)|, & |\phi(\eta,r)| \geq \frac{1}{3(3\mu(\lambda-1)+2)}. \end{cases}$$

After some computations, we obtain

$$\begin{split} \left|a_3 - \eta a_2^2\right| &\leq \begin{cases} \frac{|r|}{3\mu(\lambda-1)+2}; \\ \left|\eta - 1\right| &\leq \frac{\left|8(2\mu(\lambda-1)+1)^2 + 18\left[4\gamma - 23\mu(\lambda-1) + 8\lambda\mu(\lambda-2) + 4\mu(2-\gamma) - 32\mu^2(\lambda-1)^2 - 6\right]r^2\right|}{27r^2(3\mu(\lambda-1)+2)}, \\ &\frac{27|r|^3|\eta-1|}{\left|8(2\mu(\lambda-1)+1)^2 + 18\left[4\gamma - 23\mu(\lambda-1) + 8\lambda\mu(\lambda-2) + 4\mu(2-\gamma) - 32\mu^2(\lambda-1)^2 - 6\right]r^2\right|}; \\ \left|\eta - 1\right| &\geq \frac{\left|8(2\mu(\lambda-1)+1)^2 + 18\left[4\gamma - 23\mu(\lambda-1) + 8\lambda\mu(\lambda-2) + 4\mu(2-\gamma) - 32\mu^2(\lambda-1)^2 - 6\right]r^2\right|}{27r^2(3\mu(\lambda-1)+2)}. \end{split}$$

When $\mu = \gamma = 0$, Theorem 3.4 leads to the known result of Öztürk and Aktaş (see [14]).

Corollary 3.5. [14] For $\eta \in \mathbb{R}$, let $\mathcal{F} \in \mathcal{L}_{\mathcal{B}}C_{\Sigma}(\mathcal{B}(r,z))$ be of the form (1.1). Then

$$\left| d_3 - \eta d_2^2 \right| \le \begin{cases} \frac{|r|}{2}; & |\eta - 1| \le \frac{|2 - 27r^2|}{27r^2}, \\ \\ \frac{27|r|^3|\eta - 1|}{|4 - 54r^2|}; & |\eta - 1| \ge \frac{|2 - 27r^2|}{27r^2}. \end{cases}$$

Putting in Theorem 3.4 $\eta = 1$, we obtain the following result:

Corollary 3.6. *If* $\mathcal{F} \in \mathcal{W}_{\Sigma}(\mu, \gamma, \lambda; r)$ *is of the form* (1.1), *then*

$$|d_3 - d_2^2| \le \frac{|r|}{3\mu(\lambda - 1) + 2}.$$

4. Conclusions

The primary objective was to use the Lucas-Balancing polynomials and create a certain family $V_{\Sigma}(\mu, \gamma, \lambda; r)$ and $W_{\Sigma}(\mu, \gamma, \lambda; r)$ of bi-univalent functions associating the Bazilevičfunctions and λ -pseudo functions. We generated Taylor-Maclaurin coefficient inequalities for functions belonging to these families and viewed the famous Fekete-Szegö problem. As future research directions, the contents of the paper on Lucas-Balancing polynomials could inspire further research related to other families.

Author contributions

Abbas Kareem Wanas: Conceptualization, methodology, software, formal analysis, visualization, investigation, data curation, writing—original draft; H. M. Srivastava: Conceptualization, methodology, software, formal analysis, visualization, supervision, writing—original draft, writing—review and editing; Adriana Cătaş: Validation, resources, methodology, investigation, project administration, data curation, writing—review and editing, funding acquisition; Sheza M. El-Deeb: Validation, resources, methodology, investigation, project administration, data curation, writing—original draft. All authors have read and approved the final version of the manuscript for publication.

Use of Generative-AI tools declaration

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

Funding

This research was funded by the University of Oradea.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

- 1. A. Behera, G. K. Panda, On the square roots of triangular numbers, *Fibonacci Quart.*, **37** (1999), 98–105. https://doi.org/10.1080/00150517.1999.12428864
- 2. S. Z. H. Bukhari, A. K. Wanas, M. Abdalla, S. Zafar, Region of variablity for Bazilevič functions, *AIMS Mathematics*, **8** (2023), 25511–25527. https://doi.org/10.3934/math.20231302
- 3. L. I. Cotîrlă, New classes of analytic and bi-univalent functions, *AIMS Mathematics*, **6** (2021), 10642–10651. https://doi.org/10.3934/math.2021618
- L. I.Cotîrlă, A. K. Wanas, Applications of Laguerre polynomials for Bazilevič and θ-pseudostarlike bi-univalent functions associated with Sakaguchi-type functions, Symmetry, 15 (2023), 406. https://doi.org/10.3390/sym15020406

- 5. P. L. Duren, Univalent functions, In: *Grundlehren der mathematischen Wissenschaften*, New York: Springer-Verlag, **259** (1983).
- 6. S. M. El-Deeb, T. Bulboacă, B. M. El-Matary, Maclaurin coefficient estimates of bi-univalent functions connected with the *q*-derivative, *Mathematics*, **8** (2020), 418. https://doi.org/10.3390/math8030418
- 7. M. Fekete, G. Szegö, Eine bemerkung uber ungerade schlichte funktionen, *J. London Math. Soc.*, **s1-8** (1933), 85–89. https://doi.org/10.1112/jlms/s1-8.2.85
- 8. R. Frontczak, A note on hybrid convolutions involving balancing and Lucas-Balancing numbers, *Appl. Math. Sci.*, **12** (2018), 1201–1208. https://doi.org/10.12988/ams.2018.87111
- 9. R. Frontczak, On balancing polynomials, *Appl. Math. Sci.*, **13** (2019), 57–66. https://doi.org/10.12988/ams.2019.812183
- 10. R. Keskin, O. Karaatli, Some new properties of balancing numbers and square triangular numbers, *J. Integer Seq.*, **15** (2012), 1–13.
- 11. S. L. Krushkal, A variational theory for biunivalent holomorphic functions, *Axioms*, **13** (2024), 628. https://doi.org/10.3390/axioms13090628
- 12. S. L. Krushkal, Teichmüller balls and biunivalent holomorphic functions, *J. Math. Sci.*, **288** (2025), 225–233. https://doi.org/10.1007/s10958-025-07678-4
- 13. G. Murugusundaramoorthy, L. I. Cotîrlă, D. Breaz, S. M. El-Deeb, Applications of Lucas Balancing polynomial to subclasses of bi-starlike functions, *Axioms*, **14** (2025), 50. https://doi.org/10.3390/axioms14010050
- 14. R. Öztürk, I. Aktaş, Coefficient estimates for two new subclasses of bi-univalent functions defined by Lucas-Balancing polynomials, *Turkish J. Ineq.*, **7** (2023), 55–64.
- 15. B. K. Patel, N. Irmak, P. K. Ray, Incomplete balancing and Lucas-balancing numbers, *Math. Rep.*, **20** (2018), 59–72.
- 16. P. K. Ray, Some congruences for balancing and Lucas-Balancing numbers and their applications, 2014.
- 17. R. Singh, On Bazilevič functions, *Proc. Amer. Math. Soc.*, **38** (1973), 261–271 https://doi.org/10.1090/S0002-9939-1973-0311887-9
- 18. H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, *Appl. Math. Lett.*, **23** (2010), 1188–1192. https://doi.org/10.1016/j.aml.2010.05.009
- 19. H. M. Srivastava, A. K. Wanas, Applications of the Horadam polynomials involving *λ*-pseudostarlike bi-univalent functions associated with a certain convolution operator, *Filomat*, **35** (2021), 4645–4655. https://doi.org/10.2298/FIL2114645S
- 20. A. K. Wanas, Coefficient estimates for Bazilevič functions of bi-prestarlike functions, *Miskolc Math. Notes*, **21** (2020), 1031–1040. https://doi.org/10.18514/MMN.2020.3174

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)